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Abstract: Cell-penetrating peptides (CPPs) are short peptides with the ability to translocate through
the cell membrane to facilitate their cellular uptake. CPPs can be used as drug-delivery systems for
molecules that are difficult to uptake. Ocular drug delivery is challenging due to the structural and
physiological complexity of the eye. CPPs may be tailored to overcome this challenge, facilitating
cellular uptake and delivery to the targeted area. Retinal diseases occur at the posterior pole of the eye;
thus, intravitreal injections are needed to deliver drugs at an effective concentration in situ. However,
frequent injections have risks of causing vision-threatening complications. Recent investigations
have focused on developing long-acting drugs and drug delivery systems to reduce the frequency
of injections. In fact, conjugation with CPP could deliver FDA-approved drugs to the back of the
eye, as seen by topical application in animal models. This review summarizes recent advances in
CPPs, protein/peptide-based drugs for eye diseases, and the use of CPPs for drug delivery based on
systematic searches in PubMed and clinical trials. We highlight targeted therapies and explore the
potential of CPPs and peptide-based drugs for eye diseases.
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1. Introduction

At least 2.2 billion people worldwide have a vision impairment or blindness [1].
About half of their vision impairment could have been prevented or is yet to be addressed.
Thus, ophthalmic medication needs are increasing sharply [1]. The most common sight-
threatening ocular diseases are age-related macular degeneration (AMD), cataracts, diabetic
retinopathy (DR), diabetic macular edema (DME), retinopathy of prematurity (ROP), dry
eye conditions, and glaucoma [2]. In addition, less frequent yet devastating ocular neo-
plasms, such as uveal melanoma and retinoblastoma, also share the difficulty of drug
delivery with other eye diseases. Ocular drug delivery remains challenging due to nu-
merous barriers and mechanisms, such as the blood-aqueous barrier, blood-retina barrier,
and the nasolacrimal drainage system, which can significantly affect tissue distribution [3]
(Figure 1).

Current proposed administration routes for ocular diseases include subconjunctival [4],
intravitreal injection [5–10], micro-cannulation or microcatheter [11–13], and micronee-
dles [14,15]. However, these therapies are invasive, and most therapies require repeated
injections. Less-invasive topical administration, such as contact lenses [16–19] and conven-
tional topical eye drops [20], have also been developed (Figure 1). Nonetheless, each of
these routes has its own advantages and disadvantages. Only a subset of these technologies
is efficiently applied in vivo at either pre-clinical or clinical trials and is approved by the
FDA in several diseases, as described in Sections 5–7 below. Especially for eye diseases
occurring at the posterior segment, targeted approaches with antibodies are effectively used
in the clinic [21–35]. Due to their size, antibody-based drugs are delivered via intravitreal
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injection. To facilitate the delivery of antibody-based drugs by eyedrops, conjugation of
the antibodies with CPP was tested in mouse models and showed encouraging results [36].
As described in Sections 3 and 4 below, the advantage of using protein/antibody-based
drugs is the specificity of their targets. The advantage of using CPPs is the capability of
delivering such drugs as non-invasive eye drops.
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Figure 1. Schemes of the eye structure, common ocular diseases, and ocular drug administration
routes. The eye can be divided into an anterior segment and a posterior segment. The anterior
segment includes conjunctiva, cornea, anterior and posterior chambers (narrow space behind the
iris and in front of the lens). The posterior segment consists of the choroid, retina, and vitreous body.
Topical application of ophthalmic formulations is the common route for drug delivery to the anterior
segment of the eye for eye diseases that occur at the front of the eye, such as dry eye and glaucoma.
Subconjunctival injection can be used for steroid delivery in the setting of ocular inflammation. In
contrast, delivery of therapeutic agents to the posterior segment for other eye diseases, including
DR, AMD, diabetic macular edema (DME), retinal vein occlusion (RVO), and uveal melanoma, needs
invasive administration such as intravitreal, suprachoroidal (microneedle and microcannula), and
subretinal injection. Created with BioRender.com.

The delivery of drugs can be influenced by several factors: (i) the transport efficiency
in different cells; (ii) rapid endosomal release; (iii) ability to reach the target; (iv) activity at
low doses; (v) lack of toxicity; and (vi) facility of therapeutic application [37]. Considering
the distribution of drugs, small molecules can easily distribute through the vitreous, while
macromolecules are restricted by the barriers described in Figure 1. Moreover, small
molecules can bear off-target effects in the eye, leading to lower efficiency and higher
toxicity. Therefore, development of technologies optimal for macromolecule delivery, such
as proteins and peptides, which target the biologically relevant targets within the eyes, is
needed. Cell-penetrating peptides (CPPs), also known as protein-transduction domains
(PTDs), can cross the membrane and transport membrane-impermeable cargoes (including
small molecules, peptides, proteins, nucleic acids, liposomes, and nanoparticles) into the
cells [37]. In recent decades, CPPs have been rising as a potential drug delivery system,
especially for the delivery of peptides and proteins in treatment therapies [38,39]. In
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particular, CPP-conjugated drugs can be administered as eye drops instead of intravitreal
injections in ocular diseases [40].

In this review, we first briefly describe the strategies for cell penetration. Then, we
focus on the strategies for using CPPs to deliver peptides/proteins in eye diseases and
the examples of successfully used peptide/protein drugs for ocular diseases. For writing
this review, we searched the literature in PubMed from the initial discovery of CPPs in
1988 to current technological development. We used search terms such as peptide, CPP,
cell-penetrating peptide, each name of the eye diseases, and their combinations. For the
FDA-approved drugs and drugs in clinical trials, we searched drugs on ClinicalTrials.gov,
with search terms such as age-related macular degeneration, diabetic retinopathy, and uveal
melanoma. Among the list of agents in clinical trials, we selected peptide or protein-based
drugs to describe in this review article.

2. The Strategies for Cell Penetration

CPPs consist of less than 30 amino acid residues, which are rich in basic amino acids
such as arginine and lysine. CPPs are able to transport numerous cargoes across the cellular
membranes and remain in an intact functional form. CPPs were first designed to mimic the
natural penetration domain from viruses (TAT) [41], penetratin [42], Pvec [43], etc., which
can translocate through the cellular membrane [44]. After that, rational designs for synthetic
CPPs were developed. Although the detailed molecular mechanism of cell penetration
is still to be elucidated, technologies improving cell penetration have been established.
Cationic and amphipathic structures are the main consideration in designing CPPs. Besides
the sequence and structure of peptides, other properties, such as internalization efficiency,
endosomal escape mechanism, stability, and toxicity, are also crucial in designing CPPs [45].

2.1. Cationic CPPs

The cationic class CPPs comprise peptides with highly positive net charges. Most of
the conventional CPPs contain cationic charges, such as polyarginine and polylysine. The
TAT peptide (GRKKRRQRRRPQ) is the first CPP discovered from the transactivator of
the transcription (TAT) of human immunodeficiency virus, and TAT peptide contains six
arginine and two lysine residues [41,46]. In addition, non-natural and/or synthetic CPPs
containing the guanidinium group or other positively charged residues have also been
developed. Synthetic CPPs are beneficial because they allow for the controlled introduction
of various chemical entities [47–49].

The positive charge of cationic peptides is attracted to the negative charge on the
surface of cell membranes, facilitating the interaction of CPPs to the cell membrane to
initiate translocation [48,50,51]. Since polyarginine showed a much higher uptake effect
compared with others [52], polyarginine is the most studied CPP. However, the mechanisms
by which cationic CPPs translocate into the cellular membrane are complicated, with
multiple steps, and thus, are somehow controversial. The arginine-rich CPPs were known
to be internalized by lipid raft-dependent micropinocytosis, independent of caveolar- and
clathrin-mediated endocytosis and phagocytosis [53]. Other groups provided evidence
that arginine-rich CPPs directly pass through the membrane via a temporary pore [54–56].
Recently, it was reported that arginine-rich CPPs passively enter vesicles and live cells by
inducing membrane multilamellarity and fusion [57].

Cationic CPP strategies have been developed for decades for pre-clinical and clini-
cal applications. The most applicable cationic CPPs are TAT and low molecular weight
protamine (LMWP). XG-102/AM-111/D-JNKI-1, a TAT-conjugated JNK inhibitor, showed
efficacy in suppressing postoperative ocular inflammation in human patients [58]. XG-
102/AM-111 has been applied for acute inner ear hearing loss [59]. LMWP consists of
10 arginine residues in its structure (VSRRRRRRGGRRRR) and is a non-toxic CPP for
intracellular protein and gene delivery [60]. LMWP conjugation, with insulin, enhanced in-
testinal absorption of orally administrated insulin in animal models [61]. When delivering
siRNA into breast cancer cells to suppress tumor growth and metastasis, conjugation with

ClinicalTrials.gov
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LMWP facilitated drug delivery of siRNA in vitro [62]. The LMWP-conjugated nanopar-
ticle was used to enhance drug delivery of paclitaxel into s.c. tumor in mice [63] and the
delivery of doxorubicin to overcome drug-resistant breast cancer in mice [64]. In addition,
LMWP-conjugated nanoparticles greatly facilitated nose-to-brain drug delivery in mice [65].
Finally, studies have highlighted that nanoparticle composition may induce retinal toxicity
in vitro, requiring further characterization of these CPP conjugates.

2.2. Amphiphilic Peptides

Amphipathic CPPs contain both hydrophilic and hydrophobic residues of amino acids.
Besides dominant amino acids, lysine and arginine, amphipathic CPPs are also rich in
hydrophobic residues, such as valine, leucine, isoleucine, and alanine [39]. The amphi-
pathic CPPs can be classified into primary structure, secondary structure, or proline-rich
CPPs [39,66,67]. Peptides assembled sequentially by a domain of hydrophobic residues,
with a domain of hydrophilic residues, are primary amphipathic peptides. For instance,
MPG (GALFLGFLGAAGSTMGAWSQPKKKRKV) and Pep-1 (KETWWETWWTEWSQP-
KKKRKV) are primary amphipathic peptides [68]. Secondary amphipathic peptides are
generated by the conformational state that allows positioning of all hydrophobic resides to
one face and hydrophilic residues on opposite sides of the molecule, e.g., MAP (KLALK-
LALKALKAALKLA) [69] and Transportan (GWTLNSAGYLLGKINLKALAALAKKIL) [70].
Proline-rich is a special class that contains a proline pyrrolidine template such as Bac7
(RRIRPRPPRLPRPRPRPLPFPRPG) [71,72].

Since the cellular membrane is composed of an amphipathic bilayer, it is believed
that amphiphilic CPPs first interact with the cellular membrane on their hydrophilic face
and then penetrate the hydrophobic interior of the cell membrane before delivery of their
load to the cytosol. During the cellular translocation process, amphiphilic molecules tend
to interact in the aqueous solution so that their nonpolar fragments interact with other
nonpolar groups, keeping their polar groups in contact with the aqueous phase [73].

Recently, a combined computational design approach has been developed, which
provides scanning of naturally occurring protein sequences for CPP fragments toward the
identification of potential amphiphilic peptides [74]. This method allows for shortening
the screening step of CPP design. Amphiphilic CPPs have been reported as a carrier for
delivery of proteins and CRISPR-associated nucleases to airway epithelia [75].

2.3. Hydrophobic Peptides

Hydrophobic CPPs mainly contain nonpolar residues with a low net charge, such
as C105Y (CSIPPEVKFNKPFVYLI) or PFVYLI [76]. This class of CPPs is less common
and more poorly studied than cationic and amphiphilic classes. The internalization of
hydrophobic CPPs is known to be facilitated by their high-affinity hydrophobic motif
with the hydrophobic domains of cellular membranes [39]. It has been suggested that
hydrophobic CPPs translocate across membranes in an energy-independent manner [77].

2.4. Others

The sequence and structure of peptides are important for cellular uptake, but other
properties, including the internalization efficiency, endosomal escape mechanism, stability,
and toxicity, are also crucial in designing a CPP. Thiol-containing peptides have been stud-
ied to improve cellular uptake [78–80]. Thiol-containing peptides can cross-react with cell
surface thiols to be trapped at the membrane or further internalization [79]. Simply adding
a Thiol-tag to a CPP significantly improved the cellular uptake of enzymes, nanobodies, and
full-length immunoglobulin-G antibodies [80]. Another strategy is combining CPPs with
endosomolytic peptides, such as endosomal leakage domains, which bind and transiently
destabilize endosomal membranes, helping CPPs avoid endosomal entrapment [81–83].

Although there have been many suggestions to improve cellular uptakes of CPPs,
it depends on each specific CPP template and modifications. For example, cationic and
hydrophobic properties are the key drivers of cellular uptake, but excess positive charge
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and hydrophobicity at isolated amino acid positions can trigger membrane lysis [84]. In
addition, depending on the cargo or cell type, one strategy can be more advanced than the
other. For instance, it was reported that amphipathic CPP is a more suitable carrier moiety
than cationic CPP for the delivery of siRNA polyplex [85].

3. CPP Is Promising for Ocular Drug Delivery

Despite the increasing number of effective therapeutics for eye diseases, ocular drug
delivery has always been challenging due to numerous anatomical and physiological
barriers (see Figure 1). Topical application of ophthalmic formulations is the common route
for drug delivery to the anterior segment of the eye for eye diseases that occur at the front
of the eye, such as dry eye, inflammation (anterior uveitis), and glaucoma. In contrast, it
is still challenging to deliver therapeutic agents to the posterior segment of the eyes for
other eye disorders at the back of the eye, including DR, AMD, diabetic macular edema
(DME), retinopathy of prematurity (ROP), retinal vein occlusion (RVO), and posterior
uveitis [86,87]. Posterior segment diseases are treated by local injections, such as periocular,
intravitreal, suprachoroidal, and subretinal (Figure 1). Conventional ophthalmic drugs for
treating posterior segment disorders are intravitreal injections of anti-vascular endothelial
growth factor (VEGF) agents [30,32,33,88–93]. Bevacizumab (Avastin) and ranibizumab
(Lucentis) are a monoclonal antibody and an antibody fragment, respectively, which bind to
VEGF-A to inhibit VEGF signaling in choroidal neovascularization (CNV) [93]. Aflibercept
(Eylea, VEGF-Trap) is a recombinant protein derived from the extracellular domains of
VEGFR1 and VEGFR2 [92]; thus, aflibercept interacts with and inhibits signaling from
VEGF family proteins, including VEGF-A, -B, -C, -D, and placenta growth factor (PGF).
VEGF blockage serves as the gold standard for treating wet AMD, DR, and DME, as high
VEGF is a hallmark of these diseases [91]. However, the conspicuous limitation of this
therapy is the invasion and repetitive injection. Therefore, non-invasive, effective, and
innovative therapies are needed.

CPPs appear as possible enhancing strategies for the noninvasive delivery of potent
therapeutic agents because they can be used as eye drops. Drug delivery of anti-VEGF
(bevacizumab and ranibizumab) to the posterior segment using CPPs was tested in the laser-
induced CNV model, a well-established wet AMD model [36]. Eyedrops of bevacizumab
and ranibizumab, conjugated with CPPs, were as efficacious as a single intravitreal injection
of anti-VEGF in reducing areas of CNV in vivo [36]. If successfully developed, CPP-
conjugation, with currently injectable drugs, can make them topically applicable as eye
drops to reduce the burden for patients who currently need to visit the doctor’s office for
monthly injections. Further testing for safety, toxicity, and pharmacokinetics with larger
animals would be needed before applying it to human patients.

4. Advantages of Peptide-Based Therapeutics

In previous decades, the primary class of therapeutics is small molecules, as they
can rapidly diffuse through biological fluids, across biological barriers, and through cell
membranes, which allow small molecules to approach and interact with most tissues
and cell types in the body [94]. However, due to the free diffusion, they usually cause
off-target, leading to high toxicity. In addition, they limit the application of less soluble
molecules [95]. Together with small molecule-based therapeutics, advanced biomedical sci-
ences provided a remarkable expansion of peptide- and protein-based therapeutics. These
large molecules offer many advantages compared to small-molecule drugs. Their large
size and diverse structures increase specificity, resulting in higher potency and reduced
toxicity. Peptides and proteins also provide a broad range of targets without a limitation of
types and structure [96–98]. Despite the similar mechanisms, compared to proteins and
antibodies, peptides have more benefits in cell penetration, immune escape, and produc-
tion costs because of their smaller size [99]. Although therapeutic peptides face two major
challenges—membrane impermeability and poor in vivo stability—novel approaches are
showing potential to improve these drawbacks through chemical or biological peptide
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synthesis and sequence modification [99,100]. Peptide optimization strategies, including
chemical, backbone, and sidechain modifications, have enhanced permeability, reducing
proteolysis and renal clearance and prolonging half-life [99,101]. Small peptide kinesin-
derived angiogenesis inhibitor (KAI) was able to penetrate through the cell membrane
using cationic residues and inhibited metastasis in the cancer model and angiogenesis and
vascular leakage in the wet AMD model in vivo [102].

5. Successfully Used Peptide/Protein Drugs for Eye Diseases

Protein- and/or peptide-based therapeutics have emerged to address multiple ocular
diseases. High expression of VEGF in wet AMD, DR, ROP, and DME causes leakiness of
ocular vessels and unwanted angiogenesis. Thus, the anti-VEGF strategy was successfully
developed. In addition to Lucentis and Eylea, mentioned above, Brolucizumab (Beovu),
Byooviz, and Faricimab (Vabysmo) are FDA-approved protein drugs for eye diseases
(Table 1).

Table 1. FDA-approved therapies for eye diseases.

Generic Name Brand Name Format Company Year Conditions Ref.

Ranibizumab Lucentis Anti-VEGF-A
antibody Genentech 2006

Wet AMD, DR,
DME, mCNV,

RVO
[30–32]

Aflibercept Eylea
Recombinant

protein targeting
VEGF

Regeneron 2011 Wet AMD, ROP [33–35]

Brolucizumab Beovu Anti-VEGF-A
antibody Novartis 2019 Wet AMD [21,22]

Susvimo Ocular implant for
ranibizumab Genentech 2021 Wet AMD [29]

Ranibizumab-
nuna

(SB11)
Byooviz Biosimilar of

ranibizumab
Biogen/Samsung

Bioepis 2021 Wet AMD, DME,
RVO, mCNV [24,25]

Faricimab Vabysmo Ab targeting both
VEGF-A and Ang2 Roche/Genentech 2022 Wet AMD, DME [27,28]

Wet AMD: wet age-related macular degeneration, DR: diabetic retinopathy, DME: diabetic macular edema, mCNV:
myopic choroidal neovascularization, RVO: macular edema following retinal vein occlusion, ROP: retinopathy
of prematurity.

Beovu/Brolucizumab (Novartis, Basel, Switzerland) is an antibody fragment for VEGF-
A, approved for wet AMD in 2019 [21,22]. However, Beovu has been found to have an
unacceptable safety profile with a risk of inflammation-induced retinal vascular occlusions
(RVO) and visual acuity loss [23].

Byooviz/Ranibizumab-nuna/SB11 (Biogen/Samsung Bioepis, Incheon, South Korea)
is a biosimilar to Lucenstis, approved for wet AMD, DME, RVO, and myopic choroidal
neovascularization (mCNV) [24,25].

Vabysmo/faricimab (Roche/Genentech, South San Francisco, CA, USA) is a dual-
blocking antibody for both VEGF-A and Ang2 [26]. Ang2 (Angpt2) induces sprouting
angiogenesis and vascular leakage by interacting with Tie2. Thus, blocking both Ang2 and
VEGF-A is more effective than a single blockade for treating wet AMD and DME [27,28].
Faricimab was approved for wet AMD and DME in 2022.

One of the remaining challenges is the burden of frequent intravitreal injections.
Since all approved therapies are proteins or antibodies, they cannot be used as eye drops.
Susvimo (Genentech) was developed to reduce the burden of frequent office visits for
intravitreal injections. Susvimo is a refillable port delivery system that slowly releases
ranibizumab into the vitreous and was approved for wet AMD in 2021 [29]. Long-acting
anti-VEGF therapies are also tested in clinical trials, as described in the next section.
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6. Peptide/Protein Drugs for Eye Diseases in Clinical Trials

In this section, we review the potential peptide/protein-based therapies for eye diseases
in clinical trials (Table 2). Based on the success of anti-VEGF antibodies in wet AMD, targeted
therapies using antibodies are popular for drug development for eye diseases. To improve
drug delivery, smaller antigen-binding fragments are preferred to full-length antibodies.

Table 2. Developing peptide/protein-based drugs for eye diseases in clinical trials.

Name Type Format Clinical Trials Route Conditions Ref.

CKD-701 Antibody Anti-VEGF antibody
fragment Phase 3 (NCT04857177) IVT Wet AMD [103]

HLX04-O Antibody Anti-VEGF antibody
Phase 1/2 (NCT04993352),

phase 3 (NCT05003245,
NCT04740671)

IVT Wet AMD [104]

Conbercept/Lumitin/
KH902 Protein

A recombinant protein
targeting all VEGF
isoforms and PlGF

Phase 2 (NCT01157715), phase
3 (NCT01436864), Phase 2

(NCT01809236) and phase 3
(NCT03108352), phase 3

PANDA-1 and PANDA-2
(NCT03630952 and

NCT03577899)

IVT Wet AMD,
DME, RVO [105–108]

OPT-302 Protein
A recombinant protein
targeting VEGF-C and

VEGF-D

Phase 2 (NCT03345082), phase 3
(NCT04757636, NCT04757610) IVT Wet AMD [109,110]

Abicipar Protein
Engineered protein with
Ankyrin repeat targeting

VEGF

Phase 3 (NCT02462928,
NCT02462486) IVT Wet AMD [111]

MP0112 Protein DARPin, a long-acting
VEGF inhibitor Phase 1 (NCT01086761) IVT Wet AMD [112]

Nesvacumab/REGN910/
SAR307746 Antibody Anti-Ang2 Phase 2 (NCT02712008) IVT DME [113]

AM712/ASKG712 Protein
A bifunctional molecule

targeting VEGF and
Ang2

Phase 1 (NCT05345769,
NCT05456828) IVT Wet AMD [114]

Rinucumab/REGN2176 Antibody Anti-PDGFRβ Phase 1 (NCT02061865), phase
2 (NCT02418754) IVT Wet AMD [115]

Fovista/pegpleranib Antibody Anti-PDGF Phase 2 (NCT01089517) IVT Wet AMD [116]

Tesidolumab/LFG316 Antibody
An antibody that

prevents the cleavage
of C5

Phase 2 trials for wet AMD
(NCT01535950, NCT01624636),
for dry AMD (NCT01527500)

IVT Wet AMD, dry
AMD [117]

Lampalizumab Antibody Anti-factor D Phase 3 (NCT02247531,
NCT02247479) IVT Dry AMD [118]

Eculizumab Antibody Anti- C5 Phase 2 (NCT00935883) Systemic Dry AMD [119]

GEM103 Protein A recombinant human
complement factor H

Phase 1 (NCT04246866), phase 2
(NCT04643886, NCT04684394) Dry AMD [120]

GSK933776 Antibody Anti-amyloid β
antibody Phase 2 (NCT01342926) IVT Dry AMD [121–123]

RN6G/PF-43829223 Antibody Anti-amyloid β
antibody

Phase 2 trial for dry AMD
(NCT01577381) IVT Dry AMD [124]

Pegcetacoplan/APL-2/
Empaveli Peptide C3 inhibitor

Phase 3 trials DERBY and
OAKS for dry AMD

(NCT03525613, NCT03525600)
IVT Dry AMD [125]

Efdamrofusp
alpha/IBI302 Protein

Bispecific decoy receptor
fusion protein for VEGF

and complement

Phase 1 (NCT03814291,
NCT04370379) IVT Wet AMD [126,127]

RC28-E Protein
Dual decoy receptor
targeting VEGF and

bFGF

Phase 1/2 clinical trial
(NCT04270669), Phase 2

(NCT04782128, NCT04782115)
IVT DR, DME, wet

AMD [128]

DE-122/Carotuximab/
TRC105 Antibody An antibody for

endoglin

Phase 1/2 for AMD
(NCT02555306), phase 2

(NCT03211234).
IVT AMD [129]

iSONEP Protein Anti-S1P Phase 2 (NCT01414153) [130]

DS-7080a Antibody Anti-ROBO4 Phase 1 (NCT02530918) IVT Wet AMD,
DMED [131]

HI-con1 is an
antibody-like molecule
targeted against tissue

factor (TF), composed of
two human factor VII

Antibody
A factor VII-IgGFc
chimeric protein

targeting tissue factor

Phase 1/2 (NCT01485588),
phase 2 (NCT02358889) IVT Wet AMD [132]

ALG-1001/Risuteganib/
Luminate Peptide Anti-integrin

oligopeptide

Phase 2 for dry AMD
(NCT03626636), phase 1/2 for
AMD (NCT01749891), phase 2

for DME (NCT02348918), phase
2 for vitreomacular adhesion

(NCT02153476)

IVT
Dry AMD, wet
AMD, DMO,

vitreomacular
adhesion

[133]

XG-102/AM-
111/brimapitide/D-

JNKI-1
Peptide A TAT-coupled JNK

inhibitor
Phase 3 (NCT02235272,

NCT02508337) IVT
Postoperative

ocular
inflammation

[58]

Canakinumab/ACZ885/
ILARISs Antibody Anti-IL-1β antibody Phase 2 (NCT01250171) IVT Dry AMD [134]
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6.1. Anti-VEGF Therapy

Since intravitreal injection of anti-VEGF drugs is the gold standard for therapies of
eye diseases, such as wet AMD, DME, and DR, biosimilars for successful anti-VEGF drugs
(ranibizumab, bevacizumab, and aflibercept) have been developed and tested in clinical tri-
als [135,136]. CKD-701 (Chong Kun Dang Pharmaceutical, Seoul, South Korea) is biosimilar
for ranibizumab. Phase III (NCT04857177), to examine the efficacy of CKD-701 compared
with ranibizumab for wet AMD patients, was successfully completed and showed im-
provement and maintenance of visual outcome through PRN (as needed) regimen [103].
HLX04-O (Shanghai Henlius Biotech, Shanghai, China) is biosimilar for bevacizumab.
Phase I/II (NCT04993352) showed efficacy of HLX04-O to improve visual acuity for wet
AMD patients [104] and proceeded for Phase III trials (NCT05003245, NCT04740671) to com-
pare the efficacy with ranibizumab. Similar to bevacizumab, ranibizumab, and aflibercept,
these biosimilars also need repeated intravitreal injections.

Conbercept/Lumitin/KH902 (Chengdu Kanghong Biotech Company, Chengdu, China)
is a new anti-VEGF antibody, approved by China State FDA for the treatment of wet AMD
in 2013 after completion of the Phase II AURORA trial (NCT01157715) [105] and Phase
III PHOENIX trial (NCT01436864) [106]. Phase II FALCON (NCT01809236) and Phase III
BRAVE (NCT03108352) [108] for macular edema secondary to retinal vein occlusion (RVO),
were also completed in China. Conbercept is currently used for wet AMD, DME, and
RVO. However, worldwide Phase III clinical trials PANDA-1 and PANDA-2 (NCT03630952
and NCT03577899) were terminated because the desired primary endpoint was not met.
Conbercept was also tested for uveal melanoma after plaque radiotherapy and showed
partly relieved retinal vascular damage in response to radiation therapy, but it may not
provide long-term positive functional outcomes [137].

In addition to VEGF-A, VEGF-C and -D also contribute to the disease progression for
wet AMD. Thus, combination therapy of OPT-302 (targeting VEGF-C and -D; Opthea, Vic-
toria, Australia) with ranibizumab (targeting VEGF-A) was tested in the Phase IIb trial for
wet AMD (NCT03345082), showing greater improvement in visual acuity than ranibizumab
monotherapy, and proceeded to Phase III (NCT04757636 and NCT04757610) [109,110].

To reduce the burden of frequent injections, long-acting drugs are developed by using
engineered antibody-mimetic proteins. DARPin (designed ankyrin repeat proteins) is
a class of small, highly stable, engineered binding proteins containing ankyrin repeat
domains. Abicipar pegor (Allergan, an AbbVie Company, Irvine, CA, USA) is a DARPin
molecule. Abicipar binds all VEGF-A isoforms, similar to ranibizumab, with a higher
affinity and longer intraocular half-life than ranibizumab [138,139]. In fact, Phase III
randomized, controlled studies CEDAR and SEQUOIA (NCT02462928, NCT02462486), for
treatment of wet AMD, showed that quarterly (every 12 weeks) injection of Abicipar is
non-inferior to monthly ranibizumab [111]. Abicipar was thought to reduce the frequency
of injections. However, Abicipar was not approved for the treatment of wet AMD due to
the rate of intraocular inflammation observed after the injection of Abicipar [140].

MP0112 (Allergan) is another DARPin, a long-acting VEGF inhibitor, showing promis-
ing results in Phase I (NCT01086761) [112].

6.2. Anti-Ang2

Targeting more than one pathway is also a promising strategy to ameliorate symptoms
induced by multiple pathways. A successful example is FDA-approved faricimab (Genen-
tech), a fusion protein targeting both VEGF and Ang2 [27,28]. With a similar strategy, a
combination of anti-VEGF and anti-Ang2 was tested. Anti-Ang2 monoclonal antibody,
nesvacumab/REGN910/SAR307746 (Regeneron Pharmaceuticals, Tarrytown, NY, USA),
was originally developed for cancer therapy (NCT01271972) [141]. The combination of
nesvacumab and aflibercept injection was not better than aflibercept single treatment for
DME in Phase II (NCT02712008) [113]; thus, the company suspended a move to Phase III.
AM712/ASKG712 (AffaMed Therapeutic, Shanghai, China) is also designed to inhibit both
VEGF and Ang2, and Phase I trials (NCT05345769, NCT05456828) are recruiting.
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6.3. Anti-PDGF Therapy

Despite the initial effectiveness of anti-VEGF therapy, visual acuity declines beyond
baseline levels in most patients during the first four years of treatment [142–144]. In the
limitation of anti-VEGF therapy, pericytes are thought to play an important role [116].
Pericytes cover the endothelial monolayer of blood vessels, provide endothelial cells with
growth factors, and protect endothelial cells from anti-VEGF therapy. Pericytes recruit-
ment, maturation, and survival are mediated by platelet-derived growth factor (PDGF).
Thus, dual blocking of VEGF and PDGF pathways is considered. Rinucumab/REGN2176
(Regeneron Pharmaceuticals) is an anti-PDGFRβ, co-formulated with aflibercept. Af-
ter successful completion of the Phase I safety study (NCT02061865), rinucumab was
tested in Phase II CAPELLA (NCT02418754) to compare the efficacy with aflibercept
alone. However, the Phase II trial was terminated as intravitreal injection of rinucumab
(anti-PDGFRβ + aflibercept) did not show any additional efficacy over aflibercept alone in
wet AMD patients [115].

Fovista/E10030/pegpleranib (Ophthotech Corporation, Prinston, NJ, USA) is an anti-
PDGF antibody tested as a combination therapy with ranibizumab and showed superior ef-
ficacy over ranibizumab alone in a Phase II trial for wet AMD patients (NCT01089517) [116].
However, international, multicenter, randomized, double-masked, controlled Phase III
clinical trials OPH1002 and OPH1003 (NCT01944839, NCT01940900) were terminated as
a combination of Fovista and ranibizumab was not better than ranibizumab monother-
apy [115].

6.4. Anti-Inflammation Therapy

The approved therapies (Table 1) are for angiogenesis-related eye diseases, such as
wet AMD, DR, DME, mCNV, and RVO. There is no approved therapy for dry AMD [145].
Among AMD, the exudative neovascular type of AMD is called wet AMD, whereas the
non-exudative type of AMD is dry AMD. At the early stage of AMD, accumulation of
drusen is observed in Bruch’s membrane [146]. Complement factors found in drusen induce
inflammatory response and worsen AMD. Thus, therapies targeting the complement system
and inflammation have been developed.

Tesidolumab/LFG316 (Novartis) is an antibody that prevents the cleavage of C5. The
safety and efficacy of LFG316 was tested for dry AMD (NCT01527500) and wet AMD
(NCT01535950, NCT01624636), showing no efficacy [117].

Phase III clinical trials of anti-factor D Lampalizumab (Genentech) (NCT02247531,
NCT02247479) [118] and the Phase II trial of systemic complement C5 inhibition with
eculizumab (Alexion Pharmaceuticals, Boston, MA, USA) (NCT00935883) [119] failed to
show a treatment benefit.

GEM103 (Gemini Therapeutics, Wayland, MA, USA) is a recombinant human comple-
ment factor H, tested for dry AMD in a Phase I clinical trial (NCT04246866). Intravitreal
injection of GEM103, up to 500 µg/eye, was well tolerated [120]; however, Phase II clinical
trials (NCT04643886, NCT04684394) were terminated due to lack of treatment benefit.

Amyloid β is also found in drusen. GSK933776 (GlaxoSmithKline, Middlesex, United
Kingdom), an anti-amyloid β antibody, was first developed for Alzheimer’s Disease and
was tested in a Phase II trial for dry AMD (NCT01342926) [121] but failed to show a treat-
ment benefit [123]. RN6G/PF-43829223 (Pfizer, New York, NY, USA) is also an anti-amyloid
β antibody. However, the Phase II trial for dry AMD (NCT01577381) was terminated for
lack of efficacy.

Success of the therapy, targeting the complement system, was finally obtained by
using a peptide. Pegcetacoplan/APL-2 (Apellis Pharmaceuticals, Waltham, MA, USA) is
a PEGylated pentadecapeptide, sold under the brand name Empaveli, for treatment of
paroxysmal nocturnal hemoglobinuria [147]. Pegcetacoplan binds to complement protein
C3 and its activation fragment C3b with high affinity, thereby regulating the cleavage of C3
and the generation of downstream effectors of complement activation. Pegcetacoplan com-
pleted two Phase III trials, DERBY and OAKS, for dry AMD (NCT03525613, NCT03525600),
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showing a reduction in the rate of geographic atrophy lesion growth compared to sham
injection [125].

Another example of success is the dual-blocking strategy. Efdamrofusp alpha/IBI302
(Innovent Biologics, Jiangsu, China) is a bispecific decoy receptor fusion protein for VEGF
and complement [126,148]. A randomized, open-label Phase Ib study (NCT04370379)
showed that monthly intravitreal injection of efdamrofusp alpha, dosed up to 4 mg, was
well tolerated in wet AMD patients, with similar improvement of visual acuity compared
to aflibercept [127].

6.5. Drugs Targeting Other Molecules

Despite standardized anti-VEGF therapy, there are still non-responders, ~30%, among
wet AMD patients. Thus, drugs targeting other molecules are developed as a single or
combination therapy with anti-VEGF therapies.

RC28E (RemeGen, Yantai Shandong, China) is a dual decoy receptor for VEGF and
bFGF and was tested in Phase I/II clinical trial (NCT04270669) for wet AMD and Phase II
clinical trials (NCT04782128, NCT04782115) for DR and DME.

An antibody for endoglin, DE-122/Carotuximab/TRC105 (Santen, Osaka, Japan), was
well tolerated with no serious side effects in Phase I/II for AMD (NCT02555306) [129];
however, it failed to show treatment benefits in Phase II (NCT03211234).

Phase II NEXUS clinical trial for iSONEP, S1P antibody, for wet AMD (NCT01414153)
failed, as it did not meet its primary or key secondary endpoints [130].

DS-7080a (Daiichi Sankyo, Tokyo, Japan) is an antibody against ROBO4, which has
an anti-angiogenic effect [149]. DS-7080a is tested for wet AMD and DME in Phase I
(NCT02530918).

High expression of tissue factor (TF) was found in choroidal neovascularization in wet
AMD. HI-con1 is an antibody-like molecule targeted against TF, composed of two human
factor VII. HI-con1 was tested for Phase I/II and Phase II trials for wet AMD (NCT01485588,
NCT02358889), showing promising results [132].

Another promising drug is a peptide. ALG-1001/Risuteganib/Luminate (Allegro
Ophthalmics, San Juan Capistrano, CA, USA) is an anti-integrin oligopeptide for dry AMD
and DME [150]. Risuteganib inhibits function of four different integrin heterodimers (αVβ3,
αVβ5, α5β1, and αMβ2) involved in the pathogenesis of AMD and DME. Risuteganib was
tested in Phase I/II (NCT01482871) and Phase II (NCT02348918) for DME and Phase I/II
(NCT01749891) and Phase II (NCT03626636) for dry AMD.

Peptide-drug was also developed for ocular inflammation after surgery. XG-102/AM-
111/brimapitide/D-JNKI-1 is a TAT-coupled dextrogyre peptide containing a 20-aa se-
quence of the JNK-binding domain, combined with a 10-aa TAT sequence of the TAT
protein that selectively inhibits the c-Jun N-terminal kinase in vitro [151]. In Phase I clinical
study in treating postoperative ocular inflammation, a single subconjunctival injection
of XG-102 at the end of ocular surgery is non-inferior to dexamethasone eye drops [58].
Subconjunctival injection (Figure 1) could be considered one of the less invasive and easily
accessible routes for drug delivery to both anterior and posterior segments of the eye [152].

The last example is an antibody for IL-1β, tested for dry eye. Canakinumab/ACZ885
(Novartis) is an anti-IL-1β antibody, sold as ILARIS, for the treatment of Still’s Disease,
idiopathic arthritis, and periodic fever syndromes. Canakinumab systemic administration
did not ameliorate the severity of dry eye (NCT01250171) [134].

7. Pre-Clinical Peptide Drug Development

In addition to the aforementioned protein/peptide drugs in the clinic and clinical
trials, there are many peptide-based drugs in pre-clinical studies.

To provide the alternative therapy for the non-responders for anti-VEGF therapies, a
new approach was used to target VEGFR2 trafficking. Since VEGFR2 needs to be exposed
to the cell surface to receive VEGF, inhibition of VEGFR2 trafficking to the cell surface
can reduce VEGF/VEGFR2 signaling [153]. KIF13B is a kinesin family protein, mediating
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VEGFR2 trafficking to the cell surface [153]. To inhibit the interaction between KIF13B
and VEGFR2, KAI (a kinesin-derived angiogenesis inhibitor), a 23-amino acid peptide (aa
1238–1260) of human KIF13B, was designed from the minimum binding site to VEGFR2.
KAI prevents interaction of VEGFR2 with KIF13B, thus inhibiting the trafficking of VEGFR2
to the EC plasmalemma [154]. KAI peptide was designed as a cationic CPP facilitating
cellular uptake. Topically applied KAI as an eyedrop was successfully delivered to the back
of mouse eyes and reduced the disease progression in laser-induced CNV, an animal model
of wet AMD [155].

CPPs can also be used as a drug delivery strategy. Currently, protein/antibody-based
drugs need intravitreal injections. Conjugating CPP with bevacizumab and ranibizumab
could successfully deliver these drugs to the back of the eyes and showed efficacy in
reducing neovascularization in animal models [36].

Peptide for ocular delivery (POD), a 3.5 kD-peptide GGG(ARKKAAKA)4, was able
to deliver both small and large molecules into the back of the eyes. POD is believed to
resemble the glycosaminoglycan binding regions of proteins abundantly present in the
retina, resulting in protein transduction properties in the eyes. POD was able to enter
retinal pigment epithelium (RPE), photoreceptor, ganglion cells, corneal epithelium, sclera,
choroid, etc., via topical application in vivo [156,157].

TAT is also popularly used as a drug delivery system. TAT-conjugated aFGF-His (TAT-
aFGF-His) exhibited efficient penetration into the retina, following topical administration
to the ocular surface. After retinal ischemia-reperfusion injury, retina from TAT-aFGF-
His-treated rats showed better-maintained inner retinal layer structure, reduced apoptosis
of retinal ganglion cells, and improved retinal function compared to those treated with
aFGF-His or PBS [158].

As for CPP delivery of peptides, TAT-µCL, an inhibitory peptide that specifically
acts against mitochondrial µ-calpain, was successfully delivered to the back of the eyes
of rats and protected photoreceptors in retinal dystrophic rats [159,160]. TAT-µCL is a
23 amino acid, 2857.37 Da peptide, with a 10 amino acid stretch of the µ-calpain inhibitory
domain at the carboxy-terminal end, and an additional 13 amino acid fragment of the TAT
peptide, conjugated at the amino-terminal end to enhance membrane penetration [159,161].
TAT-µCL CPP was distributed to both anterior and posterior segments of the rat eyes after
topical administration, promising a potential strategy for ocular drug delivery.

8. Future Perspective

The efficacy of drugs for eye diseases relies heavily on the successful delivery of the
drugs to the area of the disease and the retention of the drugs there. CPPs have potential
to provide the delivery of drugs even to the back of the eyes. The TAT-conjugated drug,
XG-102 [58], is such an example. CPPs can also be conjugated to non-protein/peptide
drugs such as siRNA. Bevasiranib is a siRNA for VEGF, tested in a Phase III clinical trial
for AMD (NCT00557791). Conjugation of CPPs may improve the efficacy of such drugs.

Designing peptides with drug delivery functions, such as CPPs and inhibitory effects,
is also an effective strategy. ALG-1001, pegcetacoplan, and KAI are such examples.

Considering the benefits of targeted therapies and the increasing number of elderly
patients with eye diseases, the need to use peptides/proteins for treatments of eye diseases
will increase. Further development of therapies will benefit such patients with eye diseases.

9. Conclusions

In this review, we discussed the strategies for designing CPPs, the use of CPPs as drug
delivery systems, currently available protein/peptide-based therapies for eye diseases, and
drug delivery for eye diseases. Cationic CPP, TAT, is used to deliver the peptide drug XG-
102 to reduce ocular inflammation after surgery for cataracts and has been tested in clinical
trials. A strategy of CPP conjugation with currently available anti-VEGF drugs was tested
in pre-clinical animal models. Peptide-based drugs, risuteganib and pegcetacoplan, are in
clinical trials for testing their efficacy in AMD and DME. Other peptide-based drugs, KAI,
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POD, TAT-aFGF-His, and TAT-µCL, are also in pre-clinical drug development. Improving
such strategies by conjugating with less-toxic CPPs instead of TAT and formulating peptide-
based drugs with hydrogel to facilitate drug delivery by topical route (eyedrop) would be
needed for further development. The potential risk of toxicity on the ocular surface and
inflammation should be carefully tested in animal models. While further investigation is
required to unlock the full potential of CPPs, new CPP-based approaches can ultimately
provide more efficient and less-invasive treatment options for eye diseases.
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