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Abstract: Brain vascular health appears to be critical for preventing the development of amyotrophic
lateral sclerosis (ALS) and slowing its progression. ALS patients often demonstrate cardiovascular
risk factors and commonly suffer from cerebrovascular disease, with evidence of pathological alter-
ations in their small cerebral blood vessels. Impaired vascular brain health has detrimental effects on
motor neurons: vascular endothelial growth factor levels are lowered in ALS, which can compro-
mise endothelial cell formation and the integrity of the blood–brain barrier. Increased turnover of
neurovascular unit cells precedes their senescence, which, together with pericyte alterations, further
fosters the failure of toxic metabolite removal. We here provide a comprehensive overview of the
pathogenesis of impaired brain vascular health in ALS and how novel magnetic resonance imaging
techniques can aid its detection. In particular, we discuss vascular patterns of blood supply to the
motor cortex with the number of branches from the anterior and middle cerebral arteries acting as
a novel marker of resistance and resilience against downstream effects of vascular risk and events
in ALS. We outline how certain interventions adapted to patient needs and capabilities have the
potential to mechanistically target the brain microvasculature towards favorable motor cortex blood
supply patterns. Through this strategy, we aim to guide novel approaches to ALS management and a
better understanding of ALS pathophysiology.

Keywords: amyotrophic lateral sclerosis; vascular supply; motor cortex; pericytes; exerkines

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive disease involving motor neu-
rons. A neuropathological hallmark of ALS is associated with cytoplasmic inclusions in
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degenerating motor neurons consisting of abnormally ubiquitinated and phosphorylated
transactive response DNA-binding protein of 43 kDa (pTDP-43), which can be found in
the motor cortex particularly early in the course of disease [1]. Motor neurons have a
high energy consumption rate due to significant intracellular metabolic demand. They
are therefore vulnerable to oxidative stress, mitochondrial dysfunction, hyperexcitability,
and glutamate-mediated excitotoxicity, which are considered upstream events promoting
pTDP-43 aggregation, and thus, the initiation and clinical manifestation of ALS (please
see [2] for a comprehensive review article on this subject). Neuronal pTDP-43 aggregation
occurs with loss of physiological cellular functions, such as DNA damage repair and axonal
transport mechanisms, which leads to neurodegeneration.

Clinically, degeneration of cortical motor neurons first affects one distinct area within
the motor homunculus unilaterally, which is reflected by the focality of initial motor pheno-
types, classified as bulbar, left or right upper or lower limb onset [3]. The degeneration of
cortical motor neurons then spreads sequentially from lateral to medial within the motor
homunculus of the ipsilateral hemisphere (bulbar, upper limb, lower limb) or from the
ipsi- to the contralateral hemisphere (same limb). Accordingly, clinical motor symptoms
rather evolve from rostral to caudal regions [3,4]. Afterwards, pTDP-43 pathology extends
to adjacent neocortices (prefrontal, postcentral and temporal), the basal ganglia and the
medial temporal lobe (MTL) [5].

Although ALS is a rare disease, the number of affected patients worldwide is ex-
pected to increase on average by 69% (range 33–116%) over the next 20 years [6]. Only
around 5–10% suffer from hereditary (familial) ALS, while the remaining 90–95% of disease
cases have a sporadic, late(er) onset form. The underlying risk or resistance factors for
the sporadic forms remain poorly understood [7]. The same is true for disease progres-
sion, with only a few clinical variables considered as predictors of a more rapid decline
(e.g., weight loss, bulbar onset, diagnostic delay and cognitive impairment) [8,9]. The
disease is highly heterogeneous and the duration of survival varies markedly among in-
dividuals, although the majority of ALS patients die within 3–5 years of symptom onset.
Indeed, some patients survive up to 10 years after diagnosis, and some appear to have
halted or even reversed disease progression [10,11]. This indicates that there must be factors
and mechanisms that are heterogeneous between patients.

We here outline the concept of brain vascular health on the molecular, cellular and
organ level in ALS and discuss how brain vascular health could be mediated through
vascular patterns of blood supply to the motor cortex and serve as a potential marker of
resistance and resilience against downstream effects of vascular risk and events in ALS. We
present novel magnetic resonance imaging (MRI) techniques to detect brain vascular health
and propose new targeted therapies for its maintenance and recovery. Finally, we advertise
strategies for the practical management of ALS patients to implement vascular rethinking
in the clinical setting.

2. Vascular Health for Reserve

The evolving and dynamic field of brain reserve, maintenance and compensation in
healthy cognitive aging has gained a lot of interest due to its role in understanding inter-
individual variability in cognitive performance. The possibility of enhancement (neural
capacity and efficacy), preservation (neuronal repair and plasticity) and recruitment of
neuronal resources to improve cognition is of clear societal relevance and interest [12]. Here,
we specifically refer to the concept of “resistance”, i.e., the avoidance of pathology, and
“resilience”, i.e., tolerance against the effect of pathology (“coping”) [13]. Thus far, research
in these areas has been applied primarily to healthy aging and to (preclinical) Alzheimer’s
disease (AD), where education, lifestyle or behavioral modifications (e.g., intellectual
engagement throughout the lifespan, physical activity) explain a large proportion of the
variance in cognition [13,14]. In ALS, there is an urgent need to clarify similar factors
and mechanisms of resistance and resilience, which might allow for new preventive and
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therapeutic strategies for this incurable neurodegenerative disorder, which is currently
limited to palliative treatment [15,16].

Just recently, it has become clear that preservation of systemic vascular health in aging,
i.e., low cardiovascular risk and minimal cardiovascular disease leads to sustained normal
cognition over time by maintaining brain metabolism [17]. Likewise, a genetic risk for
vascular disease is related to lower resilience of cognitive performance in aged individuals
with different degrees of AD pathology [18]. Several comprehensive reviews and position
papers have emphasized the interaction between cognitive function in aging, brain injury
and systemic vascular health. In this context, risk factors such as arterial hypertension and
obesity appear to have a significant impact on cognitive function in later life if they are
present in midlife and persist [19–22]. Systemic vascular health thus exerts its effects on
the brain over decades rather than years, allowing a significant time period for prevention
and treatment. Additionally, brain vascular cell abnormalities are increasingly recognized
as early and important contributors to the pathophysiology of several neurodegenerative
diseases, including AD, frontotemporal dementia, early-onset dementia and Huntington’s
disease [23–26]. The relationship between systemic vascular health and brain health is
likely mediated by mechanisms of resistance and resilience. Brain vascular health can
therefore be recognized as a target that could be tackled over a long period of time to
achieve greater resistance and resilience against neurodegenerative disease [27].

We propose that systemic and brain vascular health could be added to the emerging
concept of the exposome in ALS, i.e., the role of cumulative environmental lifetime expo-
sures interacting with the patient’s genetic risk (gene–time–environment hypothesis) as
they seem to be central to ALS risk and disease progression [28–30].

The relationship between vascular health and ALS is supported by several clinical
observations and systematic studies. First, ALS patients suffer from cerebrovascular disease
with significantly higher frequency than control subjects [31]. Depending on the geographic
location, up to half of ALS patients have arterial hypertension and up to a quarter coronary
artery disease [32]. Additionally, polygenetic ALS risk correlates with smoking status,
physical inactivity, obesity and a poor blood lipid profile, favoring systemic vascular dis-
ease [33–35]. Secondly, ALS patients with comorbid cardiovascular risk factors and disease
show more rapid decline and potentially shorter survival than ALS patients without [36].
Conversely, treatment of vascular risk factors, particularly arterial hypertension and dia-
betes, reduces the risk of ALS disease onset [37]. Furthermore, ALS patients display small
vessel abnormalities affecting multiple organ systems, including the brain, retina, muscle
and skin [38–41].

In addition, the structure and function of the motor cortex and white matter seem
to additionally be highly vulnerable to poor vascular health. A greater change in blood
pressure in aging, for example, has been associated with lower corticospinal tract (CST)
integrity, which in turn predicts worse downstream motor control [42]. Further, small
infarcts and microinfarcts, which are ischemic lesions related to cerebrovascular disease,
are commonly localized in the motor cortex and the vicinity of the CST [43–45]. In aged
individuals with an increased vascular risk profile, CST dysfunction further relates to
perivascular spaces (PVS) in the juxtacortical white matter of the motor cortex, which are
known markers of microvascular disease in the brain [43].

3. Vascular Supply Mediates Brain Vascular Health

More than two thirds of the general population display variations of the circle of Willis
(CoW) that deviate from the expected anatomy [46]. CoW variations lead to different types
of vascular supply to the brain and have been determined for the anterior and posterior
circulation as well as for hippocampal and lenticulostriate arteries [47–49].

3.1. Vascular Supply of the Medial Temporal Lobe

Just recently, we investigated the circulation of the aging MTL, which can be distin-
guished by the number of large arteries contributing to the vascular supply. The small
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terminal feeding vessels originated either from only one, i.e., “single supply” or from two,
i.e., “double supply”, large arteries (posterior cerebral artery and/or—if existent—uncal
branches from the anterior choroid artery). Participants with a double-supplied MTL
displayed better preserved temporal lobe and whole-brain gray matter volume, as well as
better sustained memory and global cognitive function [50–52]. These results suggest that
patterns of vascular supply can be considered a measure of resistance and resilience that
can be observed in brain regions beyond the supplied core area. The morphology of the
CoW, i.e., its collateral supply, is also associated with the occurrence and type of vascular
brain disease, such as hemorrhagic or ischemic lesions, which further supports the idea that
vascular patterns of supply represent a potential marker of resistance [53,54]. Evaluation
of these parameters could identify individuals at low/high risk and be of value to the
development of new strategies against the initiation and manifestation of MTL-dominant
neurodegeneration, such as in aging or AD.

3.2. Vascular Supply of the Motor Cortex

Variable vascular supply has also been observed in the human motor cortex. The
medial motor cortex is supplied by downstream vessels of the anterior cerebral artery (ACA,
pericallosal and callosomarginal artery), while the lateral motor cortex is supplied by vessels
originating from the medial cerebral artery (MCA, precentral, central and postcentral artery
group) [55]. One postmortem study determined the vascular supply pattern in each
hemisphere separately for the medial and the lateral motor cortex in 20 adults. A single
supply pattern (i.e., supply by one ACA or one MCA downstream branch) was more
prevalent than a double supply pattern (i.e., supply by more than one ACA or more than
one MCA downstream branch), for both the medial (72.5% vs. 27.5%) and the lateral motor
cortex (82.5% vs. 17.5%) [55].

Leveraging the high-resolution capabilities of 7 Tesla (T) MRI, preliminary data demon-
strated that it is possible to reproduce the postmortem results (see Figure 1). To that
end, MPRAGE data was acquired at 7T (Siemens Healthineers, Erlangen, Germany) with
0.45 mm isotropic resolution for 19 subjects (without any known neurological pathology;
seven females; 31.18 ± 6.48 years old; given written, informed consent). Besides enabling
identification of the motor cortex, MPRAGE data acquired at 7T provides hyperintense
arteries. Thus, with the high resolution used, the vessels of interest were delineated to
determine the vessel pattern per hemisphere. In accordance with the postmortem study,
a single supply pattern was more prevalent in the medial motor cortex (68.4% vs. 31.6%;
34.2% pericallosal artery dominance; 34.2% callosomarginal artery dominance), while
the preliminary MRI data showed a balanced prevalence of single and double supply
(50.0% vs. 50.0%; 34.2% central group dominance; 15.8% precentral group dominance) in
the lateral motor cortex.

This observed variability in distinct vascular supply patterns of the ACA and MCA
could drive the subject-specific overlap of vascular territories within as well as between
the lateral and medial motor cortex. Hence, as for the MTL, one could anticipate that
these vascular supply patterns might be associated with motor function and could provide
insight into mechanisms of resistance and resilience interacting to ALS development.
This assumption is indirectly supported by few studies, revealing (i) different effect sizes
for the relationship between cortex perfusion (assessed through single photon emission
tomography (SPECT)) and bulbar, upper or lower limb function in ALS, and (ii) motor
cortical hypoperfusion (assessed through arterial spin labeling (ASL)) in ALS (which
correlated with overt motor function) without motor cortical atrophy.

Mechanistically, we speculate that, in the case of double supply, an overlapping
perfusion territory of the feeding arteries might preserve adequate cerebral blood flow
(CBF), small vessel density and microvascular function, ensuring optimal neuronal nutrition
and removal of toxic metabolites from the brain. In addition, brain areas with a single
vascular supply might have less capacity to compensate for the effects of long-term exposure
to vascular risk factors, thus leading to early impaired microvascular function, small vessel
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wall remodeling, accelerated microvascular aging, and development of lesions. Lesions,
e.g., microinfarcts, are commonly found in all motor cortex layers and have been considered to
follow the pattern of layer-specific arteriolar blood supply, which further suggests that vessel
morphology and distribution are markers of resistance to disease [45,56]. Experimentally,
cortical microinfarcts exerted long-distance effects on the fiber integrity of white matter
tracts, linking vascular supply to (widespread) neurodegeneration [57].
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Figure 1. Vascular supply patterns of the motor cortex through the anterior cerebral artery in
healthy young controls. (A) “Double supply” pattern in the medial motor cortex by branches of the
pericallosal artery (light red) and callosomarginal artery (dark red). (B) displays a “single supply”
pattern in the medial motor cortex by branches of the pericallosal artery only (light red). The motor
cortex is colored green. Volunteers received 7T MPRAGE scans; vessels were manually delineated;
the motor cortex was segmented using Freesurfer.

3.3. Vascular Supply—Molecular and Cellular Underpinnings in ALS

Accordingly, in ALS there are several lines of evidence that molecular and cellular
alterations of the central nervous system (CNS) microvasculature play a pivotal role at
preclinical and clinical disease stages (Figure 2).

ALS patients frequently harbor mutations in the vascular endothelial growth factor
(VEGF) gene; (motor cortical) protein expression and VEGF serum levels are reduced in
ALS rodent models and patients [58–60]. VEGF exerts trophic and neuroprotective effects
on motor neurons [61]. One hypothesis to explain these protective effects is that VEGF
promotes a “vascular niche”. After secretion from motor neurons and endothelial cells,
VEGF fosters endothelial cell formation, pericyte proliferation and migration, and thus,
small vessel wall integrity. This guarantees locally optimized oxygen and energy supply
and removal of toxic metabolites, protecting motor neurons from oxidative stress and
glutamate-mediated excitotoxicity, and thus, from pTDP-43-mediated neurodegeneration
(please see [62] for review). Accordingly, experimental VEGF reduction has been related to
accelerated motor neuron degeneration and disease onset, whereas experimental VEGF
overexpression has been shown to have the opposite effect, i.e., prolonged motor neuron
survival and delayed disease onset [59,63,64]. The pertinence of this experimental interven-
tion is supported by the fact that a phase II clinical trial has been approved and initiated,
applying intracerebroventricular recombinant VEGF in ALS patients [65] (ClinicalTrials.gov
NCT01384162 (accessed on 7 February 2023)).

Furthermore, capillary pericyte coverage and integrity are reduced in ALS models
and patients, albeit some (co-)effects of aging or secondary disease have to be considered
as well [41,66,67]. Pericytes promote blood–CNS barrier integrity, regulate CBF and cere-
brovascular reactivity (CVR), and are involved in toxic metabolite removal [68]. In ALS,
pericyte deficiency and functional loss goes along with a reduction of small vessel density,
collapsed small vessel lumen (through wall contraction) and aberrant angiogenesis [69–72].
Subsequent CBF/CVR reduction fosters insufficient oxygen and energy supply and could

ClinicalTrials.gov
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hinder toxic metabolite removal, which precedes and promotes motor neuron degener-
ation [72]. Hence, in experimental ALS, intraperitoneal injection of pericytes increased
survival, while co-culture between pericytes and motor neurons/other neuronal cells el-
evated the expression of genes encoding antioxidant enzymes, which both could point
towards slowing of motor neuron degeneration [73].
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Figure 2. Motor cortical supply affects motor function and disease spread through microvascular
brain health. (A) Overview of the proposed mediation model in ALS, with motor cortical supply as
the independent, microvascular brain health as the mediation and motor function as the outcome
variable. In (C), each of the variables presented in (A) are outlined in detail. (C left) Areas of lower
vascular supply (in blue), putatively marked by larger distances to feeding arteries, are characterized
by lower local vascular resistance and resilience, which is mediated by a cascade of microvascular
alterations (C center, enlarged in B). (C right) Degree of motor cortical resistance and resilience
determines the time course of the affection of different motor cortical areas. For example, low supply
of the ipsilateral motor cortical hand area (e.g., caused by MCA single supply), promotes symptom
onset in the contralateral upper limb (in red). Motor cortical regions at risk, i.e., characterized
by insufficient perfusion, e.g., due to low overlap of MCA and ACA perfusion territories and
subsequently affected during cortical disease spread, determine clinical disease spread to the second
body part (e.g., contralateral lower limb, in light red). (B,C center) demonstrate motor cortical
microvascular alterations: (i) reduced VEGF expression, (ii) BBB leaks, (iii) reduced small vessel
pericyte coverage accompanied by CBF/CVR decrease and aberrant angiogenesis, (iv) activated
fibroblasts found in enlarged PVS secreting SPP1 and COL6A1. Increased turnover of resident
immune cells leads to decline of brain energy metabolism, NVU senescence with SASP, immune cell
recruitment, finally advancing neuroinflammation and neurodegeneration. ACA, anterior cerebral
artery; ALS, amyotrophic lateral sclerosis; BBB, blood–brain barrier; BM, basement membrane; CBF,
cerebral blood flow; CNS, central nervous system; COL6A1, collagen VI alpha1; CVR, cerebrovascular
reserve; EC, endothelial cell; IgG, immunoglobulin G; IL, interleukin; MCA, middle cerebral artery;
MRI, magnetic resonance imaging; NVU, neurovascular unit; pTDP43, phosphorylated aggregates
of 43 kDa transactive response DNA-binding protein; PVS, perivascular space; RBC, red blood cell;
ROS, reactive oxygen species; SASP, senescence-associated secretory phenotype; SPP1, secreted
phosphoprotein 1; VEGF, vascular endothelial growth factor.

3.4. Factors Downstream of Cell Activation in the Neurovascular Unit

Experimental studies in transgenic ALS mice have uncovered that microvascular cells,
such as endothelial cells, pericytes, and perivascular fibroblasts, are already activated in
asymptomatic and preclinical disease stages. This activation occurs with increased cellular
metabolic demand, turnover and wall repair, likely indicating a period of compensation
in early disease stages, which indicates the significant contribution of small vessel wall
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integrity to initial disease dynamics [74]. Most likely, chronic cellular activation favors the
premature senescence of vascular cells, i.e., cellular inability to proliferate, regenerate, and
resist stress and apoptosis, finally resulting in loss of neurovascular unit (NVU) cells. This
concept has already emerged in the aging process of cerebral vascular cells and especially
in AD [23,75]. Senescent cells develop a senescence-associated secretory phenotype (SASP)
characterized by a set of proinflammatory cytokines, chemokines, reactive oxygen species,
growth factors and proteases, and interact through certain receptors (e.g., intercellular adhe-
sion molecule-1 (ICAM-1)) and insoluble factors (e.g., fibronectin, collagen). SASP leads to
immune cell recruitment, particularly via interleukin (IL)-6 and IL-8 secretion, and overall
creates a local microenvironment that promotes senescence dissemination, i.e., imparts
stress on surrounding cells, and chronic (inflammatory) tissue damage, which in turn drives
chronic low-grade neuroinflammation and finally, neurodegeneration [76,77]. Indeed, im-
munosenescence, e.g., through reduction of mitochondrial energy production in chronically
activated astrocytes and microglia has been established in ALS pathophysiology [78,79].

In experimental ALS and in autopsy tissue of patients, activated perivascular fibrob-
lasts have been found in PVS, where they secrete SPP1 (osteopontin). In ALS patients,
higher SPP1 serum levels predicted shorter survival, linking microvascular alterations
to prognosis [74,80]. Early vascular cell perturbations and impairment of microvascular
function might also lead to clearance failure of neurotoxic metabolites. This has been
shown in an ALS rodent model and could be a further contributing factor to abnormal
pTDP-43 accumulation, which is supported by the notion that, in ALS, pTDP-43 also de-
posits in cerebral small blood vessel walls [81]. Conversely, elevated levels of pTDP-43 in
motor neurons, on the other hand, affect microvascular integrity via activation of NVU
cells and leakage of the blood–brain barrier (BBB), thereby creating a self-reinforcing cycle
of vascular malfunction and neurodegeneration [82].

Activation of microglia following BBB leakage may lead to remodeling and even
degradation of the extracellular matrix in the adjacent neuropil areas [83,84], which plays
an important role to protect highly active neurons from the oxidative stress, particularly
in the form of perineuronal nets associated with GABAergic interneurons and a subset
of pyramidal cells [85,86]. This might be an important factor for progression of neurode-
generation. This hypothesis is supported by studies showing (i) dysregulation of spinal
chondroitin sulfate proteoglycans forming perineuronal nets in an early symptomatic super-
oxide dismutase (SOD)1G93A transgenic rat model of ALS, and (ii) elevated degradation of
perineuronal nets in this model after treatment with protease ADAMTS4 (a secreted disin-
tegrin and metalloproteinase with thrombospondin motifs 4 normally expressed by several
cell types including microglia), resulting in increased motoneuronal degeneration [87,88].

Illustrated alterations of the NVU are well in line with the huge number of experimen-
tal and human postmortem studies reporting leakage of the blood–brain and blood–spinal
cord barrier in ALS (please see [89,90] for a detailed review). Several of the experimental
and autopsy data are derived mainly from the spinal cord and the brainstem in ALS,
thus demonstrating molecular and cellular microvascular alterations only in areas of the
nervous system containing lower motor neurons. Damage of the NVU, however, takes
place in a similar way in the human motor cortex, as already shown in an autopsy ALS
study conducted in 1984 [91]. Strikingly, there is a lack of in vivo imaging studies focusing
on vascular alterations in the human ALS motor cortex. This is in marked contrast to
the substantial number of human structural imaging studies on motor cortex and CST
degeneration in these patients.

4. In Vivo Imaging of Brain Vascular Health in the Motor Cortex

Further to anatomical, functional, and diffusion MRI to study ALS in vivo and non-
invasively [92,93], MRI provides the potential to characterize microvascular alterations and
vessel supply patterns in a temporospatial manner, over the course of disease progression.
However, this potential is yet to be fully realized [94]. Currently, especially in the clinical
setting, brain microvascular health is largely defined as the absence of structural MRI le-
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sions related to small vessel pathologies, such as white matter hyperintensities, lacunes and
cerebral microbleeds. These lesions, however, only represent the longstanding downstream
consequences of microvascular alterations, while it is widely recognized in the vascular
field that subvisible changes are present well before lesions appear. This challenge is thus
not unique to ALS research, but a general challenge of translating available cutting-edge
methods to routine application. Further, there is a gap between studies working on under-
standing disease pathogenesis at the microscopic/cellular level and routine clinical MRI
studies providing macroscopic information regarding brain structure. From an empirical
point of view, the BBB (here defined through leakage of contrast medium) in ALS patients
seems to be intact on routine clinical MRI, compared, e.g., to the BBB in CNS tumors
or primary neuroinflammatory disease, where BBB disruption is typically demonstrated
by gadolinium extravasation [95]. However, studies providing data at the microscopic
scale indicate microvascular alterations and BBB breakdown in ALS [89]. Hence, when
focusing on preclinical and early stages of ALS, MRI-based markers reflecting more subtle
changes in the microvascular health more directly are required. Ultra-high resolution at the
mesoscopic scale (100–500 µm) is achievable using MRI and provides a potential bridge
between the micro- and macroscopic scale. Further to a link between cellular processes and
downstream consequences, such as macroscopic lesions detected with ultra-high-resolution
MRI, vascular supply patterns can be assessed in vivo to understand potential mechanisms
of resistance and resilience in ALS.

4.1. MR Markers of Microvascular Health

Compared to structural lesions, emerging measures, such as CVR [94,96–99], BBB
integrity, perfusion and clearance [100–108], are more closely tied to the vasculature and
could bridge the gap from (early) microvascular to brain injury [27]. Note that these
techniques do not measure the response of individual microvessels but estimate the net
response per volume element at the macroscopic scale. Each of these markers can be as-
sessed with different MRI methods. For BBB integrity, perfusion and clearance, approaches
can be broadly stratified by their use of exogenous, i.e., intravenous or intrathecal injection
of gadolinium compounds [95,109–112], or endogenous tracer, i.e., magnetically-labeled
blood water [100,101,107]. For CVR, approaches can be stratified by paradigm and MR
sequence used. To achieve a change in arterial CO2 partial pressure, which is required
to measure CVR [97], there are several paradigms. Most commonly, set-ups with exter-
nal devices to control breathing gas composition, breath-hold tasks, and free breathing
without any instructions are used [94,96–98]. MR data acquisition is commonly performed
using either Blood-Oxygenation-Level Dependent (BOLD) functional MRI (fMRI) or ASL,
although other MR sequences are also applicable [97]. For all these vascular markers, the
most sensible implementation, i.e., MR acquisition and processing strategy, depends on
the study at hand, i.e., subject compliance, installed MR sequences and available hardware.
A detailed comparison of the available implementation for each marker can be found in the
above-referenced literature. However, the main challenge to facilitate these novel markers
is their translation into routine clinical practice.

In the context of microvascular function, clearance and BBB breakdown, PVS are a
topic of current investigation. These fluid-filled spaces form between the two basement
membranes of small arteries and are generally viewed to reflect impaired vascular function.
PVS are found in several CNS pathologies [113], are readily available from routine clinical
T1-weighted or, preferentially, T2-weighted images and are a complementary information
to the abovementioned markers of microvascular health as well as downstream damage in
brain structure. However, in ALS, PVS are currently solely described in the postmortem
spinal cord, while for all other pathologies, frequent PVS in cerebral regions, such as the
basal ganglia and centrum semiovale, are reported [74,113]. Our own preliminary data
derived from 3T MRI of a large monocentric ALS cohort (diagnosis based on the revised
El-Escorial criteria [114]; n = 161; 61 females; 61.9 ± 11.5 years old; given written informed
consent; recruited through the neuromuscular outpatient clinic of the Department of
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Neurology, Otto von Guericke University in Magdeburg, Germany) show, for the first time,
that these patients indeed display a significantly greater PVS burden in vivo compared to
age- and sex-matched healthy controls (n = 49; 18 females; 61.3 ± 10.3 years old) as well
(see Figure 3).
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Figure 3. The total burden (count and volume) of PVS in the brainstem is significantly higher in
subjects with ALS than in controls. We quantified PVS in a case-control study (n = 210; 76 female;
median age 71.67 [IQR 62.80, 79.77] years; ALS/CON 161/49; T1w and FLAIR). In summary, the
considered pipeline uses FreeSurfer [115] and FAST [116] for segmenting healthy and pathological
white matter regions (T1w for whole brain parcellation and FLAIR for white matter hyperintensity
segmentation), the Frangi filter for enhancing tubular structures (e.g., PVS), hard thresholding for
segmenting PVS and connected component analysis for determining counts and volumes [117]. We
transformed measurements using the Yeo–Johnson transform to deal with skewness. (A) In univariate
analysis, we found that the count and volume of PVS in the brainstem were significantly higher in
subjects with ALS than in CON (counts: Wilcoxon–Mann–Whitney = 4979, p = 5.43 × 10−3; volumes:
Wilcoxon–Mann–Whitney = 4793, p = 0.02). The pattern remained even after controlling for age and
sex (counts: 0.07 [95%-CI −0.07, 0.21] for ALS vs. −0.37 [95%-CI −0.62, −0.12] for CON, p = 0.003;
volumes: 0.05 [95%-CI −0.09, 0.19] for ALS vs. −0.28 [95%-CI −0.54, −0.03] for CON, p = 0.025).
(B) In subjects with ALS, PVS (yellow arrows) may appear enlarged in the brainstem. The original
T1w image and the area we zoomed in on (red square) are both displayed in the first column. The
fourth column shows the reference slice. The second and third columns are slices inferior to the
reference whereas the fifth one is a slice superior to it. ALS, amyotrophic lateral sclerosis; CON,
controls; FLAIR, Fluid-Attenuated Inversion Recovery; PVS, perivascular space.

4.2. Ultra-High-Resolution MRI to Assess Vascular Supply Patterns

Moving from measuring the net effect of microvascular alterations at the millimeter
level towards imaging of individual feeding vessels at the submillimeter level, recent
advancements have enabled visualization of pial arteries as well as deep gray matter
perforators [118–121] with spatial resolution of up to 0.14 mm isotropic. To that end, ultra-high
field (UHF) MRI (B0 > 7T) was used as it provides increased signal-to-noise ratios compared
to clinically available field strengths, enabling higher image resolution [122,123]. Additionally,
with increasing main magnetic field strength, T1-relaxation times are prolonged [124]. This
gives Time-of-Flight angiography an additional boost beyond the pure gain in signal-to-
noise when using UHF. Therefore, with UHF MRI at the mesoscopic scale, it becomes
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possible to image feeding arteries completely non-invasively and in vivo (see Figure 1).
This enables a novel, data-driven approach for identifying supply territories of arteries, as
with decreasing vessel diameter the perfusion territory of an individual artery becomes
more spatially specific [125,126]. When reaching the terminal branches, the perfusion
territory per artery can be approximated as spherical [125]. Hence, the supply region
of the arteries feeding the motor cortex can be approximated as the summation of all
spherical-shaped territories of its higher order branches and therefore, the supply territory
of a feeding artery is characterized by the distribution of and distance to its branches. This
data-driven approximation of arterial supply territories from ultra-high-resolution MRI can
be achieved by the recently proposed vessel distance mapping (VDM) technique [127–129].
Briefly, after segmenting the vessels from the MR images, VDM computes the Euclidian
distance for each non-vessel voxel to its closest artery. By computing these distance maps
for individual vessels, i.e., the ACA and MCA, and combining the vessel-specific maps
by root-mean-square, a single map reflecting the closeness of each voxel to the feeding
arteries is generated. While this is a pure data-driven approach and not a true perfusion
measurement, VDM has proven insightful for understanding resilience of the hippocampus
in cerebral small vessel disease [127–129]. In ALS, one could hypothesize that cortical
regions with low distances to the feeding arteries are more resistant to ALS-induced
microvascular and neurodegenerative pathology than regions with high distances. This is
motivated by the fact that the proximity to multiple feeding arteries could be associated
with a protective overlap of perfusion territories ensuring microvascular integrity and
ongoing repair, and therefore optimal oxygen and energy supply and removal of toxic
metabolites (see Figure 2).

4.3. MR-Based Assessment of Resistance and Resilience in ALS

ALS patients often present with complex and heterogenous clinical disease manifesta-
tions, with high variability in the affected muscle group at onset, the relative mix of upper
motor neuron and lower motor neuron deficits and rate of progression. Clinically, all ALS
patients show motor cortical motor neuron degeneration but can present different initial
motor phenotypes classified as bulbar, left or right upper or lower limb onset [3].

For an individual patient, spreading patterns are variable and complex, which com-
plicates counseling and prognosis. The described patterns of resistance and resilience by
vascular mechanisms putatively determine the individual onset foci in the motor cortex and
indicate regions of high vulnerability that are more likely to be affected early in the disease
course (Figure 2B). In the MR-based assessment, these vulnerable motor cortical regions
are marked by relatively high VDM levels and low vascular reserve. In contrast, areas of
the motor cortex that have putatively protective double supply patterns and low levels of
VDM would be more resistant and resilient to the spread of neurodegeneration. While the
spread of ALS pathology appears to be diverse and complex, it might be the result of an
ordered spatial progression shaped by the underlying individual vascular landscape that
can be visualized using MRI.

Measuring the described vascular features may thus offer the unique possibility to
more precisely predict the individual future spreading pattern and disease dynamic, leading
to an improvement in clinical prediction and selection for clinical studies.

5. Targeting Brain Vascular Health to Preserve Microvascular Integrity in
ALS—Emergent Concepts

Targeting the maintenance of vascular supply, i.e., assembling and restoring vessel
patterns of favorable, e.g., double motor cortex supply, can be considered an innovative
approach for establishing and fostering resistance and resilience in ALS. Indeed, one major
advantage of acting on motor cortical vascular supply is the fact that these patterns can
be longitudinally measured in human ALS and serve as a monitoring variable and proxy
for brain microvascular health in clinical trials. In the following paragraph, we will discuss
targeted (therapeutic) concepts to optimize perfusion and vascularization, which in turn could
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enhance microvascular collateralization, small vessel structure and function to move towards
the development of advantageous supply patterns. Of note, the capability of microvascular
repair is closely related to (motor)neuronal and synaptic plasticity and thus linked to resistance
and resilience against neurodegeneration [130,131]. And, vice versa, preserved neuronal
activity reinforces pericyte-mediated capillary dilation and thus, locally optimized CBF
increase [69]. In the following sections, we will discuss maintenance and repair of the
microvascular wall with regard to exerkines, pericyte restoration, senotherapeutics and
cell-derived extracellular vesicle (EV)-based therapy as targeted approaches to enhance
motor cortical vascular supply.

5.1. Physical Activity and Exercise

Physical activity is a low-cost intervention in primary and secondary prevention of
numerous chronic diseases (e.g., dementia, diabetes and heart failure) [132]. In ALS, the
beneficial role of physical activity and exercise remains controversial (reviewed in [133]), as
there is limited evidence for prevention and treatment [134]. Several case-control studies
with small numbers of ALS patients indicate a negative relationship between physical
activity and the risk of disease development as well as disease progression [135]. In
particular, professional soccer and American football players experience an increased
incidence of ALS [136,137]. Potential explanations include head traumas and/or high
intensity-associated oxidative stress levels. However, in a European case-control study
with 652 ALS patients, no negative relationship was found [138]. Furthermore, ani-
mal research and exercise interventions with small sample size indicate that low-to-
moderate physical exercise can improve the performance capability of ALS patients [139].
A current meta-analysis including seven randomized controlled trials with 322 patients
showed that physical exercise can improve functional ability and pulmonary function of
ALS patients [140].

Several epidemiological, observational and randomized controlled studies have shown
positive effects of physical activity on cognition and reduced risk of neurodegenerative
diseases [126,127]. However, the underlying neurobiological mechanisms of exercise-
induced neuroprotection and neuroplasticity are still largely unknown. One potential
mechanism might be based on the effects of peripherally secreted exerkines.

5.2. Exerkines

Exerkines are defined as signaling substances released into the blood from different
tissues in response to exercise, e.g., from skeletal muscle (myokines) or the brain itself
(neurokines). They exert beneficial effects on vascular brain health through endocrine (af-
fecting distant tissue and fostering inter-organ communication) or autocrine and paracrine
(affecting the cell of origin and adjacent ones) pathways [141]. Several myokines, such as
VEGF, angiopoietin, nitric oxide or irisin have local (paracrine) effects on skeletal muscle
vessel formation and perfusion and on endothelial function and microvascular tone. Via
the endocrine effects of myokines, there is also a cross-talk between muscles and brain
vascular health, in which the cerebral microvasculature and particularly, endothelial cells
are discussed as central mediators of the beneficial effects [141]. Irisin, for example, crosses
the BBB, and enriches in the brain after peripheral delivery. In various animal models, it
reduces BBB leaks through inhibition of matrix metalloproteinases, peripheral immune
cell infiltration and microglial activation [142–144]. However, in contrast to the growing
experimental and clinical evidence that exercise has beneficial effects on synaptic plasticity,
and neuronal and cognitive function in aging and neurodegenerative disorders, such as
(preclinical) AD or Parkinson’s disease (PD), investigating its impact on microvascular
integrity and motor function remains so far an understudied field [142,145–147].

A recent meta-analysis considering randomized controlled trials of aerobic and re-
sistance exercise training in ALS showed that patients benefit in terms of motor function,
increasing their resilience to disease [148]. However, as the majority of ALS patients suffer
from progressive widespread motor symptoms, several forms of effective exercise such as
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aerobic training become increasingly inaccessible during the course of disease. ALS pa-
tients would therefore specifically benefit from the application of exerkines as therapeutics,
i.e., “exercise in a pill”, to circumvent the difficulty of executing training programs [141].
Indeed, as stated above, there is an ongoing phase II clinical trial in ALS examining the
effect of continuous intracerebroventricular VEGF delivery on motor function and survival
using subcutaneous implanted pumps [65] (ClinicalTrials.gov NCT01384162, accessed on
7 March 2023). VEGF is an exerkine that directly stimulates endothelial cell proliferation,
survival and microvascular wall stabilization. It also has neurotrophic effects, which was
the main motivation to initiate its application within the clinical ALS trial [149]. Just re-
cently, VEGF has been shown to additionally act on the tone of CNS lymphatic vessels,
which promotes the clearance of senescent NVU cells from the brain [150]. Interestingly, in
the VEGF phase II trial, ALS patients undergo repeated MRI including MR angiography
and cerebrospinal fluid (CSF) sampling. Depending on the available field strength and
sequences or storage procedure for CSF, these data could retrospectively be analyzed with
respect to vascular brain health, comprising supply patterns and NVU integrity, measuring
factors of resilience.

5.3. Pericyte Restoration

Increased development of pericyte-targeted therapies is predicted within the next
10 years. Targeting pericyte dysfunction has the potential to restore microvascular integrity,
tone, perfusion and clearance [69,151]. Pharmaceutical interventions targeting brain peri-
cytes have already been approved. Administration of calcium-channel blockers such as
nimodipine can be considered a very practical approach, as the preferred anti-hypertensive
treatment in ALS. It may reduce small vessel wall constriction, thereby increasing perfusion
and preventing pericyte degeneration and BBB leakage, a mechanism that also has been
shown in experimental stroke models [69]. Cilostazol, a phosphodiesterase type 3 inhibitor
(antiplatelet) already in clinical use for obstructive large artery disease, has experimentally
shown to reduce pericyte detachment from endothelial cells, promote pericyte prolifera-
tion and protect pericytes against apoptosis, thereby maintaining BBB integrity [152,153].
Intracerebroventricular application of recombinant human platelet-derived growth factor
β (PDGF-β) has further entered one clinical trial in PD [154]. Physiologically, endothelial
cell secretion of PDGF-β is essential for pericyte recruitment and proliferation, and thus for
formation and maintenance of a functional BBB [155].

5.4. Senotherapeutics

Senotherapeutics reduce cellular senescence and may present an innovative strategy
to treat incurable diseases. They are currently being tested in several clinical trials for
neurodegenerative diseases, mainly AD [76]. Senotherapeutics either suppress the SASP
(senomorphics) or promote death of senescent cells (senolytics). Senolytic targets include B-
cell lymphoma 2 protein family members (Bcl-2), the phosphatidylinositol 3-kinase-related
kinase family (PI3K), heat shock protein 90 (Hsp90), the cyclin-dependent kinase inhibitors
p16 and p21, or the cell cycle inhibitor p53, which are all upregulated in astrocytes/glial
cells in experimental and human ALS [76,156]. In humans, current senotherapeutics do
not clear specific senescent CNS cell types such as those of the NVU, but instead act
on senescent burden, mainly alleviating the overall proinflammatory microenvironment.
Experimental modeling, however, confirmed that the senescent NVU is indeed targeted by
senotherapeutics like dasatinib and quercetin (targeting, e.g., p16, p21, SASP), which are
currently under investigation in several clinical trials focusing on AD, cancer or chronic
kidney disease. Dasatinib and quercetin preserve the structure of the BBB, especially the
expression of tight junction proteins [157]. Nevertheless, further upregulated targets in
senescent NVU cells need to be identified before senotherapy can evolve from a promising
general to a precise approach for rescuing microvascular dysfunction in ALS.

ClinicalTrials.gov
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5.5. Cell-Based Therapies and Extracellular Vesicles

In experimental ALS models, transplantation of human bone marrow-derived (hBM)
mesenchymal stroma cells and endothelial progenitor cells has been shown to promote re-
pair and stabilization of the CNS microvascular wall, which includes an increase in pericyte
coverage and leads to improved motor neuron survival and motor function (extensively
reviewed in [89,158]). Experimental application of hBM mesenchymal stroma, endothelial
or muscle progenitor cells further increased VEGF expression, suggesting to combine the
advantages of cell-based and exerkine approaches (reviewed in [158]). Intriguingly, en-
dothelial progenitor cells additionally release beneficial EVs, to strengthen and repair the
microvascular wall in experimental ALS [159].

Despite increasingly convincing preclinical evidence for the potential of cell-based
therapies for NVU function and microvascular repair, clinical trials using hBM-derived
cells in ALS patients have focused on monitoring the (downstream) rescue of degenerating
motor neurons (reviewed in [158]). Hence, the clinical role of hBM-induced (upstream)
microcirculatory recovery as a potential mediator of motor neuron survival has not yet
been elucidated. This might be partially explained by the current absence of sensitive tools
for repetitive in vivo monitoring of CNS microvascular alterations in patients. From the
perspective of motor cortex vascular supply, a recently initiated phase I clinical trial (CNS10-
NPC-GDNF Delivered to the Motor Cortex for ALS—Full Text View—ClinicalTrials.gov,
accessed on 7 March 2023) is of particular relevance. Here, cell-based therapy is used, in
which neural progenitor cells producing VEGF are directly transplanted into the motor
cortex of ALS patients [158,160]. Thus, therapy probably acts on the local microvasculature,
which would provide the opportunity to monitor in situ the relationship between interven-
tion, vascular supply, motor neuron degeneration and motor function with cutting-edge
MRI sequences, as described above. Neural progenitors derived from induced pluripotent
cells also protected perineuronal nets around the preserved motoneurons in SOD1G93A

transgenic rats [88]. Additionally, in a recent human trial in ALS, transient BBB opening
was achieved using non-invasive MRI-guided focused ultrasound, which facilitates the
transfer of therapeutics from the blood to the parenchyma and supports the feasibility of
locally-targeted treatment and the subsequent possibility for in situ monitoring [161].

Overall, cell-based therapies are an encouraging approach. They have been translated
from preclinical to clinical trials and offer a promising potential to target ALS pathogenesis,
presumably including the involved NVU. Considering that a less invasive intravenous
administration seems to be as clinically beneficial as intrathecal application, a general
acceptance in the clinical setting should be achievable [152].

EVs are membrane-enclosed carriers of damage-associated molecular patterns se-
creted by all types of cells and are considered biofluid markers of, e.g., NVU cell activation
and dysfunction. They are secreted as a tool of cellular communication by shuttling
molecules that require protection from extracellular enzymatic degradation or that lack a
signal sequence, such as microRNAs (miRNAs), lipids, cytokines and chemokines [162].
Based on their shuttling function and their ability to pass the BBB and avoid an im-
mune response, EVs could be used as vehicles to treat microvascular alterations in the
brain, e.g., through EV-associated miRNAs reprogramming endothelial cells as shown in
experimental ALS [162,163].

There are upcoming potential and already available therapeutic strategies to tackle
microvascular dysfunction in ALS. The opportunity to prevent or treat motor cortical small
vessel malfunction via application of exerkines, EVs, cell-based therapies and pericyte-
or senescence-specific therapeutics provides hope that new approaches will promote mi-
crovascular health and preserve motor neuron function.

6. Concluding Remarks on Vascular Rethinking in ALS Management

The evidence presented here allows us to conclude that in ALS, motor cortical vascular
supply patterns through ACA and MCA branches could play a pivotal role for disease
onset and pathology spread and thus represent new factors of disease resistance and re-
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silience in this devastating neurodegenerative disorder. Of note, vascular supply can be
considered both a causal and a modifying factor in a molecularly complex disease such as
ALS, where mutually several pathomechanisms play a role [164]. Our hypothesis suggests
that microvascular health mediates the effect of vascular supply on cortical motor neuron
function. This is certainly attractive as it proposes upstream mechanisms supposed to pre-
cede neuronal dysfunction and degeneration, holding the potential for disease prevention
and prediction. This idea is supported by emerging evidence that ALS has a significant
(micro)vascular component contributing to its motor cortical degenerative presentation.
Vascular supply and microvascular health could thus be considered as relevant biological
processes involved in risk constellations for disease onset and progression, potentially
explaining aspects of the inter-individual variance. Targeting brain (particularly motor
cortical) microvascular health preventively and therapeutically might represent a powerful
approach to mitigate ALS-related neurodegeneration. The link between vascular health,
cerebromicrovascular integrity and synaptic or neuronal dysfunction in similar region-
specific spreading neurodegenerative diseases, such as AD or PD, further highlights the
importance of “(micro)vascular integration in neurodegeneration”, to go beyond a pure
“neuron-centric” concept [74,165]. A spotlight on the relationship between microvascular
and neuronal health is needed in ALS.

The consequent, already ongoing, identification of effective targets in the cerebral
microvasculature and the NVU will become a realistic prospect for individualized therapy
along with lifestyle modifications and causal cell-based treatments. The parallel refinement
of novel in vivo imaging markers for depicting and monitoring brain (micro)vascular health
in ALS has the potential to facilitate personalized risk stratification, e.g., indirectly through
cortical supply patterns that can be determined in each individual patient. This is certainly
important, as current prediction models mainly focus on clinical symptoms, which reflect
already existing neuronal damage, but not necessarily presymptomatic pathology [9]. We
here discuss MRI methods and sequences to depict and quantify motor cortical supply and
microvascular health that can directly be related to the structural and functional characteris-
tics, i.e., clinical, motor cortical body part-wise involvement and thus to disease/symptom
onset and spread of pathology. If conducted in a longitudinal manner, MRI is supposed
to detect the motor cortical stage- and body part-dependency of vascular and neuronal
involvement in ALS, holding the potential for a patient-precise assessment in terms of
individual progression dynamics and prognosis. This is of critical importance as there is
still a lack of robust (bio)markers to foresee the so far unpredictable personalized course
of disease and symptom spread, a prerequisite to pre-select and translate targeted thera-
pies through the implementation of advanced, adaptive and multi-stage trial designs into
the clinic [29,164].

Indeed, one key question is whether vascular supply patterns represent a stable
individual profile that indicates local susceptibility or whether these are modifiable and
dynamic, varying throughout the life and disease span. In case of the latter, one has to
consider reverse causality, in which the reduced oxygen and energy requirements of motor
neuron degeneration might lead to a consecutive remodeling of the supplying vasculature,
which results in a decrease in diameter and thus lower MRI visibility of supplying arteries.
A project within the scope of the German research foundation-funded collaborative research
center 1436 (SFB 1436) is currently investigating to what extend the MRI-detected visible
supply patterns are modifiable during the lifespan, comparing young vs. old and applying
spatial navigation training. To address these questions, longitudinal ultra-high-resolution
MRI studies accompanying ALS patients through the disease course are required.

Vascular integration has implications for the dedicated consultation and manage-
ment of ALS patients, their relatives and cases with familial ALS at increased risk, e.g.,
due to monogenetic mutations with high penetrance (e.g., C9orf72, SOD1, TARDBP or
FUS [29]). Most often, management is mainly centered around multidisciplinary symp-
tomatic (palliative) care approaches and maximization of quality of life [29]. Maintaining
vascular health is, however, not the major focus for most clinicians treating ALS patients.
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Our considerations highlight that vascular risk should not be ignored in ALS, not only
to prevent cardiovascular disease, but to potentially impact the onset and progression of
this devastating motor neuron disorder. Hence, ALS patients and those at risk should
have close monitoring of vascular risk factors, in particular arterial hypertension, the main
risk factor for microvascular brain damage and one of the most common comorbidities in
ALS [21], and undergo appropriate medical treatment and lifestyle interventions accord-
ing to current guidelines [166,167]. This includes physical activity, i.e., at least 150 min
per week of mild to moderate exercise, the Mediterranean diet, avoidance of smoking, and
tailored lipid-lowering therapies. As pointed out above, one recent meta-analysis showed
beneficial effects of aerobic exercise in ALS, which is exercise on a treadmill, cycle ergometer,
recumbent cycle or with arm-leg ergometry in two–three training sessions/week [148]. One
recent meta-analysis demonstrated ALS risk reduction through several anti-hypertensives
with quite similar effects among angiotensin-converting enzyme inhibitors, beta-blockers,
calcium-channel blockers and diuretics, if taken regularly [37]. Calcium-channel blockers in
particular might have the potential to improve cerebromicrovascular hemodynamics [69].
This is in line with the impressive effects of intense blood pressure control (systolic blood-
pressure target of less than 120 mmHg), not only for cardiovascular event prevention [168]
but also for preventing neurodegeneration itself, as indicated by reduced cognitive impair-
ment through anti-hypertensive treatment [169].

Additionally, chronic psychosocial stress (CPS) and highly covariant emotional disor-
ders such as depression are increasingly recognized modifiers of (brain) vascular health.
For example, CPS and depression have not only been related to higher cardiovascular risk
but also to alterations of the brain’s endothelial transcriptome and to reduction of brain
microvascular perfusion [170,171]. Similarly, depression is associated with a greater risk for
cognitive decline (i.e., neurodegeneration) and for higher cardiac and all-cause mortality.
Therefore, depression has recently been listed as a modifiable risk factor for dementia and
cardiovascular disease [19,172].

Depression, along with fatigue, dysfunctional sleep, apathy and irritability are very
common in ALS and several patients likely experience CPS due to the critical life event
of being confronted with a fatal diagnosis [173–175]. Increased depression prevalence is
further highly correlated with chronic pain, a common comorbidity in ALS patients [176].
Pharmacological and non-pharmacological treatment of these symptoms should include
systematic strategies to provide social support (e.g., confiding relationships, practical help
and maintenance of communications skills, especially for bulbar-onset patients) and access
to psychological therapy facilitating acceptance and commitment to the diagnosis [175,177].
Of note, different forms of exercise are also useful for pain prevention and treatment and
through this indirectly mitigate CPS and depressive symptoms, likely with favorable effects
on the cerebral microvasculature [176].

ALS patients should be informed and systematically educated about the importance
of (brain) vascular health, the associated impact of vascular and mental health, and the fact
that new experimental concepts are in progress that aim to maintain and restore the brain
microvasculature, as pointed out above. Patients, caregivers and clinicians should closely
follow developments in the (experimental) field of microvascular treatment concepts in
ALS to prepare for their translational clinical application, which is just becoming a reality.
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