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Abstract: Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in
ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue
is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting
the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses,
or transplants are beneficial but with many limitations, and may decrease the overall life expectancy
due to related complications. In recent years, with the advent of human induced pluripotent stem
cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a
potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising
candidates, their translatability for clinical applications has been hindered due to poor preclinical
reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates,
have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive
literature review was essential to elucidate the factors affecting the reproducibility and translatability
of large animal models. In this review article, we have discussed different animal models available
for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly
translatable porcine MI model.

Keywords: myocardial infarction; large animal model; porcine; hiPSC-CMs; cell transplantation

1. Introduction

Cardiovascular diseases (CVD), especially myocardial infarction (MI), are the leading
cause of mortality in the US [1], irrespective of age, sex, or ethnicity [2]. The World Health
Organization has recognized modifiable risk factors, such as sedentary lifestyle, tobacco,
and unhealthy dietary practices, paired with psychological stress, as significant contrib-
utors to CVDs [3]. MI occurs due to coronary artery constriction, which decreases blood
and oxygen availability to the heart muscle, leading to the death of cardiomyocytes [4,5].
Additionally, other reversible ischemic injuries, such as myocardial stunning and hiber-
nation, can also cause reversible ischemia in the cardiac tissue [6]. The ischemic tissue is
replaced by a non-contractile scar and remodeling, which compromises cardiac contractility
and eventually leads to heart failure [7,8]. While pharmacotherapy may increase survival
by minimizing the cardiac remodeling process or providing palliative relief, they do not
aid in the regeneration of the dead tissue [9]. Percutaneous Coronary Intervention (PCI)
and Coronary Artery Bypass Grafting (CABG) are the approaches commonly adapted
to restore perfusion to the injured myocardium [10]. In patients with severe MI, heart
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transplantation is the only available option. However, the cardiac transplant is limited
by donor availability and is further complicated by high rates of immune rejection [11].
New-age therapeutic strategies for CVDs include gene therapy, targeted drug delivery, and
stem cell therapies [12–14]. While these therapies aim at regenerating the cardiac tissue,
most of these strategies are still in their infancy.

Different cell types have been studied for myocardial regeneration by cell-based thera-
pies: multipotent (or adult) stem cells including skeletal myoblasts, hematopoietic stem cells
(HSCs), endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs)and cardiac
stem cells (CSCs), human embryonic stem cells (hESCs) and human induced pluripotent
stem cells (hiPSCs) [15–17]. Among adult stem cells, skeletal myoblasts and MSCs have
been studied in numerous preclinical and clinical studies. While these cells showed promis-
ing outcomes in improving cardiac function post-transplantation in preclinical studies, the
benefits associated with these cells are mainly paracrine in nature [18–20]. Additionally,
the promising role of these adult stem cells in preclinical studies could not be successfully
translated to clinical outcomes, mainly because of poor survival, engraftment, and electrical
coupling [21–27]. In addition to this, most of these adult stem cells are limited by their
biological availability, poor in vitro expandability, and immunogenicity [28,29].

On the other hand, hiPSCs are emerging as promising candidates for regenerative
medicine applications [28–32]. Both hESCs and hiPSCs can differentiate into any so-
matic cell type, including neurons, pancreatic cells, hepatocytes, and functional cardiomy-
ocytes [33], and therefore can be used in cell-based therapies, especially for organs, such as
the heart, which lack regenerative capabilities [34–37]. Additionally, autologous stem cell
therapy is made possible by the availability of patient-derived hiPSCs, thereby overriding
the problems associated with immune rejection [35,38]. While the therapeutic potential of
cardiomyocytes differentiated from hESCs (hESC-CMs) or hiPSCs (hiPSC-CMs) have been
extensively studied [39–52], their translation into the clinic has been impeded by different
factors [53]. For the hiPSC-CMs to be used for cell therapy in patients with MI, different
stages need to be optimized (Figure 1). In the last two decades, reproducible protocols for
the expansion of hiPSCs [54–56] and in vitro differentiation to functional cardiomyocytes
(hiPSC-CMs) [57–59], and the enrichment of the hiPSC-CMs (≥95% purity) [52,60–62] have
been developed. The last decade has also shown a rising trend in the use of the hiPSC-CMs
in vitro for ‘clinical trials in a dish’ (Figure 1).
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Despite this progress, the translation of hiPSCs to the clinic has been somewhat modest.
Lack of reproducibility in preclinical studies has been a major impediment to the clinical
use of hiPSCs [63]. Our review focuses on translational preclinical and clinical studies
using the hiPSC-CMs for myocardial regeneration after MI. Here, we discuss the existing
challenges in the use of hESC-CMs and hiPSC-CMs for cardiac regenerative medicine and
the need for reliable and reproducible preclinical animal models. Lastly, we discuss how
the large animal porcine model may be the critical link for the successful translation of the
hiPSC-CMs from bench to bedside and elaborate on the pros and cons of using this model
for preclinical studies [64].

2. Preclinical Animal Models of MI for Transplantation of hiPSC-CMs

Animal models play a critical role in the successful translation of in vitro studies
using cell lines to clinical applications. The critical barrier to the successful use of the
hiPSC-CMs in clinics is the lack of knowledge about their long-term survival, engraftment,
integration with the host myocardium, and role in the improvement of cardiac function [39].
Different preclinical animal models have been used to test the use of the hiPSC-CMs for
myocardial regeneration, including small animal models (mice, rats, guinea pigs) and large
animal models (pigs and non-human primates) [51,65–67]. Each of these animal models
encompasses its respective benefits and limitations.

Small animal models, such as mice, rats, and guinea pigs, are more practical in terms
of wide availability, ease of handling, and cost-effectiveness of pre- and post-procedure
care [68]. Additionally, the ease and cost-effectiveness of generating transgenic models
in small animals make them appealing for use in preclinical studies [69,70]. However,
small animals, such as mice and rats have a high heart rate, more than five times of
humans, [68,71] which could potentially mask the arrhythmias occurring post-cell trans-
plantation [1]. Other limitations include excessive heart collaterals, large surface area to
body ratio, short life span, and genetic variation from humans in terms of contraction and
electrophysiology [68,71]. The human ventricular myocytes predominantly express slower
β-myosin heavy chain (β-MHC) in comparison to the murine and rodent myocardium that
expresses the fast α-MHC, resulting in different contractile properties [68]. Inaccessible car-
diac circulation allows permanent or temporary ligation of the coronary artery as the only
method for induction of ischemia, which fails to mimic the pathophysiology of naturally
occurring ischemia secondary to atherosclerosis [72,73]. Attempts to induce atherosclerosis
in rodent coronary arteries have failed to produce the desired results, with atherosclerosis
developing in the aortic artery root with no clinical complications [74–76].

On the other hand, large animals, such as rabbits, dogs, pigs, sheep, and non-
human primates have the advantage of having similar pathophysiology and electrophysi-
ology as humans, and are therefore clinically more relevant [67,77]. However, these models
face the challenge of increased expenses, cost of care, and stringent animal rights [78–80].
Additionally, large animal models, such as swine, suffer fatal ventricular arrhythmia re-
sulting in high mortality during and immediately after the procedure, affecting sample
size and outcomes [81]. Similarly, excessive fat accumulation in Yorkshire pigs with age
complicates long-term follow-up [68,81]. Moreover, the complex human pathophysiology
influenced by polypharmacy, other comorbidities, age, gender, and genetic disposition, is
rarely reproducible in these animal models [82]. However, despite these obstacles, preclini-
cal studies in cardiac regeneration involving animal models are indispensable and are an
essential prerequisite to establishing successful clinical translatability. This is corroborated
by the increasing trend in the use of large animal models for hiPSC-CM transplantation
post-MI (Figure 2).
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3. The Pig as a Translational MI Model

Among the different large animal models, the pig model is more desirable for use,
mainly due to the close resemblance of its anatomy to that of a human. This is evident
from the landmark xenotransplantation study carried out in 2022, wherein the heart from
a genetically modified pig was transplanted into a patient [83]. Although the patient
died after 49 days of the transplantation, the underlying cause was attributed to a latent
porcine viral infection. On the other hand, two studies carried out later at the New
York University, showed the establishment of normal circulation in patients that received
genetically modified porcine hearts, establishing the similarity in anatomy between porcine
and human hearts [83].

In this context, the porcine model has become immensely popular as a model for
myocardial cell transplantation studies. The heart-to-body weight ratio (5 g/kg) in these
animals and their similarities with the human cardiovascular system, makes (e.g., right
dominance, and less coronary collaterals) the porcine model a highly translational pre-
clinical model [68,84–86]. In addition to the anatomy and physiology being relevant to
clinical scenarios, the genetic makeup of these animals, e.g., predominant expression of
β-MHC over α-MHC, is also similar to humans [68]. While the porcine model does have
some drawbacks, such as their high susceptibility to ventricular fibrillation, high growth
rate, and high cost of maintenance and husbandry, their many advantages along with the
lesser ethical and humane issues associated with their use, make them a more commonly
used large animal model [84,86]. Various studies have made use of the porcine model to
determine the translational aspect of the hiPSC-CMs, unlike studies in the small animal
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models where reproducibility of the experimental outcomes has been a major roadblock.
This inconsistency can be attributed to the numerous variabilities in the experimental
design, assessment parameters, animal physiology, time and dose of treatment, and animal
care. Here, we have reviewed several plausible causes of experimental variability.

3.1. Breed of the Animal

Different breeds of pigs have been used for cardiovascular research, ranging from farm
breeds, such as Yorkshire and Landrace, to miniature pigs or mini pigs, such as Göttingen
and Sinclair [86]. Although each breed has its advantages and disadvantages, one of the
most striking differences arises in the growth rate of farm breeds and minipigs. While
the farm breeds grow from 1–2 kg at birth to >100 kg at 4 months of age, the minipigs
usually grow from 0.5–1 kg at birth to 7–20 kg (depending on the breed) at 4 months of
age [87]. Therefore, a careful selection of the porcine breed becomes essential for the study
design. Studies to understand the therapeutic efficiency of hiPSC-CMs have made use of
both farm pigs as well as minipigs depending on the duration of the study. Farm pigs
have been used for studies to understand the safety, early survival, and engraftment (up to
4 weeks) of the transplanted hiPSC-CMs (Table 1) [42,43,48–50]. On the other hand, minip-
igs have been used to determine the long-term cardiac functional assessment (at 8–12 weeks)
post-transplantation of the hiPSC-CMs into the ischemic myocardium (Table 1) [44–46].

3.2. Myocardial Infarction (MI) Model in Pigs

The surgical procedures used to induce MI in the porcine model have also been shown
to significantly affect the experimental outcomes [77]. Both open chest procedures (coronary
artery ligation and cryoinjury), as well as close chest surgical methods (catheter-guided
coronary artery occlusion), have been used for inducing MI in pigs. However, variations
in the duration of occlusion, site of occlusion, and duration of reperfusion, among other
parameters, are known to influence the infarct site, size, and ultimately the experimental
outcome. For instance, occlusion of the LAD is used frequently to induce MI [88,89].
However, since this method is known to cause ventricular fibrillations and therefore higher
mortality rates in pigs, many studies have alternatively occluded the left circumflex artery
(LCx) to improve the survival of pigs post-MI. While both these methods have been shown
to induce infarcts, the site of infarction in both scenarios is markedly different [90]. Another
important parameter influencing the size of the infarct is the duration and site of LAD
or LCx occlusion. While most studies for the hiPSC-CM transplantation have used the
coronary artery occlusion method, the duration and site of occlusion are variable among
these studies. No direct correlation has been found between the site of infarct formation
and the engraftment of the hiPSC-CMs, which could theoretically have a significant impact
on the study outcomes (Table 1).

3.3. Timing, Dose, and Method for Cell Delivery

Small animal studies using the hiPSC-CMs have established modest to significant
improvement in cardiac function post-transplantation. The functional improvement re-
sulting from hiPSC-CMs, however, is influenced by (a) co-transplantation of other cell
types, such as human MSCs, (b) the number of cells transplanted (dose), (c) site of trans-
plantation (infarct and peri-infarct), and (d) route of delivery (intramyocardial injection,
patch-based epicardial delivery and hydrogel-mediated delivery). Similarly, these factors
have also been shown to play a crucial role in orchestrating experimental outcomes after
the transplantation of the hiPSC-CMs in the porcine model.
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Table 1. Preclinical studies on iPSCs in small and large animal models.

Cell Type Animal Model Model of MI
Induction

Route of Delivery
(IM/IV/IC)

No. of Transplanted
Cells

Time of Delivery
after MI

Immunosuppression
(Dose/Time)

Study
Duration Result Reference

1 hiPSC-CMs

Farm pigs
(Wild type or

LEA29Y-
overexpressing
transgenic pigs)

N/A Fibrin patch (5 × 7 cm) 450 × 106 cells 7 days

Methylprednisolone (250 mg on the day of
surgery followed by 125 mg/day, daily,

starting on day 1-post surgery)
Tacrolimus (0.2 mg/kg bw, daily)

Mycophenolate Mofetil (40 mg/kg bw,
2 doses, 1st: day of surgery, 2nd: 4th-day

post-surgery) Belatacept (10 mg/kg bw only
in wildtype pigs, 2 doses: 1st: day of

surgery, 2nd: 4 days post-surgery)

1–2 weeks

Standard pharmacological
suppression (wild-type pigs)

resulted in poor
transplant survival.

Better transplant survival was
observed in transgenic pigs.

[49]

2
hiPSC-CMs with
hiPSC-ECs and

hiPSC-SMCs
Yorkshire pigs

Distal LAD artery
occlusion for 60 min,

followed by
reperfusion

Fibrin patch
(4 cm × 2 cm × 1 cm)

Two patches per
animal, each

containing 4 × 106

hiPSC-CMs,
2 × 106 hiPSC-ECs,

2 × 106 hiPSC-SMCs

Immediately after
reperfusion

Cyclosporine (15 mg/kg, daily)
Methylprednisolone (1.5 mg/kg bw, daily) 4 weeks

Improved LV function,
reduced scar size, increased

cardioprotection, and
enhanced angiogenesis.

No ventricular
arrhythmias reported

[43]

3 hiPSC-CM, hiPSC-
ECs, hiPSC-SMCs Yorkshire pigs

LAD and LCx
occlusion for 60 min

followed by
reperfusion for

15 min

Intramyocardial injection
or IGF-1 loaded fibrin

patch

2 × 106 hiPSC-CMs,
2 × 106 hiPSC-ECs,

2 × 106 hiPSC-SMCs

Immediately after
reperfusion

Cyclosporine (15 mg/kg bw, daily, starting
3 days before surgery) 4 weeks

Improved LV function.
No ventricular arrhythmias

Better engraftment with patch
transplantation compared to

direct cell injection

[51]

4 hiPS-CMs with
hMSCs Mini pigs

Ameroid Constrictor
placed around LAD

coronary artery
Scaffold- free cell sheets

with omentum flap
5 × 106 hMSCs,
hiPSC-CMs: NA 4 weeks

Tacrolimus (0.75 mg/kg, daily starting
5 days before transplantation),

Mycophenolate Mofetil (500 mg, daily,
starting 5 days before transplantation) and
Prednisolone (20 mg, daily, starting 5 days

before transplantation)

8 weeks Improved LVEF and
cell engraftment [45,46]

5 hiPSC-CM Mini-pigs Ameroid
constriction of LAD Scaffold-free cell sheets N/A 4 weeks Tacrolimus (0.6 mg/kg bw, daily, starting

5 days before transplantation) 8 weeks

Improved cardiac function,
Signs of

increased angiogenesis
No Teratoma formation

[47]

6 hiPSC-CMs Yorkshire-landrace
Pigs

Permanent ligation
of LAD and LCx

arteries

Intramyocardial injection
through epicardially

placed fibrin/thrombin
patch

1.2 × 108 hiPSC-CMs
with or without
Thymosin β4

(Tb4)-releasing gelatin
microspheres

Immediately
post-ligation

Cyclosporin (15 mg/kg bw, daily, starting
3 days before surgery) 4 weeks

Improved LV systolic function,
higher cell engraftment

enhanced angiogenesis and
reduced infarct size in pigs that
received both hiPSC-CMs and
Tb-4-releasing microspheres
No ventricular arrythmia or

tumor formation

[50]

7
hiPSC-CMs,
hiPSC-ECs,

hiPSC-SMCs
Pigs

LAD artery
occlusion for 60 min

followed by
reperfusion

Intramyocardial delivery

10 × 106 hiPSC-CMs,
5 × 106 hiPSC-ECs,

5 × 106 hiPSC-SMCs or
7.5 mg exosomes

derived from these
cells

Immediately after
reperfusion

Cyclosporine (15 mg/kg, daily)
Methylprednisolone (1.5 mg/kg, daily) 4 weeks

Improved cardiac function,
increased angiogenesis, and

higher cellular metabolism was
observed in the pigs which

received cells or
exosomes treatment.

[44]

8 hESC-CMs Farm pigs

LCX obstructed with
balloon and

700 microspheres
injected to

induce ischemia,
At 4-week

ventricular pacing
for an additional 4

weeks to induce HF

Intramyocardial injection 2 × 108 hESC-CMs or
2 × 108 hiPSC-MSC 8 weeks

Oral steroid (40 mg/day, daily, starting
3 days before transplantation), Cyclosporine

(200 mg/day, daily, starting 3 days before
transplantation)

8 weeks

Improvement in LV function
with hiPSC-MSC

administration showed more
improvement in cardiac

function than the
hESC-CMs group

[48]
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In a study by Querdel et al. [48], 5–7 cm fibrinogen/thrombin-derived mesh tissue
patches containing 4.3–4.5 × 108 hiPSC-CMs, were transplanted onto the pig hearts one
week after the induction of MI. Three weeks after transplantation, the hiPSC-CMs were
found penetrating all three layers of the myocardium with evidence of advanced sarcomere
protein development. In a similar study by Gao et al. [42], two fibrinogen/thrombin
patches (4 cm × 2 cm × 1.25 cm) seeded with 4 × 106 hiPSC-CMs along with 2 × 106 hiPSC-
derived endothelial cells (ECs) and 2 × 106 hiPSC-derived smooth muscle cells (SMCs),
were transplanted epicardially immediately after the induction of MI. Non-ventricular
arrhythmias and ST elevation was observed after the first two weeks. However, at the end
of the four-week study, a marked improvement in cardiac function was observed with no
added disposition to arrhythmia. The scar size was significantly diminished with reduced
apoptotic cells in the peri-infarct area.

A study by Lei et al. [50], tested the efficacy of a combination of hiPSC-derived cells
seeded on a patch and insulin-like growth factor-1 (IGF-1), releasing gelatin microspheres.
A cocktail of 2 × 106 hiPSC-CMs, 2 × 106 hiPSC-ECs, and 2 × 106 hiPSC-SMCs was either
intramyocardially injected or delivered on an IGF-1-releasing microsphere-coated fibrin
patch into a farm pig after ischemia reperfusion. While arrhythmias were noted during
ischemia induction and reperfusion, none were noted at the four-week follow-up. The pigs
transplanted with the patch showed increased expression of Nkx2.5 indicative of protection
against oxidative damage. Reduced fibrosis, improved wall stress, higher angiogenesis,
increased ventricular function, and recovery of cardiac function were observed in the
animals transplanted with the patch [50]. The outcomes of the study highlighted the
possible method to improve the clinical outcomes of transplanted hiPSC-CMs a fibrin patch
loaded with IGF-1.

Kawamura et al. [44,45] fabricated hiPSC-CM-derived cell sheets, which were trans-
planted as a single layer or multiple layers, four weeks after the induction of MI in minipigs.
While transplanted hiPSC-CMs were detected at eight weeks post-transplantation, there
was a remarkable decline in their numbers during long-term follow-ups. In a different study,
Kawamura et al. used hiPSC-CM sheets in combination with an omental flap in minipigs.
First, seven hiPSC-CM sheets were sutured on the epicardium. Then, the omentum was
mobilized and sutured to the pericardium and the minipigs were allowed to heal. Follow-
up was done at one month, two months, and three months post-cell transplant with serial
cardiac magnetic resonance (CMR) imaging, and left ventricular function (end-diastolic
volume and end-systolic volume) was assessed with Ejection Fraction (EF).. Improved EF
was seen at the end of the follow-up compared to the control group. The technique of using
cells in combination with the omental flap showed superior therapeutic efficacy in terms of
angiogenesis, secondary to cytokines released and the anti-inflammatory property of the
omentum contributing to enhanced cell engraftment. Similarly, Shi et al. [49] conducted
a study on a porcine model with a combinatorial therapy of hiPSC-CMs and gelatin mi-
crospheres infused with Tb4. Animals were followed up at four and twelve weeks. The
cotreatment of Tb4 with hiPSC showed several benefits: increased vasculogenesis, cell
proliferation, protection from oxidative stress, improved cardiac function and decreased
scar size with increased wall thickness at the area of ischemia.

In addition to the aforementioned factors, the time of cell delivery post-ischemic
injury also becomes critical. In most clinical scenarios, transplantation of hiPSC-CMs
immediately after MI is not feasible. Hence, the establishment of a timeline for cell trans-
plantation may largely affect the translatability of the experimental outcomes to clinical
implementation. Most studies on transplantation of hiPSC-CMs in the pig model for MI
involve delivering the cells one to four weeks after induction of MI [44–48,91–94] (Table 2),
with a few exceptions where the transplantation is performed within an hour of inducing
MI in the pigs [42,43,49]. The former provides a more clinically relevant scenario where
the cardiac function is sufficiently compromised to test the regenerative potential of the
transplanted cells.
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Table 2. Current clinical trials on hiPSC-CMs in patients with heart failure (Source: https:
//clinicaltrials.gov, accessed on 9 December 2022).

Title Phase Study Type Status Identifier PI
Treating Congestive Heart

Failure Patients with
hiPSC-CMs Through

Catheter-based
Endocardial Injection

Phase I Interventional Recruiting NCT04982081 Ling Tao, MD, Ph.D.
Xijing Hospital

A Phase I/II Study of
hiPSC-CM Spheroids

(HS-001) in Patients with
Severe Heart Failure,

Secondary to Ischemic Heart
Disease or LAPis study.

Phase I
Phase II Interventional Not yet recruiting NCT04945018 None

Safety and Efficacy of hiPSC
derived Engineered Human
Myocardium as Biological
Ventricular Assist Tissue in

Terminal Heart Failure
(BioVAT-HF)

Phase I
Phase II Interventional Recruiting NCT04396899

Tim Seidler, Prof.
University

Medical Center
Goettingen

Clinical Trial of Human
(Allogeneic) hiPSC-CM

Sheet for Ischemic
Cardiomyopathy

Phase I Interventional Recruiting NCT04696328 Yoshiki Sawa, Ph.D.
Osaka University

3.4. Immunosuppression

For the successful survival and engraftment of transplanted allogenic stem cells,
overriding the host’s immune system is inevitable. In this regard, a major advantage of
the use of small animal models for testing the safety and efficacy of stem cell therapy
is the availability of transgenic immunocompromised animals [95]. The availability of
these genetically modified animal models minimizes variability in the immunosuppression
regime as well as eases the studies for long-term survival, engraftment of transplanted cells,
and therefore their associated beneficial functional outcomes. However, unlike small animal
models, the severe combined immunodeficiency (SCID) pigs, such as the ARTEMIS−/−

pigs, are very expensive and require a very specialized positive pressure room to maintain a
higher air pressure than the surrounding environment, filtered air, and water to protect from
pathogens [96]. Nevertheless, immunocompromised porcine models mimic the clinical
scenario for allogenic cell transplantation studies and therefore, can be used for translation
study designs, although they are not economical. On the other hand, several studies have
used immunosuppressants, such as cyclosporine or tacrolimus, to suppress the immune
system in wild-type pigs (Table 1) [97]. However, the most common method is the use of a
proper immunosuppressive drug regime to override the host’s immune response. However,
unlike small animal models, the immunosuppression regime in the porcine model has not
yet been fully established. A plethora of drugs, dosages and durations have been used in
different studies [38,98], which may have a significant impact on the outcomes of the study
(Table 1). Additionally, while this is a viable option of preclinical studies, long term use of
immunosuppressants for patients may not be desirable due to the plausible detrimental
side effects [99,100].

One method to overcome the immunogenicity of hiPSCs is to make use of human
leukocyte antigen (HLA)-matched donor cells for transplantation. In recent years, attempts
are being made to bank hiPSCs derived from donors with homozygous human leukocyte
antigen (HLA) haplotype [38,101]. Another approach involves genetically ablating the HLA
molecules in hiPSCs to minimize their immunogenicity underway [38,101]. Furthermore,
other approaches modulate the immune responses of the host’s immune system using
small molecules or growth factors [50].

https://clinicaltrials.gov
https://clinicaltrials.gov
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4. Clinical Trials on hiPSC-CMs as a Therapy for Cardiac Regeneration

Currently, bench research is challenged by the lack of representative disease mod-
els [77] and time lag, and is not always translatable into clinical medicine. Factors con-
tributing to the increased incidence of CVD include genetic and epigenetic factors, as well
as environmental factors and lifestyle changes, which makes the animal models (small and
large) less suitable to be studied for human subjects. With 90% of animal model studies
failing to be translatable clinically, bench research on animals seems a less promising option.
However, the role of hiPSC-derived cardiac cells has been long studied in different CVDs,
e.g., Long QT Syndrome, Hypertrophic Cardiomyopathies, Marfan Syndrome, Dilated
Cardiomyopathy, and more [102]. The United States offers the highest contribution of
36% to clinical studies globally, followed by France and China. In interventional studies
involving re-transplantation of tissues in the human heart, the US accounts for 16.7% of the
cases, with China leading at 36.7% [34]. Currently, four clinical trials are underway using
hiPSC-CMs to treat patients with CVDs. NCT04982081 is now a phase I clinical trial that
started in August 2021 in Xijing Hospital, China, and is currently recruiting participants
for a randomized, double-blinded interventional trial where twenty participants will be
subjected to parallel assignment into two groups. One group will receive 100 million
hiPSC-CMs injected via a transcatheter endocardial injection system, and the second group
will receive 400 million hiPSC-CMs via the same delivery method. The primary endpoint
includes incidence of serious adverse events (SAE): death, fatal myocardial infarction,
stroke, tamponade, cardiac perforation, ventricular arrhythmias affecting hemodynamics
(>15 s), and tumorigenicity related to the hiPS-CM follow-up until the end of first month
post-catheterization. Secondary outcomes include seven categories assessed up to twelve
months post-catheterization. These categories include incidence of arrhythmia for the first
six months; changes in panel reactive antibodies and donor-specific antibodies at one, three,
and six months post-catheterization; assessment of left ventricular systolic performance
via PET/CT scan at six and twelve months, and via MRI at one, three, six and twelve
month;, the incidence of tumor formation; functional status using the six-minute walk test
and using the New York Heart Association (NYHA) at one, three, six and twelve months.
The study is planned to be completed by December 2023, but no study results have been
posted. NCT04945018 is a phase I/II interventional clinical trial that intends to recruit
ten participants in an open-label model with a sequential assignment of participants. A
hiPSC-CM spheroid suspension will be injected into participants in low and high doses via
specialized needles for implantation and guided adaptors. The primary outcome includes
monitoring adverse events up to 26 weeks post-transplantation. Secondary outcomes will
be measured at 26 and 52 weeks post-transplantation, including left ventricular ejection
fraction via cardiac MRI and echocardiography, myocardial wall motion in echocardiogra-
phy, myocardial blood flow and viability in SPECT, six-minute walk distance, Kansas City
Cardiomyopathy Questionnaire (KCCQ), five-level EQ-5D-5L, and N terminal Pro-brain
Natriuretic Peptide (NT-proBNP). The study has not started recruiting, but the primary
completion date is 30 September 2023. NCT 04396899 is an interventional phase I/II clinical
trial being conducted at the University Medical Center, Gottingen. The recruitment is in
progress, and the study is currently recruiting 53 participants in a single group assignment
with an open-label model. The trial, called BioVAT-HF, will use Engineered Heart Tissue
(EHT) made from a defined mixture of hiPSC-CMs and stromal cells in a bovine collagen
type I hydrogel. The target patients are those with severe HF and EF <35% and no option
of cardiovascular transplant. The primary outcome will target heart wall thickness, and
heart wall thickening fraction monitored via high-resolution ECHO or CINE-mode MRI
monitored at two weeks, one month, three months, six months, and twelve months after
transplantation. The estimated completion date is October 2024. NCT 04696328 is an inter-
ventional clinical trial conducted at the Osaka University where ten participants will be
recruited in a single group assignment, open-labeled model. Each participant will undergo
the transplantation of a hiPSC-CM sheet. The primary outcome is the assessment of left
ventricular systolic function (LVEF), and blood tests will assess safety. Secondary outcomes
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will be left ventricular structural and functional evaluation, NYHA classification evaluation,
specific activity scale, Minnesota living with heart failure questionnaire, SF-36, six-minute
walk test, BNP, NT-proBNP, and exercise tolerance at 26 and 52 weeks post-transplantation.

5. Conclusions and Future Directions

In summary, advancements in technology and contemporary bioengineering tools
have advanced the use of hiPSCs in treating damaged myocardium after MI. However, the
unavailability of autologous hiPSC lines for each patient or an immune-privileged hiPSC
line and the lack of highly reproducible large animal models, limit the clinical translata-
bility of hiPSCs for CVDs. Nonetheless, with the increasing prevalence of CVDs globally,
optimization of tools and techniques for the transplantation of hiPSCs is imperative. While
the porcine model holds immense potential as a link between bench and bedside, over-
coming its many limitations, discussed in this review may pave the way for better clinical
translation of hiPSC-CMs.
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