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Table S1: Each node’s Boolean control function logically explains the combined impact of the 
node regulators. The regulatory functions of the nodes are included here along with their regulators 
as well as supporting references. The complete name of the network elements and the biological 
explanation for the edges coordinating with each node are provided in Table S2.

Node Regulatory Functions References
DNA damage When DNA damage present in cancer cells -
ATM-pH2AX DNA damage AND (NOT Wip1 OR NOT Cdc25 OR E2F1) [1, 2, 3, 4]
AMPK/MAPK ATM-pH2AX AND NOT Wip1 [5, 6, 7]
Mdm2 (NOT Wip1 OR p53) AND NOT ATM-pH2AX AND NOT miR221 AND NOT PTEN AND AKT [8, 9, 10, 11, 12]
p53 ATM-pH2AX OR (NOT Mdm2 AND AMPK-MAPK AND NOT hTERT) [1, 13, 14, 15, 16]
p53-A NOT Sirt1 AND NOT p53-K AND (p53 OR NOT p53INP1) [17, 18]
p53-INP1 p53-K OR p53-A [18]
p53-K NOT p53-A AND (NOT Sirt1 OR NOT Wip1) AND p53 [18, 17, 8]
p21 p53-A OR (NOT Myc AND NOT AKT AND NOT Caspase AND AMPK-MAPK) [19, 20, 21, 22, 23, 24]
Wip1 p53-A [25]
RB NOT (Cdc25 AND Cdc2-CycB) [26, 27]
Myc (E2F1 OR AMPK-MAPK OR AKT) AND NOT RB AND NOT p21 [28, 29, 30, 31, 32, 33]
WWP1 Myc [34]
hTERT (AKT OR Myc) AND NOT p53 AND NOT PTEN [35, 36, 16, 37]
E2F1 (NOT RB AND ((Cdc25 AND ATM-pH2AX) OR NOT Sirt1 OR NOT PTEN)) OR Myc [38, 39, 40, 41, 42, 43]
Cdc25 (NOT ATM-pH2AX OR NOT AMPK-MAPK) AND NOT Wee1 AND NOT PTEN [44, 45, 5, 46, 3]
Sirt1 E2F1 [42]
Cdc2-CycB Cdc25 AND NOT Wee1 AND NOT PTEN AND NOT p21 [47, 48, 49, 21]
Wee1 NOT AKT [46]
TUG1 p53 [50]
miR-221 NOT TUG1 OR E2F1 [37, 51]
PTEN NOT miR-221 AND (ATM-pH2AX OR p53-K) AND NOT WWP1 [37, 52, 53, 34]
AKT NOT PTEN OR mTOR2 [37, 54]
mTORC1 AKT AND NOT (ULK1/Beclin1 AND AMPK-MAPK) [55, 56, 57, 58]
mTORC2 AKT OR (NOT PTEN AND (NOT mTOR1 OR NOT Sirt1 OR NOT hTERT OR NOT AMPK-MAPK)) [54, 59, 60, 61, 62, 57, 58]
ULK1/Beclin1 NOT mTOR2 AND NOT mTOR1 AND AMPK-MAPK [63, 64, 57]
BCL2 NOT PUMA AND E2F1 AND NOT p53-K [65, 66, 67]
PUMA p53-K AND NOT miR-221 [68, 69]
BAX NOT BCL2 AND p53-K [70, 71]
Caspase NOT (BCL2 AND p21) AND BAX [72, 73, 74]
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