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Abstract: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a member of the new
family of neurotrophic factors (NTFs) with a unique structure and functions compared to other
conventionally known NTFs. MANF is broadly expressed in developing and mature tissues, including
the central nervous system and peripheral nervous system tissues. Growing research demonstrated
that MANF protects neurons from endoplasmic reticulum (ER) stress-associated complications by
restoring ER homeostasis and regulating unfolded protein response. This review discusses MANF
signaling in neurodegenerative conditions with specific emphasis given to its overall effect and
mechanisms of action in experimental models of Parkinson’s disease, Alzheimer’s disease, and stroke.
Additional perspectives on its potential unexplored roles in other neurodegenerative conditions are
also given.
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1. Introduction

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neurotrophic factor
that is structurally different from other conventionally known neurotrophic factors, such as
nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The presence
of a saposin-like domain at the N-terminal and SAP domain at the C-terminal of MANF
pose this structural difference [1]. Accumulating studies showed that MANF promotes
the survival of dopaminergic neurons, especially by modulating endoplasmic reticulum
(ER) stress and unfolded protein response (UPR) [2,3]. MANF was initially discovered
by Petrova et al. in rat mesencephalic type 1 astrocyte culture media. Initial sequencing
studies showed its 100% homology with human arginine-rich protein (hARP) [2]. However,
the N-terminal arginine-rich sequence in the hARP is not present in MANF [2]. In other
words, hARP is MANF coupled with an N-terminal arginine-rich sequence.

MANF is evolutionarily conserved in both vertebrates and invertebrates [2]. Human
MANF shows approximately 50% sequence similarity with Drosophila and C. elegans
MANF [4]. MANF is expressed in both neuronal and non-neuronal tissues. For example,
MANF is shown to express in the brain tissues of C. elegans, Drosophila, zebrafish, and
rodents [5–8]. Similarly, MANF is expressed in non-neuronal tissues such as the heart,
kidney, salivary gland, and pancreas [9–12]. In rat brain tissue, MANF is expressed in
the cerebral cortex, hippocampus (CA1-CA3 and dentate gyrus), substantia nigra (SN),
and striatum, while in Zebrafish it is expressed in the preoptic, ventral thalamic, pretectal,
dorsal thalamic, and hypothalamic regions [7,8].

Cerebral dopamine neurotrophic factor (CDNF) is another neurotrophic factor that
is structurally and functionally quite similar to MANF. The CDNF consists of 161 amino
acid residues. Human CDNF has approximately 45–59% sequence similarity to the MANF
present in various species [4]. However, critical modifications, such as the presence of
lysine residue K112 in MANF, instead of the leucine residue in CDNF, pose differences in
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their biological properties, especially their cell surface binding affinity [13]. Additionally, a
recent study by Pakarinen et al. showed that the functions of MANF cannot be replaced by
CDNF in mouse brain and pancreatic tissues, suggesting that MANF and CDNF possess
unique functions [14].

2. Structure-Activity Relationship of MANF

MANF is a small protein consisting of 179 amino acids [2]. It is comprised of two
domains, the N terminal and the C terminal, which are interconnected with a short
linker. A simplified structure of MANF is illustrated in Figure 1. The 21 amino acids at
the N-terminal region of MANF serve as the signal sequence [2]. NMR studies showed
that the N terminal domain of MANF is homologous to saposin-like proteins (SAPLIPs)
and contains five α-helices and a 310-helix configured into a closed globular structure
through three disulfide bridges [1]. SAPLIPs are a small class of cysteine-rich proteins
that interact with membrane lipids, such as lipid sulfatide [13]. Studies in C. elegans and
mammalian cardiomyocytes demonstrated that MANF binds to lipid sulfatide on the
cell surface and this binding enables its cellular intake [13]. Bai et al. observed that the
addition of exogenous sulfatide to the culture media enhances the uptake of MANF in
HEK293T cells [13]. The authors of the study also demonstrated that the lysine residue
K112 in MANF is critical for its sulfatide binding, and hence, CDNF may not possess this
property. The sulfatide binding of MANF was also shown to facilitate its cytoprotective
effect in C. elegans and mammalian cardiomyocytes [13].
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The C terminal of MANF contains three helices—a loose α-helix and two additional
α-helices in parallel orientation forming a helix-loop-helix orientation. This is homologous
to the SAP domain (SAF-A/B, Acinus and PIAS) of Ku70 protein as resolved by NMR
spectroscopy [1]. It is known that the SAP domain of Ku70 serves as an anti-apoptotic
domain and inhibits the pro-apoptotic bax [15]. The C terminal of MANF was found
to protect superior cervical ganglion (SCG) neurons from apoptosis in a bax dependent
manner, substantiating the functional similarity of the C terminal end of MANF and SAP
domain of Ku70 [1]. The SAP-like domain also facilitates MANF’s interaction with the
NFκB subunit p65. This interaction negatively regulates NFκB signaling during ER stress
and inflammation [16]. Hence, the C-terminal or the SAP-like domain of MANF is as critical
as its N-terminal region for mediating cytoprotective actions.

MANF has eight cysteine and two CXXC motifs, one per domain. The CXXC
motif at the C terminal contains an internal disulfide bond between two cysteines [17].
Other proteins with CXXC motifs found abundantly in the ER include protein disulfide
isomerase (PDI) and reductase [17]. However, MANF does not show any PDI activity [18].
Strikingly, a mutation in the CXXC motif was shown to abolish MANF’s neuroprotective
property. For example, Mätlik et al. observed that the ability of MANF to protect SCG
neurons from the cytotoxic drug etoposide was abolished when cysteine 151 of CXXC
was mutated to serine [19].

MANF is a secretory protein primarily localized to the luminal ER [19,20]. The
C-terminal of MANF contains an RTDL motif that is recognized by KDEL receptors
and enables its ER-Golgi retention [20]. The ER chaperone binding immunoglobulin
protein/glucose-regulated protein 78 (BiP/GRP78) is also a substrate for the KDEL
receptor [21]. During ER stress, the expression of both GRP78 and MANF increases, and
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they might compete with each other for the KDEL receptor, resulting in the retention of
GRP78 and secretion of MANF [22].

Although MANF was shown to protect neurons, whether the full-length or specific
residues of MANF are critical for its neuroprotective functions was an interesting question
addressed by several researchers. In Drosophila, the full-length MANF was shown to be
necessary for its neuroprotective activity as the removal of either the N-terminal or the
C-terminal or both failed to rescue dopaminergic axons, and the fly, from lethality [23].
Similarly, studies in C. elegans showed that the removal of MANF’s three conserved cys-
teines and half of the N terminal domain induces behavioral defects. For example, an
electrotaxis assay showed that the swimming speed of adult C. elegans expressing this
MANF-mutant was reduced by over 30% [5]. MANF was also shown to protect neurons
from ER stress-induced damage in Parkinson’s disease (PD), Alzheimer’s disease (AD),
and stroke. The following section of the review will discuss the mechanisms of MANF’s
neuroprotective and nerve-regenerative actions [24–27].

3. The Crosstalk between ER Stress, UPR, and MANF

Reduction in calcium levels, viral infections, pharmacological perturbations, abnormal
protein expression, and altered protein glycosylation can cause aggregation of misfolded
or unfolded proteins in the ER, leading to ER stress. The ER stress, if not controlled,
induces cellular apoptosis [28]. Chronic ER stress underlies several pathological disorders
including diabetes, PD, AD, and glomerular and tubular kidney diseases [25,29–31]. In
these pathological states, intrinsic cellular mechanisms attempt to counteract ER stress by
activating UPR signaling. The activation of UPR, in turn, limits new protein translation,
facilitates protein folding, and induces degradation of misfolded proteins to ensure protein
homeostasis [32]. UPR is regulated by three ER-resident transducers: the endoribonuclease
inositol requiring enzyme 1 alpha (IRE1α), protein kinase RNA-like endoplasmic reticulum
kinase (PERK), and activating transcription factor 6 (ATF6) [32]. They have three domains:
an ER luminal domain, a transmembrane domain, and a cytosolic domain. At steady-state,
the ER chaperone GRP78 forms a complex with the ER transducers keeping them inactive.
During ER stress, the GRP78 dissociates from the complex and binds to misfolded proteins
in the ER lumen resulting in the release of the ER transducers [33].

The sequential events of UPR transduction are reviewed in detail in [32,34]. Following
the release from the GRP78 complex, the cytosolic portion of IRE1α undergoes autophos-
phorylation, resulting in the activation of its endonuclease activity. The IRE1α then splices
the X-box binding protein 1 (XBP1) mRNA. The spliced XBP1 (sXBP1) is a transcriptional
activator. It upregulates UPR target genes and facilitates protein folding, protein degrada-
tion, and protein transport, thus reducing the burden of misfolded proteins in the ER [34].
IRE1α also cleaves mRNAs and miRNAs for reducing the overall protein burden in the
ER [32]. PERK also possesses kinase activity and phosphorylates eukaryotic translational
initiation factor 2α (eIF2α). The eIF2α puts a brake on the overall protein synthesis but
selectively spares the transcription factor ATF4. The ATF4, in turn, translocates to the
nucleus and facilitates the transcription of the molecules that regulate UPR [32,34]. PERK
also activates C/EBP homologous protein (CHOP), which, in turn, mediates cellular apop-
tosis [35]. The third UPR transducer ATF6 translocates to the Golgi, where it is cleaved by
the Site-1-Protease (S1P) and Site-2-Protease (S2P). It then releases the transcription factor
bZIP, which transits to the nucleus and upregulates UPR genes [32,34].

Several studies demonstrated that ER stress induces MANF upregulation. ER stress
in pathological conditions, such as rheumatoid arthritis, systemic lupus erythematosus,
glomerular disease, liver damage, and multiple myeloma was shown to induce MANF
upregulation [16,36–38]. Similarly, cell lines treated with the ER stressors, such as thap-
sigargin, tunicamycin, and lactacystin, also showed MANF upregulation, indicating its
critical involvement in ER-stress-related signaling [39,40]. MANF was also shown to over-
express in cortical neurons following ischemia-induced ER stress [40]. Current evidence, in
general, indicates that MANF offers protection against ER stress-induced cell death [39,40].
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Substantiating this argument, deficiency of MANF was shown to worsen ER stress and
neurotoxicity. For example, Wang et al. showed that ethanol induces neurotoxicity in
mouse frontal cortex, thalamus, cerebellum, and hippocampus. 4-PBA, a chemical chap-
erone and inhibitor of ER stress, abolished neuronal apoptosis in this setting, showing
the involvement of ER stress in ethanol-induced neurotoxicity [41]. Strikingly, MANF
deficiency worsened ethanol-induced ER stress and neurotoxicity in mice, indicating that
MANF supplementation may protect animals from ER-stress-mediated neurotoxicity [41].

Although the exact mechanism by which MANF counteracts ER stress is currently
under investigation, several potential mechanisms are postulated and partially understood.
One possibility is the facilitation of protein folding. It is known that the CXXC motif at the
C terminal end of MANF catalyzes the formation of intramolecular disulfide bonds [17].
Therefore, it is speculated that MANF may facilitate the formation of disulfide and cysteine
bonds in misfolded proteins, and thus, may promote protein folding [42]. Another potential
mechanism may be a MANF-induced stabilization of the complex of GRP78 and the UPR
transducers PERK, IRE1α, and ATF6. Yan et al. demonstrated that MANF binds to the ADP-
bound GRP78 through its C-terminal SAP domain, while Glembotski et al. demonstrated
that calcium is required for the formation of the GRP78-MANF complex [22,43]. The
authors showed a 60% reduction in the MANF-GRP78 complex following the inhibition
of sarco/endoplasmic reticulum calcium ATPase (SERCA) in Hela cells [22]. Regardless,
the interaction of MANF with GRP78 may inhibit ATP binding to, and ADP release from
GRP78. Substantiating this view, the SAP domain of MANF was shown to inhibit ADP
release from Hsp70, indicating its potential to serve as a nucleotide exchange inhibitor [43].
Strikingly, lower levels of complex between GRP78 and α1 antitrypsin were found in
MANF knockdown cells, suggesting that MANF may promote the binding of GRP78 with
its partners, especially UPR transducers to keep them inactive [43]. However, additional
studies are required to substantiate this view. The potential mechanisms that may contribute
to MANF-dependent UPR regulation is given in Figure 2.
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complex. During ER stress, due to high-affinity binding between GRP78 and KDEL receptors, MANF
releases from the complex, and hence, the UPR transducers PERK/IRE1α/ATF6. However, in
uncontrolled UPR, increased MANF levels re-establish the GRP78/ PERK/IRE1α/ATF6 complex
and suppress UPR.
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4. MANF Signaling in Parkinson’s Disease (PD)

PD is a progressive neurodegenerating disorder characterized by resting tremors,
bradykinesia, postural abnormalities, and muscle rigidity. PD is also characterized by non-
motor symptoms such as cognitive impairments [44]. The locomotor defects in PD occur
primarily due to the degeneration of dopamine (DA) neurons [45]. Current PD therapies
target the restoration of DA signaling by supplementing synthetic DA analogues and
preventing DA degradation. No therapies have been developed so far aimed at preventing
DA neuron degeneration.

MANF was initially shown to promote the survival of DA neurons in Drosophila,
indicating that it may be a potential therapeutic candidate for PD [2]. Palgi et al. later
found that Drosophila zygotes lacking MANF degenerate dopaminergic axons, suggesting
that MANF is indeed essential for DA neuron homeostasis [6]. Additionally, the authors
demonstrated that flies lacking MANF can be rescued from lethality by the introduction of
mammalian MANF, further indicating the therapeutic utility of MANF [6]. MANF was also
shown to be essential for the survival of DA neurons in C. elegans. MANF deficiency resulted
in the loss of one-third of DA neurons in C. elegans, while exogenous supplementation of
MANF reduced such neuron loss [5]. Aggregation of α-synuclein is a pathological feature
of PD, and hence, α-synuclein-based PD models are widely used for PD research. A study
by Zhang et al. showed that MANF overexpression delayed neurodegeneration in an
α-synuclein-based PD model in C. elegans. MANF also restored DA levels and suppressed
locomotor defects in this model [46].

The neuroprotective roles for MANF were demonstrated in rodent PD models as
well. Liu et al. showed that MANF improved motor behaviors in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) induced PD model in mice [30]. Levels of DA and
its metabolites dihydroxyphenylacetic (DOPAC) and homovanillic acid (HVA) were
reduced in mice after MPTP treatment, while MANF supplementation increased their
levels [30]. Similarly, a combination of CDNF and MANF was shown to improve the
functions of the nigrostriatal system and prevented the loss of DA neurons in a 6-OHDA
induced lesion model in rat [47]. Additionally, Hao et al. showed that the supple-
mentation of MANF to the striatum of rat PD models elicits long-term neuroprotective
and neuro-regenerative effects in DA neurons and improves behavioral outcomes [48].
Interestingly, a recent study showed that MANF facilitates the neuroprotective effect
of the natural compound dendrobine in PD models. For example, dendrobine was
shown to reduce MPTP-induced cytotoxicity in SH-SY5Y cells and rat primary midbrain
neurons by increasing the expression of MANF. Knockdown of MANF attenuated the
ER-stress-relieving effect of dendrobine, substantiating the role of MANF in promoting
the neuroprotective actions of dendrobine [49].

Although the above-mentioned studies provided a strong rationale for clinical studies
to examine the therapeutic effect of MANF in PD, such studies are lacking so far. A study
by Galli et al. demonstrated that MANF levels were substantially increased in PD patients,
providing additional rationale for testing MANF in PD patients [50]. The upregulation of
MANF in PD patients also indicates the potential of MANF to serve as a maker for the early
diagnosis of PD [50].

5. MANF Signaling in Alzheimer’s Disease (AD)

AD is an age-related, progressive, and clinically incurable neurodegenerative disorder
characterized by dementia. The main pathological features of AD include the presence
of amyloid β (Aβ) plaques and neurofibrillary tangles (NFT). The Aβ plaques are neu-
rotoxic [25]. Accumulation of Aβ plaques induces ER stress in neurons, followed by
heightened UPR signaling and neuron death. Xu et al. showed that MANF rescues SH-
SY5Y cells from Aβ-induced toxicity by modulating UPR signaling [25]. The authors found
increased expression of the UPR mediator CHOP, active caspase 3, and TUNEL positivity
in Aβ treated MANF knockdown SH-SY5Y cells, indicating a worsening of Aβ mediated
UPR and neurotoxicity in MANF deficient conditions. Interestingly, the knockdown of
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basal levels of MANF also showed an increase in CHOP levels and TUNEL positivity in
SH-SY5Y cells, indicating that MANF is also indispensable for neuron homeostasis [25].
Xu et al. also observed increased levels of MANF in neurons in the hippocampus and
cortex of the 6-month-old APP/PS1 double transgenic AD mouse model [25]. The MANF
overexpression in this model is accompanied by decreased levels of the UPR transducers
GRP78, ATF6, spliced-XBP1, CHOP, and p-IRE1, suggesting that MANF may suppress
deregulated UPR in AD [25].

Similar to PD, clinical studies addressing the therapeutic utility of MANF in AD are
sparse. Liu et al. studied the distribution of MANF in the inferior temporal gyrus of the
cortex (ITGC) of AD patients [51]. They found a partial co-localization of MANF and
GRP78 in the ER. Additionally, they noted a higher number of MANF-positive neurons
in the ITGC of pre-AD and AD brains compared to non-AD brain samples, showing that
MANF is upregulated in AD and may serve as a marker for AD [51].

6. MANF Signaling in Stroke

Stroke is one of the leading causes of disability in humans worldwide [18]. It is
caused by local thrombosis or hemorrhage, leading to a lack of blood supply to the cor-
responding brain region, resulting in neuron death [52]. Current stroke management
includes endovascular thrombectomy or thrombolytic tissue plasminogen activator (tPA)
therapy [53]. The protective role for MANF in stroke has been studied by several groups.
Li et al. found that MANF levels are upregulated after the induction of subarachnoid hem-
orrhage (SAH) in rats [54]. Interestingly, additional supplementation of MANF improved
the neuro-deficits in SAH animals. Evan’s blue dye shows a leak in rat SAH experimental
models, indicating a breach in blood-brain barrier (BBB) integrity. Interestingly, in rat SAH
models supplemented with MANF, the dye leak was comparatively low, indicating that
MANF protects BBB. MANF treatment also reduced brain edema and improved falling
latency and sensorimotor functions in SAH rats, suggesting that it may improve stroke
outcomes. The MANF-mediated protection of BBB was associated with a reduction in
matrix metalloprotease-9 (MMP-9) levels, indicating that MANF may modulate MMP-9
activity for offering BBB protection [54]. A study by Mätlik et al. also showed functional
improvement in stroke models following MANF treatment [55]. The authors showed
that AAV7-mediated supplementation of hMANF improved neurological indices in rat
stroke models 14 days after stroke surgery as assessed by Bederson’s neurological score test
(BNST) and elevated body swing test (EBST). The rats administered with AAV7-MANF also
exhibited a faster reversal of injury-induced behavioral deficits in EBST and cylinder tests
compared to control animals. The authors showed that the ischemic injury in rats upregu-
lated MANF in neurons and glial cells. Importantly, the deletion of MANF increased the
infarct volume in these rats, substantiating the neuroprotective role of MANF in stroke [55].

In addition to its direct actions, MANF was also shown to promote the neuroprotective
actions of potential therapeutic agents in stroke. A study by Belayev et al. showed
that MANF facilitated the neuroprotective effect of docosahexaenoic acid (DHA) in a
stroke model [56]. The authors showed that DHA supplementation improved neurological
scores and behavioral outcomes in rats that had undergone mid-cerebral artery occlusion
surgery. Interestingly, these functional improvements were accompanied by the induction
of MANF in the brain regions, such as the ipsilateral penumbra, subventricular zone, and
dentate gyrus in this model, substantiating the involvement of MANF in facilitating the
neuroprotective effect of DHA [56].

MANF was also shown to increase blood flow in the brain regions of stroke models.
Using laser doppler flowmetry, Gao et al. showed that the blood flow of the middle
cerebral artery (MCA) is improved after MANF treatment in a rat stroke model, indicating
that post-stroke administration of MANF may improve blood flow in the peri-infarct
area [57]. The angiogenic markers, CD34, VEGF, and Ang1 were also upregulated in the
peri-infarct cerebral cortex following MANF treatment, indicating that MANF may promote



Cells 2023, 12, 1032 7 of 13

angiogenesis, which is a key process involved with intrinsic brain repair [57]. However, the
exact mechanism by which MANF promotes angiogenesis needs additional investigation.

A summary of MANF’s actions in PD, AD, and stroke is depicted in Table 1.

Table 1. Actions of MANF in PD, AD, and stroke.

MANF in PD MANF in AD MANF in STROKE

• MANF promotes the survival of
DA neurons [2].

• MANF elicits long-term
neuroprotective effects on the
nigrostriatal DA system in rat
PD models [48].

• PD patients express increased
levels of MANF [50].

• MANF protects neurons from Aβ

induced toxicity [25].
• High number of MANF-positive

neurons are found in the brain
samples of AD patients compared to
non-AD samples [51].

• MANF deficiency accentuates
neurotoxicity, while its supplementation
reduces neurotoxicity [25].

• MANF levels are upregulated in
subarachnoid haemorrhage (SAH)
stroke models [54].

• MANF facilitates functional
improvement after stroke [55].

• MANF increases blood flow to the
brain in rat stroke models [57].

• MANF upregulates the expression of
angiogenic markers CD34, VEGF,
Ang1 in the peri-infarct cerebral cortex,
contributing to angiogenesis [57].

7. Mechanisms of MANF’s Actions Independent of the ER Stress-UPR Axis

While several studies suggest MANF’s ability to suppress UPR signaling as the
major mechanism for its neuroprotective effect, additional mechanisms also contribute to
its protective actions. PI3K/Akt signaling is well known to promote neuron survival and
growth [58]. A study by Airavaara et al. showed that MANF elicits its neuroprotective
actions by activating P13K/Akt/mTOR signaling [26]. Interestingly, in another study,
Hao et al. noted that MANF treatment did not modify the expression of critical UPR
transducers in PD rats [48]. The authors speculated that MANF may protect neurons
through other mechanisms, such as activation of P13K/Akt/mTOR signaling. Support-
ing this view, they found induction of p-Akt and p-mTOR in MANF-treated animals
compared to control. The authors also found that the P13K inhibitor wortmannin at-
tenuated MANF-mediated viability of SH-SY5Y cells, substantiating that MANF offers
neuroprotection via P13K/Akt/mTOR signaling [48]. Similarly, Zhang et al. showed
that MANF induced the expression and nuclear translocation of the master regulator of
antioxidant genes, the nuclear factor erythroid-2-related factor 2 (Nrf2) [59]. The authors
also found that MANF induced the expression of the neuroprotector HO-1 and protected
SH-SY5Y cells from 6-OHDA-induced reactive oxygen species (ROS) [59]. However, this
protective effect was completely abolished by the P13K inhibitor LY49002, indicating
the involvement of P13K signaling in MANF’s neuroprotective actions. Inclined to this,
MANF-treated cells increased the levels of pAkt and GSK3β. Importantly, LY49002
was also shown to suppress MANF-mediated expression of Nrf2 and HO-1. Overall,
their study indicated that MANF induces Nrf2 activation through P13K/Akt/GSK3β
signaling for its neuroprotective effect [59].

Li et al. found that MANF inhibits apoptosis by reducing caspase 3 levels in rat SAH
models, while the Akt inhibitor MK2206, although it did not alter MANF expression,
reversed the anti-apoptotic effects of MANF [54]. Administration of MANF in this model
was also shown to increase the levels of anti-apoptotic bcl2 and p-MDM2 and decrease
the levels of apoptotic bax and p53, indicating that MANF elicits anti-apoptotic effects
through modulating Akt/MDM2/p53 signaling [54]. MANF was also shown to sup-
press neuroinflammation resulting from ischemia. In a mouse cerebral ischemia model
induced by middle cerebral artery occlusion (MCAO), supplementation of MANF down-
regulated the proinflammatory cytokines IL-6, IL-1β, and TNF-α, indicating suppression
of neuroinflammation [60].

Superoxide dismutase (SOD) and Glutathione (GSH) are endogenous antioxidants that
contribute to cellular detoxification, while Malondialdehyde (MDA) is a product of lipid
peroxidation, and its levels indirectly reflect the extent of cell damage. MANF treatment
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was shown to increase SOD activity and GSH production and subsequently decreased
MDA production in MPTP-induced mouse PD model [30]. In addition, pre-treatment with
MANF was shown to reduce bax levels and increase the levels of the anti-apoptotic protein
bcl2 in SH-SY5Y cells, suggesting that MANF-mediated protection against apoptosis may
also involve antioxidant mechanisms [30].

While the studies mentioned above examined the role of MANF in cellular apoptosis,
Zhang et al. studied whether MANF contributes to autophagy [46]. In their experiments,
they depleted autophagy-related genes in C. elegans PD model and found that at least
26 autophagy-related genes may contribute to MANF signaling; they noted that MANF
lost its protective effect after the depletion of these genes. The authors of the study
suggested that MANF may induce autophagy by modulating the AMPK/mTOR path-
way. They also found that the levels of α-synuclein, a promoter of PD, was reduced
after induction of autophagy and suggested that MANF may facilitate the clearance of
α-synuclein by inducing autophagy [46]. Another recent study demonstrated the role
of MANF in chaperone-mediated autophagy (CMA). During CMA, cytosolic proteins
that contain a KFERQ motif are recognized by the heat shock protein 70 (Hsc70) and is
transported to the lysosomal-associated membrane protein 2A (LAMP-2A), which then
carries them to the lysosomal lumen for degradation. MANF was shown to induce the ex-
pression of LAMP-2A and Hsc70 in SH-SY5Y cells, indicating that MANF induces CMA.
The authors of the study also found that MANF-mediated degradation of α-synuclein is
reversed by LAMP-2A siRNA, indicating that MANF-mediated clearance of α-synuclein
is CMA dependent. Substantiating this argument further, the authors demonstrated
that MANF treatment induces the expression of autophagy-related molecules beclin 1
and LC3 in SH-SY5Y cells in response to α-synuclein challenge. The transcription factor
Nrf2 promotes autophagy, and MANF was shown to induce Nrf2 levels in SH-SY5Y cells
challenged with α-synuclein, indicating that MANF-dependent autophagy and clearance
of α-synuclein may also be mediated by Nrf2. Further, the authors showed that the
Nrf2 inhibitor ML385 reversed MANF-induced autophagy. Overall, these observations
suggest that the MANF-Nrf2 axis may also be a potential therapeutic intervention point
for α-synuclein-driven neurodegenerative disorders, including PD [61]. The already
established and potential mechanisms for MANF, independent of ER stress-UPR axis,
are illustrated in Figure 3.
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Figure 3. The potential and established mechanisms for MANF’s actions independent of ER stress-
UPR axis: (A) Extracellular MANF binds to the cell surface: extracellular MANF binds to the lipid
sulfatide on the cell surface for cellular entry. MANF also binds to Neuroplastin (NPTN) receptor
on the cell surface. MANF’s binding to sulfatide and NPTN and associated signaling promotes
cellular survival. Whether MANF promotes neurite outgrowth in a sulfatide or NPTN-dependent
manner is unknown. (B) MANF promotes cell survival independent of UPR signaling: MANF
modulates PI3K/Akt signaling, MDM2/p53 axis, AMPK/mTOR axis, and Nrf2 signaling for its
survival, anti-apoptotic, autophagy, and neurite outgrowth promoting actions.
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8. Conclusions and Perspectives

Mounting evidence indicates that MANF offers cellular protection in PD, AD, and
stroke. While these pre-clinical results are encouraging, whether MANF supplementation
is a clinically viable and efficacious approach to managing the above-mentioned disor-
ders needs additional investigation. In addition to the above-mentioned disorders, the
knowledge of MANF signaling in other neurological conditions is also emerging. Multiple
sclerosis is an autoimmune disorder. Inflammatory lesions and demyelinating plaques are
the most common pathological hallmarks of MS [62]. Dexamethasone is an immunosup-
pressant commonly used for delaying the progression of MS. Dexamethasone treatment
was shown to upregulate MANF in the lumbar spinal cord of a mouse model of experi-
mental autoimmune encephalomyelitis (EAE). Interestingly, EAE mice supplemented with
hMANF demonstrated better locomotor functions compared to controls, suggesting that
MANF may protect motor neurons in MS [63]. Similarly, epilepsy is a chronic condition
characterized by unprovoked seizures. It affects almost 50 million people worldwide.
Lindholm et al. showed that MANF expression is upregulated in the dentate granule cell
layer, piriform and parietal cortex, and the thalamic reticular nucleus of epileptic mice,
suggesting a potential functional role for MANF in epilepsy [64].

Fundamental studies have demonstrated the ability of MANF to modulate ER
stress-UPR axis, PI3K/Akt signaling, MDM2/p53 axis, AMPK/mTOR axis, and Nrf2
signaling for its cell survival, anti-apoptotic, antioxidant, and autophagy properties.
Several studies also showed MANF’s ability to induce neurite outgrowth. For example,
MANF was shown to promote neurite outgrowth in DA neurons and N2a cells [2,65].
Additionally, MANF was shown to be essential for neurite extension in the developing
mouse cortex. For instance, Tseng et al. showed that MANF is expressed in neural crest
cells and its deficiency leads to inhibition of neuron differentiation and outgrowth [66].
While these studies also attribute MANF’s ability to modulate ER stress-UPR axis and
Akt signaling for its neurite-promoting effect, the exact receptor involvement underlying
its neurotrophic actions is still unknown. It is now clear from the past studies that MANF
binds to GRP78 for potentially modulating UPR signaling and binds to sulfatide on
the cell surface for cellular uptake. However, whether MANF binding to sulfatide and
GRP78 has any direct influence on facilitating neurite outgrowth is not well understood.
A recent study by Yagi et al. demonstrated that MANF binds to the neuroplastin (NPTN)
receptor on the cell surface, and the MANF-NPTN axis was shown to inhibit NFκB
signaling and cell death [67]. However, whether MANF-NPTN axis promotes neurite
outgrowth is unknown.

Currently, not much is known about the role of MANF in the peripheral nervous sys-
tem (PNS), especially its role in peripheral nerve injury and repair. Intrinsic regeneration
of peripheral nerves does not sustain for longer periods due to insufficient availability of
growth factors in the regenerative milieu, and this situation is often compounded by the
expression of growth suppressors or tumor suppressor class of proteins in the milieu [58,68].
Therefore, functional recovery after peripheral nerve injury is often incomplete. In addition,
no pharmacological therapies are effective in repairing injured peripheral nerves. Our
recent work demonstrated that in vitro growth primed dorsal root ganglia (DRG) is an
ideal model for exploring molecular targets for peripheral nerve regeneration [69]. A
comparative proteomics study employing both in vitro and in vivo growth-primed DRGs
revealed that MANF may be a potential molecular candidate for promoting peripheral
nerve repair. We also found that MANF is expressed predominantly in NF200low sen-
sory neurons, and demonstrated that MANF induces neurite outgrowth in peripheral
neurons in vitro, further suggesting that MANF may be a potential therapeutic candidate
for peripheral nerve repair [70]. However, additional in vivo studies are warranted for
making conclusive remarks. Similarly, the potential role of MANF in peripheral neu-
ropathies such as diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and
autoimmune disease-related peripheral neuropathies is an open area for investigation.
Given the detrimental roles of aberrant UPR signaling in painful neuropathies, it is highly
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likely that MANF may be protective in these scenarios. Similarly, MANF signaling in
other neurodegenerative conditions, including spinal cord injury is not well-understood.
Although MANF was initially discovered as a secretory protein of glial cell origin, the
neurons also synthesize MANF. A potent growth factor neuregulin was also shown to
have a similar dual source origin for its seamless availability for natural nerve repair [71].
Whether MANF is indispensable for neuron repair needs additional investigation. Over-
all, detailed in vivo studies are warranted to reveal the therapeutic utility of MANF in
additional neurodegenerative disorders, including PNS disorders.
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