Review

Caveolae Mechanotransduction at the Interface between Cytoskeleton
and Extracellular Matrix

Laura Sotodosos-Alonso

check for
updates

Citation: Sotodosos-Alonso, L.;
Pulgarin-Alfaro, M.; del Pozo, M.A.
Caveolae Mechanotransduction at
the Interface between Cytoskeleton
and Extracellular Matrix. Cells 2023,
12,942. https://doi.org/10.3390/
cells12060942

Academic Editor: Annette

Miiller-Taubenberger

Received: 26 January 2023
Revised: 8 March 2023
Accepted: 10 March 2023
Published: 20 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

, Marta Pulgarin-Alfaro ¥ and Miguel A. del Pozo *

Mechanoadaptation and Caveolae Biology Laboratory, Novel Mechanisms of Atherosclerosis Program,
Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain

* Correspondence: madelpozo@cnic.es; Tel.: +34-91-453-1200

t These authors contributed equally to this work.

Abstract: The plasma membrane (PM) is subjected to multiple mechanical forces, and it must adapt
and respond to them. PM invaginations named caveolae, with a specific protein and lipid composi-
tion, play a crucial role in this mechanosensing and mechanotransduction process. They respond to
PM tension changes by flattening, contributing to the buffering of high-range increases in mechanical
tension, while novel structures termed dolines, sharing Caveolinl as the main component, gradually
respond to low and medium forces. Caveolae are associated with different types of cytoskeletal fila-
ments, which regulate membrane tension and also initiate multiple mechanotransduction pathways.
Caveolar components sense the mechanical properties of the substrate and orchestrate responses that
modify the extracellular matrix (ECM) according to these stimuli. They perform this function through
both physical remodeling of ECM, where the actin cytoskeleton is a central player, and via the chemi-
cal alteration of the ECM composition by exosome deposition. Here, we review mechanotransduction
regulation mediated by caveolae and caveolar components, focusing on how mechanical cues are
transmitted through the cellular cytoskeleton and how caveolae respond and remodel the ECM.

Keywords: caveolae; Caveolinl (Cav1l); mechanotransduction; plasma membrane (PM); cytoskeleton;
actin; extracellular matrix (ECM); dolines

1. Introduction

Cells and tissues are subjected to multiple forces that reach the plasma membrane
(PM), which orchestrates signal transduction in response to the mechanical forces by acting
as a scaffold because of its association with the intracellular cytoskeleton (CSK) and the
extracellular matrix (ECM) [1-3]. In this process, specialized domains and the organization
of the PM are essential. Caveolae are small PM invaginations identifiable by electron
microscopy because of their ()-shaped morphology and diameter of 50-80 nm. They are
highly dynamic structures characterized by enrichment in cholesterol and sphingolipids.
Caveolae are present in many cell types and tissues, but their density varies considerably.
In general, they are more abundant in mechanically active tissues such as adipocytes,
endothelial and muscle cells, and fibroblasts [4,5].

The cytoskeleton is also key in mediating mechanotransduction; it organizes the
intracellular content of the cell and connects and generates forces between the cell and the
surrounding microenvironment [6-8]. Interestingly, caveolae associates with the dynamic
CSK, which is crucial for both the sensing and transducing of mechanical forces into the
cell.

ECM composition and organization are also relevant aspects in the global picture of
mechanobiology, since they dictate ECM mechanical properties, thus determining some of
the mechanical cues sensed by cells. However, reciprocity between ECM mechanosensing
and remodeling by cells has been established. Integrins have been extensively studied as
bidirectional links between the ECM and the CSK (reviewed in [9]). However, the aim
of this review is to highlight the role of the caveolae and caveolar components, mainly
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Caveolinl (Cav1l), on the integration of mechanical forces transmitted through the ECM
and the specific role of the modulation of the cellular cytoskeleton as an effector mechanism
by which caveolae and caveolins are able to respond and modify ECM [10-12].

2. Caveolae: Composition, Organization, and Function
2.1. Caveolae Composition and Organization

The main components of caveolae are two families of proteins: caveolins and cavins.
There are three caveolin proteins in mammals: Caveolinl (Cav1l), Caveolin2 (Cav2), and
Caveolin3 (Cav3). Cavl and Cav?2 are expressed in most tissues, whereas Cav3 is mainly
expressed in muscle cells [13]. The depletion of Cavl and Cav3 leads to the complete
absence of caveolae in tissues where they are normally expressed [14-16], while Cav2
deletion does not affect caveolae formation [17].

Caveolins are small integral membrane proteins with the N- and C-termini facing the
cytoplasm, so they adopt a hairpin conformation. Cav1 can be translationally modified in
several residues. At the C-terminus, it could be palmitoylated, which could modulate its
interaction with the PM [18-20]. At the N-terminus, Cav1 could be ubiquitinated, which
regulates its sorting into multivesicular endosomes and its degradation [21-23]. Moreover,
Cavl can be phosphorylated on a conserved tyrosine-14. This phosphorylation is mediated
by the Src kinase [24], but also through other kinases such as Fyn or Abl [25,26]. This
modification affects caveolar endocytosis [27-29], Cav1 oligomerization, and interaction
with other caveolar proteins and lipids [24,30-32]. Interestingly, this phosphorylation
also occurs in response to mechanical stress, such as cyclic stretching, and it promotes the
expression of caveolar genes to increase caveolae numbers at the PM [30,33] and upon shear
flow exposure [34]. It regulates RhoA activation, actin dynamics, contractility, and cell
migration [10,35], and modulates focal adhesion dynamics [36] and ECM remodeling [11].
The regulation and implications of Tyr-14 Cav1 phosphorylation (pY14Cav1) have recently
been reviewed [37,38]. Cavl can also be phosphorylated on serine-80 by PKC, which
regulates its PM insertion and cholesterol trafficking [39].

The other major components are cytoplasmic cavin proteins. This family is com-posed
of four different proteins: Cavinl (also known as PTRF, polymerase I transcription release
factor), Cavin2 (SDPR, serum-deprivation response protein), Cavin3 (SRBC/PRKCDBP,
Sdr-related gene product that binds to c-kinase) and Cavin4 (MURC, muscle-restricted
coiled-coil protein), which is expressed in muscle tissues [40]. They are peripheral mem-
brane proteins that form oligomeric complexes with caveolins in regions of the PM to
form caveolae [41,42]. Cavinl is essential for the correct formation of caveolae [43,44],
whereas Cavin2, Cavin3, and Cavin4 have regulatory functions and contribute to caveolae
stabilization and functionality [45-47]. In the absence of Cavinl, caveolae are not formed,
but Cavl is able to engage in PM invaginations of different sizes, usually bigger than
caveolae. The recently discovered ‘dolines’ sense low- to medium-range forces, which are
more predominant in physiological contexts, thus conferring regular mechanoadaption and
mechanoprotection to tissues devoid of caveolae (Figure 1) [48]. In fact, caveolae are more
abundant in tissues subjected to high mechanical forces, such as lungs, skeletal muscle, the
heart, vessels, and white adipose fat [4,13]. Dolines coexist with caveolae, but whether they
are present in caveolae-free cells such as neurons or lymphocytes is a subject of current
research.

Furthermore, other accessory proteins are recruited to the neck of caveolae, which are
Pacsin2 (also called Syndapin2, PKC, and casein kinase substrate in neurons 2) and EHD2
(Eps-15 homology domain-containing protein 2), a dynamin-like ATPase that controls
caveolae dynamics and caveolar neck morphology. Pacsin2 is an F-BAR (Bin-amphiphysin-
Rvs) protein that regulates the characteristic membrane curvature of caveolae [49] and it
also binds Dynamin-2, which contributes to caveolar scission [50]. Pacsin2 and Pacsin3
regulate caveolar density [51] and Pacsin2 could be phosphorylated by protein kinase
C (PKC) and contribute to caveolar disassembly [52]. EHD2 is a dynamin-like ATPase
that controls the dynamics and neck morphology of caveolae [53-56]. The deletion of
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this protein promotes increased caveolar mobility [57]. It has been reported that other
EHD proteins can be recruited to caveolae, such as EHD1 and EHD4, which are present
in caveolae when cells lack EHD2 [58]. When the three EHD proteins are absent, caveolae
cannot cluster and are more susceptible to rupture upon mechanical forces [58]. Moreover,
the transmembrane receptor ROR1 (receptor tyrosine kinase-like orphan receptor 1) is
also present in caveolae, but it seems to only be relevant during embryonic and fetal
development and contributes to maintaining the interaction between caveolins and cavins.
ROR1 is unlikely to be a universal regulator of caveolae formation [42,59,60]. Finally, the
F-BAR protein FBP17 is important for the formation of high-order caveolar structures or
rosettes [61] (Figure 2).

In summary, as an oversimplification, it has been estimated that a single and mature
caveola contains ~150 Cavl molecules, ~29 Cav2 molecules, ~50-80 Cavinl molecules,
~20 Cavin2,3 molecules, and ~40 EHD2 molecules [42,53,62-65].

As mentioned previously, caveolae are PM domains enriched in certain lipids; there-
fore, they also play an important role in the correct formation of caveolae. Cavl binds
to cholesterol [66,67] and can also be present in lipid droplets [68]. In the absence of
Cavl, cholesterol tends to accumulate in intracellular compartments and affects proper
cell functioning, as it alters the endoplasmic reticulum, mitochondria, and the membranes
associated with both [67,69,70]. Lipids play a crucial role in caveolae formation and
stabilization and the recruitment of most caveolar components [13,71]. Alterations in
cholesterol content also significantly affect Cavl and caveolae, as cholesterol depletion
by methyl-p-cyclodextrin treatment leads to the dissociation of cavins, and the caveolae
flatten [5,72]. Moreover, cavins bind to PtdIns(4,5)P2 (phosphatidylinositol 4,5-biphosphate)
and phosphatidylserine (PtdSer) [43,66]. EHD2 can bind to PtdIns(4,5)P2 [73] and requires
cholesterol to bind to caveolae [54], and neck morphology is subjected to changes in lipid
accumulation [71]. Pacsin2 and FBP17 can also bind to phosphatidylinositol [74]. These
phospholipids are important for caveolae stability and formation in the PM [75].
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Figure 1. Cavl can buffer PM tension via different mechanisms. Dolines (bigger and irregular
PM invagination devoid of PTRF) gradually buffer low—medium mechanical force increases, while
caveolae (regular PM nanoinvaginations, size-restricted by PTRF binding) provide acute buffering
to higher forces, only flattening beyond a certain tension threshold. Thus, dolines exhibit a ‘spring-
like” response vs. the ‘mechanical switch’ constituted by caveolae. Created with BioRender.com
accessed on 15 January 2023.
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Caveolae are highly dynamic and can adopt different levels of organization. Caveolae
can be organized at the PM as single pits or simple caveolae, but they can also form
higher-order structures called rosettes or clusters of caveolae, characterized by multiple
caveolae that connect through a single neck to the PM [4,5,58]. These structures are formed
when cell tension is reduced, as occurs upon loss of cell adhesion [76,77], and they can
flatten faster than single pits in response to mechanical challenges [61]. These structures
require FBP17 [61], but EHD proteins also regulate their formation [58] (Figure 2). Recently,
dolines have been described as other PM invaginations regulated by Cav1 that can also
sense mechanical forces and have a different morphology than caveolae and rosettes
(Figure 1) [48]. All of these caveolar- and Cavl-related structures allow the PM to respond

differently according to the stimuli perceived.
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Figure 2. Caveolae composition and changes upon mechanical and signaling challenges. Single
caveolae are composed of caveolins, cavins, and accessory proteins, and they may associate with the
actin cytoskeleton through Filamin-A and other unknown linkers. Upon mechanical forces or signal
stimulation, caveolae can flatten and release some of their components for intracellular targeting,
such as Cavinl, Cavin3, and EHD2. This also stimulates FBP17 phosphorylation by c-Abl and its
dissociation. When PM tension is reduced, caveolae organize into rosettes that require FBP17, which

inhibits formin mDia. Furthermore, Cav1 could be phosphorylated at Y14 in response to mechanical
stimuli. Created with BioRender.com accessed on 1 March 2023.

2.2. Caveolae as Mechanosensors and Mechanotransducers

Caveolae are involved in diverse functions, such as lipid and cholesterol homeosta-
sis [78-81], cell adhesion, polarization and migration [10], cell cycle regulation [82], and
anchorage-dependent growth [83].

As cholesterol-enriched membrane microdomains (CEMMs), they participate in cellu-
lar signaling [84] by acting as platforms that sequester and compartmentalize proteins and
molecules at the PM, such as transforming growth factor 3 receptors (see below) [85-87],
insulin receptors [88], and epidermal growth factor receptors [89]. Caveolae participate
in clathrin-independent endocytosis of certain membrane receptors [90,91]. Apart from

membrane receptors, caveolae were proposed to participate in the endocytosis of other
cargoes, such as SV40 virus or the beta subunit of cholera toxin (ChTxB) [92]. However, it is
still a controversial topic, given that caveolae-independent endocytic pathways have been
described for these cargoes [93], and no caveolae-specific cargoes have been identified until
now. There is evidence that SV40, ChTxB, and others enter the cell through caveolae, but
they can enter equally well in its absence. We recently proposed that the mechanosensing
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properties of caveolae are coupled to their membrane-trafficking abilities, in that caveolae
can provide membrane where it is needed as a means to buffer PM tension increases [13].

Pertaining to the scope of this specific issue, caveolae also participate in mechanosens-
ing and mechanotransduction [4,42]. In this context, caveolae are able to flatten in response
to increased PM tension, as it occurs by cell stretching or osmotic swelling [94] (Figure 2). It
has also been observed that stretching significantly reduces caveolar clusters or rosettes [95].
This acts as a protective response that buffers increased membrane tension, preventing
PM rupture, and activating downstream pathways, such as MAP and SRC kinases, RHO,
and RAC small GTPases [4,94]. Cells and tissues depleted of caveolae are more prone
to increased PM damage in comparison to wild-type ones when subjected to mechanical
stress. Cavl and other caveolar proteins, as EHDs, contribute to maintaining proper PM
integrity under stretching. In the absence of EHD proteins, mechanical stretching results in
a reduction in caveolae and the cells are more prone to PM rupture [58]. Upon cyclic stretch-
ing, the phosphorylation on Cav1l Y14 regulates the transcriptional regulation of Cav1 and
Cavinl to contribute to caveolae formation [30,96,97]. In this way, Cav1 phosphorylation
seems to also be involved in cell mechanical protection.

Caveolae are then considered membrane reservoirs available to rapidly respond to a
mechanical challenge; this assumption is supported by the fact that caveolae cover up a
high proportion of the total PM area in cells subjected to mechanical challenge [98].

During caveolae flattening, some caveolar components are released and become
available to perform non-caveolar-dependent functions, a key process for their function as
mechanotransducers. For example, cavin proteins are released from the PM when caveolae
are disassembled. Cavinl has been localized in the cell nucleus, where it regulates rRNA
transcription in response to insulin stimulation and osmotic stress [99,100]. Cavin3 could
also enter the nucleus when caveolae are disassembled by ultraviolet light exposure, and
nuclear Cavin3 regulates DNA damage and apoptosis through the interaction with the
phosphatase PP1« [101] and BRCA1 [102]. Finally, upon mechanical stretching and osmotic
shock, EHD2 could also translocate into the cell nucleus, where it represses caveolar gene
transcription through KLF7 [103] (Figure 2).

Another mechanical stimulus that has been reported to be sensed by caveolae is shear
stress. In 1999, Rizzo et al. identified a high density of caveolae in the luminal surface
(which is exposed to hemodynamic forces) of rat lung endothelial cells [104]. They found
eNOS localized at the caveolae, where this enzyme is inhibited by interactions with Cavl,
but activates in response to flow in a Cavl-mediated mechanism. Then, Cav1 could regulate
vascular tone by controlling the production of nitric oxide [104]. Moreover, exposure to
shear modulates the expression of Cavl and the formation and localization of caveolae at
the apical membrane of endothelial cells [105,106]. The phosphorylation of Cav1 at Tyr14
in response to flow [34] might underlay, at least in part, the increase in Cav1 expression
upon shear [30].

The response of endothelial cells to shear depends on the velocity, direction, and
frequency of the flow (i.e., pulsatile or not). Unidirectional slow shear (<12 dyn/cm?) or
bidirectional/disturbed flow, also known as oscillatory shear stress (OSS), results in en-
dothelial cell inflammation, while undisturbed laminar flow (with values of >12 dyn/cm?),
or laminar shear stress (LSS), is protective [107]. In fact, atherosclerosis is preferentially
developed at curvatures and branching points of the vascular tree, which are subjected to
OSS [108]. The role of Cavl in vascular mechanotransduction and remodeling has been
described [109,110]. In addition, protection from atherosclerosis development in Cav1-KO
mice was reported [110,111], emphasizing the ability of Cav1-expressing cells to discrimi-
nate between LSS and OSS. However, independently of mechanosensing, caveolae have
been reported to be involved in other processes that might be relevant for atherosclerosis
development, such as LDL transcytosis [112], inflammation or cholesterol efflux [113].

Cav1 can also modulate YAP (yes-associated protein) and TAZ (transcriptional coacti-
vator with PDZ-binding motif) [12,114,115], which is regulated by mechanical forces (see
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below), in turn modulating the expression of genes involved in proliferation, migration,
and differentiation [116-118].

Additionally, a commonly underestimated function of caveolins is cell-ECM cross-talk.
The sensing of the mechanical properties of ECM by caveolar components occurs mainly at
the focal adhesion (FA) level, macromolecular assemblies that occur at cell-ECM contact
sites, where the contractile machinery of the cell (i.e., actin filaments) and integrins connect
through adaptor proteins. Cavl is involved in integrin-dependent signaling [34,119] and
in FA assembly, maturation, and turnover [10,120]. ECM remodeling and deposition are
key processes by which cells respond to substrate stiffness and organization in order to
remodel it accordingly. Caveolae/Cav1l implications on these processes will be discussed
more deeply in this review.

2.3. Caveolae in Disease

Mutations in caveolar components have been linked to several pathologies called
‘caveolinopathies’. As mentioned, caveolae are more abundant in adipocytes, endothe-
lial cells, and muscle cells; therefore, caveolae gene mutations are often associated with
lipo-dystrophy, pulmonary arterial hypertension (PAH), muscular dystrophies, cardiomy-
opathies, and cancer [5,31]. Mice lacking Cav1 present a lipodystrophic phenotype, PAH,
and cardiac disease [14,16,121,122], whereas Cav3 knockout mice, as expected from the
muscle expression of Cav3, present cardiomyopathies and muscle disorders [123]. Human
mutations in Cav1 have been described that cause lipodystrophy [124-126] and also in
Cavinl that lead to a similar phenotype [127,128]. Moreover, mutations in Cav1 have been
associated with PAH [129-133]. Regarding Cav3, mutations in this gene have also been
reported that lead to muscle diseases such as limb-girdle muscular dystrophy, rippling mus-
cle disease, hyperCKemia, distal myopathy, and hypertrophic cardiomyopathy [134,135].
As Cavinl is expressed in muscle and non-muscle tissues, Cavinl mutations in humans
cause lipodystrophies associated with myopathy, long-QT syndrome, and fatal cardiac
arrhythmias [127,128,136], and Cavin4 mutations are linked to cardiac disease [137]. How-
ever, the molecular mechanisms that fully explain how these different mutant proteins
cause this broad phenotype are not completely understood, although they could be partially
explained by an impaired mechanoprotection response. As mentioned, Cav1l depletion is
associated with atherosclerosis protection [110-113], although the responsible molecular
mechanism(s) has not been elucidated. The role of Cav1 in cancer has also been widely
studied, although the specific involvement of this protein as a tumor suppressor or onco-
gene seems to be context- and cell-dependent [138,139]. Finally, antifibrotic properties have
been associated with Cav1 [140,141], being involved in a variety of fibrotic diseases such as
systemic sclerosis or pulmonary fibrosis [142,143]. Interestingly, Cav1l in stromal cells has
been also reported to promote tumor invasion and metastasis through the modification of
the ECM [11,139].

3. Interaction between Caveolae and Cytoskeleton

The cytoskeleton is crucial in the response to mechanical insults. The CSK is formed by
different proteins that can assemble into larger structures to form different types of filaments
and networks, with diverse organization, functions, and properties. There are three types
of cytoskeletal components and caveolae that have been associated with each of them: actin
filaments [95], microtubules [144], and certain types of intermediate filaments [145]. Here,
we will describe how these associations occur between each cytoskeletal component and
caveolae and how they reciprocally regulate its organization, dynamics, and function.

3.1. Actin Cytoskeleton and Caveolae

Caveolae are in close proximity to the cortical actin beneath the PM, specifically
the stress fibers. This association relies on the interaction between different caveolar
components and actin filaments both directly and indirectly. The first evidence was obtained
by electron microscopy images [146-149]. Using a 3D high-resolution reconstruction of
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electron microscope tomography images, the existence of complex connections between
caveolae, actin, and microtubule filaments has been demonstrated [150]. In addition,
there is a co-alignment between these actin stress fibers with Cavl in many different
cell types [95,151]. This association is partially caused by the interaction between the
previously mentioned caveolar components with actin filaments and actin-regulating
proteins through protein linkers. Proteomics of caveolar-enriched PM fractions have
revealed that approximately 33% of the proteins identified are cytoskeletal proteins or
involved in cytoskeletal regulation, such as actin beta and gamma, annexin A2 and V,
myosin, tubulin, and vimentin, among others [152].

Cav1 could directly interact with Filamin-A, an actin cross-linker protein present in the
stress fibers [153,154], and with Tropomyosin-3.1, which tightly associates with actin, and
also binds Cavin1 [151]. The caveolar neck proteins are also linked to the actin filaments, as
EHD?2 that associates with F-actin [54,55] and Pacsin2 that binds directly to F-actin through
its F-BAR domain [155] and through its SH3 domain to dynamin-2, N-WASP, and the small
GTPase Racl, which regulate actin cytoskeleton [52,156,157]. Cavin-2 colocalizes with
cortactin, which recruits actin polymerization proteins, such as Arp2/3 [158]. Additionally,
Cavin3 and RORI can also bind to the motor protein Myosin-1c, involved in cellular
transport and endocytosis regulation, controlling caveolae presence at the PM [60,159,160].

The advent of novel advanced proteomics techniques, such as proximity-dependent
biotin identification (BioID) analysis [161], allowed the identification of many potential
interactors of the different caveolar components, and actin-related proteins are among
the most relevant. Among the Cavinl interactors in HeLa cells, there are several proteins
related to actin filaments, such as CD2AP (CD2-associated protein), and microtubules,
as MAP4 [162]. The intracellular interactome of Cavin3 has also revealed its ability to
bind to actin-related proteins, such as Annexin A2, Cofilin, or ACTR3 (Actin-related
protein 3) [101]. However, whether these interactions occur in the PM has not yet been
demonstrated. In vivo, the Cavin4 and Cavinl interactome in zebrafish skeletal muscle
has been identified, of which PM proteins were the majority, but there were also many
related to actin filaments, such as actin, myosin, dystrophin, ankyrin3a, spectrin-alpha, and
limchla, which is involved in stress fibers and focal adhesion assembly [163].

Cav3 is associated with different components of the dystrophin—glycoprotein com-plex
(DGC), which interacts with cytoskeletal proteins [164,165]. T-tubule formation is depen-
dent on Cav3, Cavin4, and actin-organizing proteins such as Binl and N-WASP [166-170].
Recently, approximately 10% of the proteins identified in the Cav3 interactome were cy-
toskeletal proteins, such as actin, myosin, and tropomyosin [171].

Collectively, these complex connections between caveolar components and actin
filaments highlight the mechanistic interplay between them, as both can regulate each other
in response to mechanical challenges.

3.1.1. Regulation of Caveolae by the Actin Cytoskeleton

The actin cytoskeleton plays an important role in many mechanotransduction path-
ways and regulates caveolae organization in the PM by several pathways. Actin filaments
regulate caveolae internalization by confining and organizing them at the PM, and nega-
tively regulate the number of caveolar rosettes at the PM [172,173]. Caveolae organization
is also regulated by the actin cytoskeleton regulators Abl and mDial. Abl is a tyrosine
kinase that phosphorylates actin regulators, and also Cav1 [25,174]; formin mDia, which is
downstream of Abl], is involved in linear actin fiber polymerization [76,175]. In the absence
of these proteins, stress fibers co-aligned with Cav1 are reduced and Cav1 clusters increase,
which affects rosette formation upon cell detachment [76]. Abl and mDia maintain caveolae
attached to the actin cytoskeleton and therefore regulate caveolar organization at the PM.
Filamin-A also contributes to caveolae stabilization at the PM by acting as a linker between
Cav1 and stress fibers [153]. Recently, the depletion of formin proteins FHOD1 and Dial has
also been shown to decrease Cav1 vesicle movement, especially when cells are subjected
to softer matrix stiffness or hypo-osmotic shock [176]. The disruption of stress fibers also
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affects Cavl vesicle localization and reduces Y14Cav1 phosphorylation [151]. The formin-
binding protein FBP17 regulates caveolar rosettes and is required for buffering PM tension
upon hypoosmotic shock because when PM tension-increased c-Abl phosphorylates FBP17
and releases mDial from inhibition, this buffers the augmented tension [61]. Cavinl and
Cav2 PM localization are also regulated by actin filaments and microtubules [177,178].

All of this evidence reinforces the notion that the association between caveolar com-
ponents and actin is crucial for the proper organization of caveolae at the PM, and conse-
quently for its correct functioning.

3.1.2. Converse Regulation of Actin Filaments by Caveolar Components

Actin filaments are dynamic structures, and their assembly and disassembly are
regulated by actin-binding proteins in response to different stimuli. As actin modulates
caveolar organization, caveolar components also affect actin fiber rearrangement. Cavl
depletion reduces the number of stress fibers, whereas Cavl overexpression increases
the fluorescence intensity of actin and its reorganization [179,180]. Among the proteins
that regulate actin polymerization, the Rho small GTPases RhoA, Racl, and Cdc42 play
an essential role in its remodeling and many processes regulated by them, such as cell
migration, division, and polarity [181-183]. Caveolae also regulate Rho GTPases. The loss
of Cavl impairs actin cytoskeleton equilibrium by the increased phosphorylation of AMPK
(AMP-activated protein kinase that regulates small Rho GTPases [184], and it reduces RhoA-
myosin II activation and increases the activity of Racl/Cdc42-Pak1-cofilin, which results
in a decrease in thick actin stress fibers and an increase in lamellipodia [10,151,185-187]
through the activation of p190RhoGAP [10,11,35,188]. Caveolar components can also
regulate RhoA signaling through other mechanisms, such as the PM targeting of Racl,
physical interactions, and rates of degradation, among others, and therefore influence
cytoskeletal regulation [10,28,95,189,190]. This will be further explained in the context
of ECM remodeling (see below). Interestingly, non-caveolar Cavl present at the apical
membrane of the primary cilium could regulate ciliary length and rearrange the apical
actin meshwork via RhoA and its effectors ROCK and Dial [191]. It has also been reported
that the absence of Cav1 in epithelial monolayers promotes the recruitment of formin
FMNL2 to the cell cortex and cell junctions to enhance contractile tension via a lipid-
based signaling pathway [192]. This compromises cell morphology and directional cell
migration [151,193]. A lack of Cav1 also promotes S-gutathionylated actin at the PM, which
affects polyamine uptake [194]. Taken together, caveolae could modulate actin dynamics by
controlling ac-tin-regulated proteins such as RhoGTPases and formins, and it is probable
that, similar to non-caveolar Cav1l, the other caveolar components could also regulate the
actin cytoskeleton outside caveolae.

3.2. Microtubules and Caveolae

Microtubules are crucial for membrane trafficking, as they act as tracks for vesicle
and organelle movements. They are also involved in caveolae trafficking and recycling.
In contrast to the actin cytoskeleton, Cav1 internalization is inhibited by the depletion of
microtubules upon treatment with nocodazole, and it also leads to an increase in Cavl
linear organization at the PM and in the number of single-pit caveolae at the PM [173].
Therefore, microtubules act as tracks by which caveolae can move from the PM to in-
tracellular locations, in contrast to actin, which contributes to the PM confinement of
caveolae [76,173,195]. It has also been described that the protein IQ motif containing
GTPase-activating protein 1 (IQGAP1) and integrin-linked kinase (ILK), which are both
regulators of cytoskeletal organization, regulate the movement of Cav1 from microtubules
to the cortical actin filaments [4,144,196,197].

3.3. Intermediate Filaments (IFs) and Caveolae

Less is known about the relationship between IFs and caveolae, but there is an associa-
tion between Cav1 and different types of IFs, such as keratins [198,199]. Cav1 localizes in
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keratinocytes with hemidesmosomal integrins, that are coupled with keratin cytoskeleton,
and together with Arf6, control its biogenesis and dynamics [200]. The colocalization and
association of Cavl with nestin IFs have also been described [201,202], and it has an impact
on transforming growth factor-3 (TGF-f) signaling [202]. The most well-studied relation-
ship is between Cav1l and vimentin, which is associated with integrins at focal adhesions.
Although there is a cell-dependent regulation of vimentin expression by Cav1 [203-205], a
clear unidirectional regulation of vimentin on Cav1 has been reported. Vimentin depletion
facilitates Cav1 mobilization and increases Y14Cav1 phosphorylation [187,201,205,206].
Finally, regarding IFs type V, which corresponds to the nuclear lamina, the main component
of the nucleoskeleton that plays an important role in gene expression regulation and has
been described as a link with Cav2. Cav2 can be targeted to the inner nuclear membrane
(INM) in response to insulin stimulation and induces Cav2 Tyr19 phosphorylation . It
interacts with lamin A/C and acts as an epigenetic regulator of adipogenic genes upon
adipogenic stimulation [178,207-209].

4. Caveolae/Cav1l as Regulators of ECM Composition and Architecture

All tissues and organs have an acellular stromal microenvironment composed of a
complex 3D network of proteins, glycoproteins, and polysaccharides called the extracellular
matrix (ECM). In the past, the ECM was just thought to play a role in providing structural
and mechanical support to preserve tissue integrity and allow cell migration. However, it is
now recognized as a physiologically active component of all tissues since it controls a variety
of processes such as cell survival, proliferation, or cell fate [210]. The main components
of the ECM are elastic fibers, fibrillar collagens, glycosaminoglycans, and proteoglycans.
However, under pathological conditions, e.g., tumor progression and metastasis [211], the
ECM can exhibit a particular topology [11] and be enriched in specific components, such as
tenascin C (TnC) or osteopontin [212,213].

As previously mentioned, ECM-mediated mechanotransduction is an important factor
that affects tissue homeostasis [214]. The mechanosensing process involves the assessment
of the mechanical properties of the ECM by the cells through specialized structures, such
as integrins and caveolae, and through changes in the actomyosin cytoskeleton. In turn,
the cells can modify this ECM by two basic mechanisms: (i) by the physical remodeling on
ECM applying forces on the matrix and (ii) by the chemical deposition or degradation of
different ECM components [215]. Caveolae have been widely studied as mechanosensors
in this context, and there is a growing body of evidence supporting the role of caveolae,
particularly Cavl, in ECM deposition and remodeling. In fact, Cav1 has been described
to have important physiological roles in fibroblasts, the main cell type involved in ECM
turnover and reorganization in both homeostatic and pathological conditions on tissue
stroma. However, which of the mechanisms discussed below rely on Cavl alone or are
extensive to caveolae remains to be fully elucidated.

4.1. Physical Remodeling of ECM

Cavl directly promotes the biomechanical remodeling of the ECM through stress-fiber
regulation via RhoA [10,11] and YAP [12] (Figure 3).

4.1.1. Rho-Mediated Actomyosin Contraction

Rho small GTPases play a crucial role in this remodeling of the actin cytoskeleton [181].
Interestingly, these Rho GTPases could also be regulated by caveolae.

Srcis involved in Rac and Cdc42 activation and can inhibit Rho through the activation
of p190RhoGAP, an endogenous inhibitor of Rho. Cav1 positively regulates Rho activity in
several cell types [10,11,35,188] by affecting the localization and activity of pl90RHOGAP,
which in turn promotes Rho-dependent stress fiber formation. The phosphorylation of Cavl
at Tyr14 seems to be relevant to these processes through its interaction with Src and Csk [10]
Additionally, Cav1 has been linked to the actin cytoskeleton through filamin [154], and a
polarized distribution of Cav1 in migrating cells has been observed [10,216,217]. Moreover,
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caveolar components could also regulate RhoA signaling via other mechanisms, such as
the PM targeting of Racl, physical interactions, and rates of degradation, and influence
cytoskeletal regulation [10,28,95,189,190]. In general, although this can vary depending
on the cellular context, Cav1l depletion reduces the number of stress fibers, whereas Cav1l
overexpression increases the fluorescence intensity of actin and its reorganization [179,180].
All of these mechanisms support the functions of Cavl in controlling cell motility and
polarization, which are additional processes through which Cav1 potentially affects ECM
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BioRender.com accessed on 6 March 2023.

Cavl-mediated actin polymerization leads to relevant functional consequences. For
example, Goetz et al. [11] found that stromal cells can remodel the ECM by applying
forces on the matrix in a Cavl-dependent mechanism. Cav1l-deficient cancer-associated
fibroblasts (CAFs) show decreased contractility because Cav1 favors cell elongation in 3D
cultures and promotes Rho-dependent contraction through the regulation of p190RhoGAP.
They observed that Cavl knockout (KO) fibroblasts generate a softer substrate with a
more disorganized collagen matrix and fewer parallel fibronectin (FN) fibers, which ham-
pers cell migration. With these subjacent mechanisms, the authors showed that stromal
Cavl can alter tumor microenvironments, facilitating tumor invasion in vivo. The Tyr14-
phosphorylation of Cav1 is presumably relevant to these specific processes through the
regulation of Rho and Racl activity, since the re-expression of unmodified Cav1, but not its
non-phosphorylatable mutant Cav1Y14F, rescued features related to cell morphology and
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contraction (Rho), as well as to Racl localization observed in Cav1KO mouse embryonic
fibroblasts (MEFs).

4.1.2. YAP

One of the main pathways regulated by mechanical stimuli is the Hippo pathway,
which is involved in organ size and cell fate regulation [117]. When this pathway is re-
pressed by a mechanical input, YAP and TAZ, which are effectors of the Hippo pathway,
are translocated into the nucleus, where they act as transcriptional co-regulators through
association with TEAD transcription factors [117,218,219].

The resulting biological effects of YAP/TAZ-induced mechanotransduction highly
vary across cell types and are also dependent on the nature of the mechanical stimuli—i.e.,
ECM stiffness and organization, cell density, shear stress, stretching, etc. [116]. YAP has
also been shown to regulate ECM in CAFs [220]. In this context, Moreno-Vicente et al. [12]
described Cavl as the upstream regulator of YAP-dependent ECM remodeling, since the
impaired ability of Cav1KO MEFs to retract collagen gels or to organize collagen fibers
was rescued by the expression of the non-phosphorylatable YAP-55A version, which in-
creases YAP nuclear translocation. This study demonstrated that Cav1 positively regulates
YAP activity, modulating the response to ECM stiffness through a mechanism de-pendent
on actin cytoskeleton dynamics, but independent of the canonical Hippo path-way. The
authors also demonstrated that Rho activity is necessary, but insufficient, for the Cav1-
dependent mechanoregulation of YAP.

Soon afterwards, Rausch et al. identified a decreased caveolae density in cells lacking
YAP/TAZ [114], highlighting the role of this pathway in controlling the expression of two
essential caveolar components, Cavl and Cavinl, and confirming the reciprocal regulation
of the YAP/TAZ axis and caveolae. However, in this study, the authors also observed
that the knockdown of Cavinl and Cav1 decreased the nuclear activity of YAP/TAZ in
HEK293A and U20S cells. Similarly, Cav1 depletion increased the expression of YAP/TAZ
target genes in mesothelial cells [115], indicating that Cav1 regulates YAP/TAZ nuclear
translocation in a context- and cell-type-dependent manner.

4.2. Chemical Remodeling of ECM

Cavl can also alter the ECM by modifying its composition, which occurs mainly
through the regulation of the TGF-f3 pathway and exosomal secretion [221].

4.2.1. Regulation of TGFB Pathway

The TGFf3 pathway promotes the expression of genes involved in the synthesis of
collagens and other matrix proteins and also decreases the expression of genes that en-
code for mediators of ECM degradation, playing a key functional role in the activation
of fibro-blasts and other ECM-producing cell types. As previously mentioned, caveolae
act as signaling platforms where different membrane receptors can be localized, including
TGEF-f receptors (TRs). In 2001, Razani et al. demonstrated the interaction between T3R-I
and Cav1 in caveolae, resulting in the inhibition of SMAD (Suppressor of Mothers Against
Decapentaplegic) signaling [85]. Later, the localization of the TBR-II receptor to caveolae
in endothelial cells has also been demonstrated using density gradient fractionation and
co-immunoprecipitation [86]. Caveolae have been shown to promote TR internalization,
thus emerging as an alternative pathway to clathrin-dependent endocytosis of these re-
ceptors [90]. However, while the internalization of T3Rs via clathrin-coated pits enhances
TGF-f signaling, it seems that caveolae-mediated endocytosis promotes TGF-3 degra-
dation, thus inhibiting TGF-p signaling [222]. Recently, the glycosylation of tubulin-f2
and tubulin-f3 has been shown to be necessary for caveolae-dependent TGF-f receptor
internalization [223].

The relevance of caveolae/Cavl on TGF-f3 pathway modulation becomes evident in
several studies that account for important functional effects of these processes, resulting
in the involvement of Cavl in several fibrotic diseases [140,142]. For example, Cavl
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sup-presses epithelial-to-mesenchymal transition (EMT) and fibrosis during peritoneal
dialysis [224]. Moreover, Cavl deficiency induces mesothelial-to-mesenchymal transition
(MMT) through the hyperactivation of the TGF-f1 pathway in response to mechanical
stretching: mechanistically, silencing or knocking out Cav1 transcriptionally activates
TGF-B1 and TBR-I expression [115]

4.2.2. Secretion of Exosomes

An additional mechanism through which Cav1 can influence stromal composition is
via the exosomal deposition of particular ECM components. Exosomes are extracellular
vesicles that originate from the endosomal compartment and are secreted by cells upon the
fusion of multivesicular bodies (MVBs) with the plasma membrane. In the last few years,
they have gained attention as a key mechanism for intercellular communication [225], since
they can deliver a wide variety of cargoes—i.e., proteins, lipids, mRNAs, non-coding RNAs,
etc.—to neighbours and even distant cells.

Although few studies have examined the impact of these vesicles on ECM deposition,
in 2020, Albacete-Albacete et al. [221] showed that some ECM components are sorted
into exosomes via a Cavl-dependent mechanism. Mechanistically, Cav1l, which regulates
cholesterol homeostasis and dynamics, modulates the cholesterol content at MVBs, affecting
exosomal size, and thus, the sorting of certain cargoes into them. Cav1 deficiency provokes
cholesterol accumulation in the endosomal compartment, leading to the production of
smaller EVs that are unable to carry high-molecular-weight proteins such as TnC or FN. The
authors mimicked the effect of the lack of Cav1 by exogenous cholesterol administration
or by the pharmacological inhibition of cholesterol trafficking from the endosomal com-
partment. However, they also demonstrated that, although exosomal secretion is strictly
required for TnC deposition, this is not the case for FN, whose deposition is partially
reduced, but not blunted by inhibiting the release of exosomes. However, although Cav1
does not seem to be necessary for FN deposition [221], it has been suggested to participate
in FN turnover, apparently through caveolae, by regulating FN internalization and degra-
dation [226]. Moreover, as for collagen fibers, Cav1 has been shown to play a role in FN
physical remodeling and fibril orientation [11].

As reviewed in [227], TnC favors the establishment of a pre-metastatic niche. Then, the
findings of Albacete-Albacete et al. [221], together with those derived from Goetz et al. [11],
shed light on the role of Cavl in promoting cell invasion and metastasis through ECM
alteration.

Although the role of Cavl in exosome-mediated ECM deposition has been discussed,
the sorting of ECM components to exosomes may be regulated by additional caveolae
constituents, such as Cavinl, which has also been shown to control this process [228].

5. Concluding Remarks

Caveolae are key mechanosensor and mechanotransducer structures of the PM that
play an important role in buffering tension and initiate and contribute to different mechan-
otransduction pathways (Figure 4). Even in the absence of proper caveolae, Cavl in dolines
can also provide mechanoadaption. Its connection with the different types of cytoskeletons
is especially relevant for this function. Its association with actin fibers is better studied
among CSK types, and several models of interplay have been described. However, all of
the interactions between caveolae and the cytoskeleton filaments and their physiological
impact upon determined mechanical stimuli are not completely understood.

New insights regarding the relationship between caveolae/Cavl and ECM deposition
and remodeling have emerged in the last few decades. Apart from the chemical modifi-
cation of ECM by caveolae/Cavl-dependent mechanisms, the modulation of actin CSK
by caveolae also has a central role ECM reorganization (Figure 4). Caveolae are thus pro-
posed as a central hub where mechanosensing is linked to cellular responses that, in turn,
modify the extracellular environment in a reciprocal way. In addition, caveolae and Cav1
can be potentially targeted in a translational context based on their relevance in certain
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pathological conditions, such as cancer or fibrotic diseases. However, given the cell- and
context-dependent effects of Cav1 on cell behavior, further studies are needed to completely
envision the utility of caveolae/Cav1-targeting therapies.
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Figure 4. Schematic integrating the role of caveolae in mechanosensing (including ECM stiffness)
and mechanotransduction (including cytoskeleton reshaping, and subsequent ECM remodelling).
Caveolar structures exhibit high plasticity, such that upon reduced PM tension higher-order structures
named ‘rosettes’ -vacuoles surrounded by clusters of caveolae connected through a single neck to
the PM- are formed. Rosettes can flatten in response to mechanical challenges, such as shear stress,
stretching or substrate stiffness, leading to the formation of single-pit caveolae. Further PM tension
increase results in complete flattening and thus caveolae disassembly. Therefore, there is an inverse
correlation between the complexity of Cavl-bound membrane and PM tension. Regulatory pathways
integrate to control the plasticity, trafficking and mechanosensing and mechanostransducing abilities
of caveolae, which lead to changes in the cytoskeleton, which in turn results in ECM remodeling
through different effector mechanisms and in different functional outcomes for adapting to the
surrounding mechanical stimuli. Created with BioRender.com accessed on 6 March 2023.
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Abbreviations
Abl Tyrosine-protein kinase ABL1
AMPK AMP-activated protein kinase
BiolD Proximity-dependent biotin identification
CAFs Cancer-associated fibroblasts
Cavl Caveolinl
Cav2 Caveolin2
Cav3 Caveolin3
CSK Cytoskeleton
ECM Extracellular Matrix
EMT Epithelial-to-mesenchymal transition
eNOS Endothelial nitric oxide synthase
EVs Extracellular Vesicles
FA Focal adhesion
FBP17 Formin-binding protein 17
FN Fibronectin
IF Intermediate Filaments
LSS Laminar shear stress
MEFs Mouse embryonic fibroblasts
MVBs Multivesicular bodies
0SS Oscillatory shear stress
PM Plasma membrane
PTRF Polymerase I and Transcription Release Factor
pY14Cavl Phosphorylated Cavl at tyrosine residue 14
Racl Ras-related C3 botulinum toxin substrate 1
ROCK Rho-associated protein kinase 1
TAZ Transcriptional coactivator with PDZ-binding motif
TEAD Transcriptional Enhanced Associate Domain
TGF-3 Transforming growth factor-3
TnC Tenascin C
TPRs TGF-f3 receptors
YAP Yes-associated protein
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