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Abstract: Ferroptosis is a form of regulated cell death that is intricately linked to cellular metabolism.
In the forefront of research on ferroptosis, the peroxidation of polyunsaturated fatty acids has emerged
as a key driver of oxidative damage to cellular membranes leading to cell death. Here, we review the
involvement of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), lipid
remodeling enzymes and lipid peroxidation in ferroptosis, highlighting studies revealing how using
the multicellular model organism Caenorhabditis elegans contributes to the understanding of the roles
of specific lipids and lipid mediators in ferroptosis.
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1. Introduction

Ferroptosis as an iron-dependent non-apoptotic form of regulated cell death that
occurs when cellular antioxidant systems are overwhelmed [1]. Many excellent reviews
have chronicled the hallmarks of ferroptosis: redox active iron, polyunsaturated fatty acid
(PUFA)-containing phospholipids and lipid peroxide repair enzymes [2–5]. Ferroptosis
has generated wide interest because it is associated with a variety of illnesses and diseases,
including neurodegenerative diseases such as Alzheimer’s disease [6,7] and Huntington’s
disease [8], several types of cardiovascular disease (reviewed in [9]), diabetes and diabetic
complications [10–12] and ischemia-reperfusion injuries of the kidney and liver [13–15].
As such, an important goal in the study of ferroptosis is the development of inhibitors
to combat diseases such as these. On the other hand, several ferroptotic mechanisms
overlap with tumor suppressor pathways, such as modulation by the p53 RAS/MAPK
pathway [16–18] and radiation-induced tumor suppression [19]. Thus, the induction of
ferroptosis could be harnessed to suppress tumors. A key to the development of treatments
for diseases involving ferroptosis is the elucidation of the specific lipids that act to trigger
and propagate ferroptotic cell death.

2. Lipid Peroxides Are Hallmarks of Ferroptosis

Early work in ferroptosis focused on key roles of the phospholipid glutathione peroxi-
dase 4 enzyme (GPX4) [20]. The GPX enzymes use the reduced form of glutathione (GSH)
as a cofactor to convert lipid hydroperoxides on phospholipids into lipid alcohols, which
limits the levels of peroxidation in a cell [21,22]. Their major protective function in prevent-
ing ferroptosis in both in vivo and in vitro models has been well documented [20,23–26].
Some of the first ferroptosis small molecule inducers act as inhibitors of the GPX system. For
example, Erastin inhibits the uptake of reduced glutathione into the cell, thereby lowering
the activity of the GPX4 enzyme, while RSL3 was shown to directly limit the functionality
of GPX4 [23]. The key role of GPX enzymes in the protection against ferroptosis pointed to
oxidized phospholipids as drivers of ferroptotic cell damage [24].
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Lipid peroxides are extremely damaging to cells because they disrupt the thickness,
permeability and structure of membrane bilayers [27,28]. Using modeling and exper-
imental data, a current hypothesis is that during ferroptosis, membrane thinning and
increased curvature drive increased accessibility to oxidants and pore formation, resulting
in membrane destruction [29]. Ferroptotic damage is characterized by a cell swelling ef-
fect that is propagated through cell populations in a lipid peroxide- and iron-dependent
manner [30]. In addition to membrane fragility, lipid peroxide breakdown products, in-
cluding 4-hydroxynonenal (HNE) and malondialdehyde (MDA), are damaging to cellular
processes, because they form adducts with proteins and DNA [31,32]. PUFAs are common
components of phospholipids that are highly susceptible to lipid peroxidation because of
their multiple double bonds arranged such that hydrogens can be extracted from the acyl
chain more readily than from saturated or monounsaturated fatty acyl groups [33]. Lipid
peroxidation can occur enzymatically, by enzymes such as lipoxygenase (LOX), cyclooxy-
genase (COX) and cytochrome P450s (CYPs), or it can occur non-enzymatically, by free
radical-induced peroxidation, autoxidation and photodegradation [34].

3. Non-Enzymatic Lipid Peroxidation

Non-enzymatic lipid peroxidation occurs in three distinct stages [35] (Figure 1). The
first step, initiation, is the formation of a radical molecule from a membrane PUFA that
is triggered by interactions with radicals, such as hydroxyl radicals (•OH), leading to the
abstraction of a hydrogen from the carbon chain [36]. This leaves a free electron in the fatty
acid, which causes the rearrangement of electrons, provided by a nearby double bond, to a
more favorable position. The molecule that results from this process is known as a lipid
radical [36], which reacts readily with molecular oxygen to form a lipid peroxyl radical.
In the second step of the lipid peroxidation mechanism, propagation, this newly formed
lipid peroxyl radical extracts a hydrogen from a neighboring PUFA molecule, and the H is
added to the lipid peroxyl radical, generating both a lipid hydroperoxide and a new lipid
radical. The new radical mirrors the first steps of the initiation reaction, with the PUFA
losing a hydrogen, resulting in electron rearrangement and the formation of a lipid radical
and a lipid peroxyl radical on the neighboring PUFA [37]. This creates a chain reaction of
lipid peroxidation within a membrane. The third and final step of this process, known as
termination, occurs when lipid radicals and peroxides are resolved, either by reduction
with glutathione peroxidases or by the action of radical-trapping antioxidants [38,39].
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Figure 1. Non-enzymatic lipid peroxidation. Peroxidation is initiated by cellular ROS, where
hydroxyl, alkoxyl or peroxyl radicals abstract a hydrogen from a PUFA acyl group (radical electrons
denoted as red circle). A PUFA peroxide is formed by reacting with molecular oxygen and abstraction
of a hydrogen from an adjacent membrane PUFA. Fenton chemistry contributes to further lipid
radical formation, contributing to the chain reaction of lipid radicals attacking acyl groups on nearby
unsaturated phospholipid molecules. Lipid peroxidation is terminated by actions of radical-trapping
antioxidants or by reduction by catalyzed by glutathione peroxidase activity. Figure created with
BioRender.com, accessed on 1 February 2023.
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4. Radical-Trapping Antioxidants (RTA) Are Potent Ferroptosis Inhibitors

A potent category of small molecule ferroptosis inhibitors are radical-trapping antioxi-
dants (RTAs), which prevent the propagation of lipid peroxidation [38]. The ferroptosis-
specific inhibitor ferrostatin-1 (Fer-1) works through its N-cyclohexyl moiety to link itself to
the lipid membrane to scavenge nearby lipid ROS [1,40,41]. Liproxstatin-1 (Lip-1) is a spiro-
quinoxalinamine derivative that acts as an RTA by lowering the levels of lipid peroxidation
in the lipid membrane [40,41]. Lip-1 was first identified as a specific ferroptosis inhibitor in
a molecular screen, and was shown to lower signs of oxidation in both human cells and a
mouse model [26]. Vitamin E, a collection of antioxidants such as alpha-tocopherol [42]
and its water soluble form, Trolox, work as RTAs to lower ferroptosis in vitro [1,43] and
in vivo [26]. Bazedoxifenem, a drug known as a modulator for estrogen receptors [44],
was identified as an inhibitor of ferroptosis. Bazedoxifene suppresses ROS formation in
erastin2-treated human cells by acting as an RTA [45].

5. Iron Accumulation Leads to Ferroptosis in Aging Caenorhabditis elegans

Cellular iron contributes to the initiation and propagation steps of non-enzymatic
membrane lipid peroxidation. Cellular iron participates in the Fenton reaction that gener-
ates highly reactive hydroxyl and peroxyl radicals from cellular hydrogen peroxide. These
radicals then abstract hydrogens from membrane PUFAs to form lipid hydroxyl radicals
that participate in the propagation of lipid peroxidation until they are terminated. Two im-
portant factors of ferroptosis are the opposing axis of action between the peroxide-reducing
behavior of glutathione and the ROS-generating influence of iron. The necessity of this
balance is illustrated in Caenorhabditis elegans, wherein an age-dependent increase in iron is
correlated with a decrease in glutathione, leading to ferroptosis of intestinal cells in aging
worms. Inhibiting this imbalance resulted in an increase in worm health and lifespan [43].

6. Omega-6 PUFAs Promote Ferroptosis

PUFAs are the most susceptible lipids to peroxidation during ferroptosis [5,24]. The
most abundant cellular PUFAs are members of two families, the omega-6 PUFAs and the
omega-3 PUFAs, named for the position of the most terminal double bond on the acyl
chain (Figure 2). Both families of PUFAs are essential, playing important roles in the devel-
opment of the nervous system and cognition, skin barrier function, the immune system,
reproduction and other essential physiological functions [46,47]. Typically, high levels of
dietary omega-6 fats are associated with inflammation and associated diseases, whereas
dietary omega-3 fats are considered to be anti-inflammatory, invoking the suggestion that
increased intake of omega-3 PUFAs will lead to a beneficial decrease in the ratio of omega-6
to omega-3 PUFAs in membranes [48]. For example, patients with colon cancer found
that those with a higher intake of marine omega-3 PUFAs were associated with longer
disease-free survival [49]. However, both omega-3 and omega-6 PUFAs contain multiple
double bonds that are susceptible to lipid peroxidation. In an assay of peroxide-induced
oxidative stress leading to organismal death in C. elegans, dietary supplementation with
both omega-6 and omega-3 PUFAs accelerated cellular damage and death [50].

Using powerful mass spectrometry methods, Kagan et al. identified oxidized forms of
two omega-6 PUFAs, arachidonic acid (AA, 20:4n-6) and adrenic acid (22:4n-6), associated
with the endoplasmic reticulum phospholipids in cells undergoing ferroptosis [43]. In acidic
cancer cells, excess PUFAs that are not incorporated into lipid droplets are peroxidized and
contribute to ferroptosis [51]. Most studies in mammals focus on AA’s role in promoting
ferroptosis. In gastric cancer cell lines, PUFA synthesis genes become silenced by DNA
methylation, and these cells are resistant to RSL1-induced ferroptosis. Supplementation
with AA restored sensitivity to ferroptosis [52]. In C8+ T cell-mediated tumor killing,
AA interacts with T cell-generated interferon, contributing to the ferroptotic death of
tumor cells [53]. In mice, acetaminophen-induced acute liver failure and cell death is
caused by ferroptosis, and was found to be associated with the oxidation of omega-6
PUFAs, particularly AA, and prevented by treatment with the ferroptosis-specific inhibitor
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Fer-1 [54]. Thus, in mammalian cells, the peroxidation of omega-6 PUFAs, especially AA,
is strongly associated with ferroptosis.
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Figure 2. Structures of common fatty acids and oxygenated derivatives. (A) Stearic acid (18:0) is a
saturated fatty acid. (B) Oleic acid (18:1n-9) is a monounsaturated fatty acid. The single double bond
is in the cis position, creating a kink in the fatty acid that prevents tight packing of fatty acids and
contributes to membrane fluidity. (C) Dihommo-γ linolenic acid (DGLA, 20:3n-6) is a polyunsaturated
fatty acid. Oxygenated derivatives are produced by cytochrome P450 (CYP) enzymes, forming an
epoxide. The double bond that is converted to an epoxide depends on the position-specific isoform
of CYP enzymes. The epoxides can be converted into diols by epoxide hydrolase (EH) enzymes. The
EH enzymes are inhibited by AUDA. (D) Arachidonic acid (AA, 20:4n-6) is a polyunsaturated fatty
acid. Shown are examples of oxygenated derivatives produced by lipoxygenase (LOX) enzymes and
peroxidase activity. The location of the hydroperoxide is dependent on the position-specific isoform
of LOX. The hydroperoxide can be further reduced by peroxidase activity, leading to a bioactive
hydroxyl derivative.

7. Germ Cell Surveillance: A Physiological Role for Ferroptosis in C. elegans

The Watts lab demonstrated that dietary supplementation of the omega-6 PUFA
dihomo-γ-linolenic acid (DGLA, 20:3n-6) induces sterility in young C. elegans due to the
death of germ cells, oocytes and sperm, while somatic cells remained unaffected [55].
When testing the effect of other omega-6 PUFAs, only DGLA and high concentrations of
AA led to the sterility phenotype, not other dietary PUFAs such as the omega-3 PUFA
eicosapentaenoic acid (EPA, 20:5n-3) [50,55]. Thus, this germ cell death is distinct from
the whole-body peroxide stress mentioned above that is promoted by both omega-3 and
omega-6 PUFAs. Mutations in genes encoding components of PUFA synthesis pathways,
aging and stress resistance modulated the degree of germ cell death [55,56](Figure 3).
Specifically, mutant strains with increased endogenous DGLA synthesis and strains with
mutations in genes required for lipid homeostasis, such as SREBP and certain nuclear
hormone receptors, were most susceptible to DGLA, acting as enhancers (Figure 3B), while
strains with blocked PUFA pathways and increased stress resistance activity, such as the
long-living daf-2 mutants, were resistant to DGLA, acting as suppressors (Figure 3B) [55,56].
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Figure 3. Dietary DGLA causes ferroptosis of germ cells and sterility in C. elegans. (A) Schematic of
the C. elegans fatty acid supplementation assay. Synchronized L1 larvae are plated onto agar plates
containing DGLA and dietary E. coli, and incubated at 20 degrees until they reach adulthood, when
they are scored as fertile or sterile. Sterile worms lack gametes due to ferroptosis of germ cells during
development. (B) Mutant strains that are more sensitive to DGLA are known as enhancers, while
mutant strains that are less sensitive to DGLA are known as suppressors. Often, enhancer strains
contain mutations in protective genes, such as genes encoding GPX enzymes or genes required for
MUFA production. Suppressor genes include genes needed to produce membrane PUFAs, or mutants
that confer increased stress responses.

To test whether ferroptosis contributes to germ cell death due to dietary DGLA,
worms were treated with the omega-6 PUFA and the ferroptosis-specific radical-trapping
antioxidant inhibitor ferristatin-1 (Fer-1) and it was found that both germ cell death and
sterility were reduced when compared to worms treated with DGLA alone [57]. Similarly,
the antioxidant vitamin E also protected against DGLA-induced cell death. A gpx-1 mutant
strain showed higher susceptibility to DGLA than WT. Cellular iron was manipulated in
several ways. First, the ftn-1 mutant strain lacking the iron storage protein ferritin was
shown to be more susceptible to dietary DGLA, while treatment with the iron chelator
2,2′-bipyridine prevented DGLA-induced cell death, demonstrating a role for cellular iron
in the cell death process [57]. Taken together, these results demonstrated that dietary DGLA
induces ferroptosis in C. elegans germ cells, creating a powerful physiological model of
ferroptosis that can be studied in a genetically tractable system. We propose that ferroptosis
acts as a surveillance mechanism to deplete germ cells when too much oxidative damage is
present, therefore ensuring that only undamaged germ cells survive and produce embryos.

8. Fatty Acid Composition of Ether Lipids Influences Ferroptosis

While many types of phospholipids contain PUFAs that can undergo peroxidation
during ferroptosis, the phosphatidylethanolamine (PE) lipids are most often implicated [39,43],
perhaps because this phospholipid class often contains PUFAs and is confined to the inner
leaflet of the plasma membrane. Some PE species contain ether linkages, rather than the usual
ester linkages, at the sn-1 position of the PE phospholipid, known as ether lipids. Ether PLs
are understudied, but are proposed to play roles in cellular signaling and membrane structure,
and may act as endogenous antioxidants [58]. Dysregulation of ether PLs can lead to diverse
human diseases including neurodegenerative diseases and cancer [59].

In the C. elegans germ cell ferroptosis model, ether lipid-deficient mutant strains are
sensitive to DGLA, suggesting a protective role in ferroptosis for ether lipids [57], consistent
with a role for ether lipids as endogenous antioxidants. In contrast, several mammalian
studies showed that ether lipids drive ferroptosis [60,61]. These studies demonstrated that
the depletion of genes required for the synthesis of ether lipids results in decreased levels of
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PUFA-containing ether PLs and reduced ferroptosis. Supplementation of PUFA-ether PLs
in cells deficient in ether PLs resensitized cells to ferroptosis. However, MUFA-containing
ether lipids did not induce ferroptosis. The discrepancies between the C. elegans and
mammalian studies showing opposite roles for ether lipids in the modulation of ferroptosis
might be explained by the fatty acid composition of ether phospholipids. While most
ether lipids contain a saturated fatty acid connected by an ether bond in the sn-1 position,
mammalian ether lipids most often contain a PUFA on sn-2, and C. elegans ether lipids most
often contain a MUFA in this position [50,62]. Thus, the homeostatic regulation of fatty
acyl composition is an important regulator of lipid peroxidation potential and ferroptosis
in cells, perhaps more so than the particular class of phospholipid.

9. Monounsaturated Fatty Acids Protect Membranes from Ferroptosis

Given ferroptosis’s reliance on lipid peroxidation, the composition of available lipids
in a system can play a major role in determining ferroptotic sensitivity. Oleic Acid (OA), a
MUFA (Figure 2B), has previously been shown to inhibit ferroptosis in several cell lines,
including HT-1080 [24]. MUFAs have since been shown to inhibit ferroptosis by limiting
the incorporation of PUFAs into the cellular membrane, and thus limiting the accumulation
of lipid ROS formed in an ACSL3-dependent manner [63].

These findings have been mirrored in C. elegans, whose fatty acid composition is well
documented [55,64,65]. MUFAs have previously been shown to promote an increased
lifespan in C. elegans [66]. The role of monounsaturated fatty acids (MUFAs) in protecting
against ferroptosis has been further characterized across several studies. C. elegans grown
on bacteria supplemented with both the ferroptotic inducer DGLA and the MUFA OA
were protected from ferroptosis [57]. Furthermore, the C. elegans fat-2 mutants, which
generate high levels of OA [65], were significantly resistant to even high concentrations
of supplemented DGLA [57]. Interestingly, the dependence on ether lipids for ferroptosis
resistance was strongly dependent on endogenous MUFA and PUFA synthesis, demon-
strating that it was not the presence or absence of ether lipids per se, but rather that ether
lipid deficiency in C. elegans disrupted membrane homeostasis and led to decreased ratios
of MUFA compared to saturated fats and PUFAs in cellular membranes. By restoring
membrane MUFAS, ferroptotic cell death was reduced, as well as the levels of the lipid
peroxidation product MDA [50]. Thus, in both mammals and C. elegans, MUFAs have the
potential to therapeutically prevent or limit ferroptosis.

10. Lipid Remodeling Enzymes Influence Membrane Composition and Ferroptosis

Strong evidence indicates that the presence of PUFAs in phospholipids is required for
their role in promoting ferroptosis. This is based on the requirement of lipid remodeling
enzymes that catalyze the insertion of fatty acids into membrane phospholipids [67,68]. The
cleavage and reinsertion of fatty acids into membrane phospholipids occurs continuously
in cells in a process known as the Lands cycle [69]. This process promotes the removal of
peroxidized fatty acyl groups and the insertion of new fatty acids in their place. Members of
the phospholipase A2 family are especially relevant in ferroptosis because they specifically
remove fatty acids at the sn-2 position, the preferred location of PUFAs in phospholipids [70].
In p53-driven ferroptosis, iPLA2β removes peroxidized lipids to suppress cell death, while
the depletion of endogenous iPLA2β sensitizes tumor cells to ROS-induced ferroptosis [71].
To be incorporated into cellular membranes, long-chain fatty acids need to be converted to
their respective acyl-coenzyme A (acyl-CoA) forms, which is usually initiated by acyl-CoA
synthetases (ACSL), and incorporation occurs via acyl transferase enzymes (LCAT). Indeed,
impairing ACSL4 and LCAT3 activity suppresses ferroptosis in multiple systems [67,72,73].
On the other hand, knockdown of ACSL3 enhances ferroptosis [63]. The differences in
ferroptosis modulation depend on the substrate specificity of the acyl-CoA synthetase
enzymes; ACSL4 prefers long-chain PUFA substrates, while ACSL3 prefers MUFAs [39].

However, the requirement for ACSL4 in ferroptosis is not universal. The Dixon group
compared multiple loss-of-function genetic screens using a range of cell types and a range
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of ferroptosis induction mechanisms from various studies. They identified only a handful
of genes that were required for ferroptosis across a range of different screens. Intriguingly,
disrupting ACSL4 resulted in a greater suppression when ferroptosis was triggered by
direct GPX4-inhibition compared to other forms of ferroptosis induction, such as by cystine
deprivation or by the iron oxidizing agent FINO2 [74]. This indicates a context-specific role
for ACSL4 and other ferroptosis regulatory genes, making it difficult to establish a unifying
key effector of ferroptosis, other than the convergence of lipid peroxidation on the plasma
membrane as the ultimate damage resulting in cell death.

11. The Ability of Specific PUFAs to Induce Ferroptosis May Depend on Enzymatic
Conversion by Lipoxygenases or CYPs

A key aspect of ferroptosis, as the name implies, is the dependance on iron [1]. As
mentioned above, during non-enzymatic lipid peroxidation, iron contributes to the Fenton
reaction that generates lipid radicals that can initiate or help propagate the peroxidation
cascade in membranes. On the other hand, enzymes involved in specific lipid peroxidation
reactions, such as lipoxygenases and cytochrome P450 oxidoreductase activities, often
rely on ferrous iron (Fe2+) as a cofactor. The role of some of these iron-requiring PUFA
modification enzymes has been studied in the context of ferroptosis.

Lipoxygenases are enzymes that use iron and oxygen to catalyze the stereo-specific
dioxygenation of PUFAs at specific locations in the acyl chain, producing hydroxy and per-
oxy PUFA derivatives that serve as lipid mediators in many biological processes [75,76]. The
most-studied LOXs in mammals use AA as a substrate to generate bioactive lipid mediators
such as 15-hydroxyeicosatetraenoic acid (15-HETE) and other oxygenated AA derivatives,
hence these enzymes are often called ALOX (Figure 2D). ALOXs have been examined in
ferroptosis, and appear to have context-specific roles. Silenced ALOX genes in human
cells with ferroptosis inducers showed differing results: cells with decreased glutathione
demonstrated resistance to ferroptosis, while cells with GPX4 directly inhibited did not
demonstrate a change in resistance to ferroptosis [24]. In cancer cells, 12/15 Lox inhibitors
of were shown to lower the level of apparent ferroptotic cell death, while overexpression or
inhibition of a specific ALOX gene, ALOX15, appeared to increase and decrease the levels of
cell death, respectively [77]. The applicability of manipulating ALOX enzymes in ferropto-
sis has been questioned because the ALOX enzymes may not be highly expressed in cancer
cell lines that can undergo ferroptosis [78], and it has been suggested that lipoxygenase
inhibitors can also confer radical trapping activity [79]. Interestingly, in conjunction with
the PE binding protein 1 (PEBP1), ALOX15 generates 15-hydroperoxy-eicosatetraenoyl-PE
(15-HpETE-PE), which confers pro-ferroptotic activity [43]. This enzyme complex can also
be inhibited by the radical-trapping antioxidant ferrostatin-1 [80]. Thus, the roles of ALOX
in ferroptosis have not been fully resolved and may be context-specific.

Cytochrome P450s are a large group of heme-containing oxidation enzymes [81,82]. In
conjunction with cytochrome P450 reductase, CYPs are known to convert various PUFAs
into a wide range of oxygenated products, including lipid mediators such as hydroxides
and epoxides (Figure 2C) [83,84]. CYPs have been shown to result in the formation of ROS
through substrate binding and redox reactions involving the heme group (containing a
ferric iron) inside the CYP enzyme [85].

Cytochrome P450 reductases (POR) are oxidoreductases that contribute to a variety of
cellular mechanisms such as steroid metabolism and the breakdown of xenobiotics [86].
PORs have been implicated to play a role in lipid peroxidation and ferroptosis. First, POR
has been identified in CRISPR screens as enabling ferroptosis [7]. POR and the NADH-
cytochrome b5 reductase (CYB5R1) were shown to be required for ferroptosis in a way
that does not depend on interactions with CYPs, instead by producing hydrogen peroxide
to initiate an iron-dependent Fenton reaction that induces lipid peroxidation, leading to
membrane rupture in liposomes during ferroptosis [87]. Additionally, ferroptotic inhibitors
such as ferrostatin-1 decreased the level of lipid peroxidation produced by both POR and
CYP5R1, implicating the role of oxidoreductases in ferroptosis [87].
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12. DGLA-Induced Ferroptosis in C. elegans Mediated by CYP Activity

C. elegans contains many CYP homologs. One of these, CYP-33E2, has the ability
to convert DGLA into epoxide products [88,89](Figure 2C). To explore the bioactivity of
DGLA-derived lipid mediators, epoxides were injected directly into the gonads of C. elegans
and shown to lead to plasma membrane destruction in the gonad, similar to that seen with
DGLA injection [89]. While non-enzymatic lipid peroxide propagation is almost certainly
occurring in the DGLA-induced ferroptosis model, the enzymatic conversion of DGLA
to an epoxide could be a first step in inducing ferroptosis. An enzymatic induction step
is a plausible explanation for the specificity of dietary PUFA induction of cell death, in
particular why ferroptosis is not triggered by dietary ingestion of more highly unsaturated
PUFAs such as eicosapentaenoic acid (EPA, 20:5).

In addition to DGLA inducing ferroptosis of germ cells in young C. elegans worms,
neurons are also affected by dietary DGLA, but not EPA [90]. Dopaminergic neurons,
and, to a lesser extent, glutaminergic neurons, exhibited neurodegeneration in middle-
aged worms after DGLA supplementation by a mechanism consistent with ferroptosis.
A dihydroxy metabolite of DGLA, produced in two steps by conversion of DGLA to an
epoxide, then to a diol by an epoxide hydrolase activity (Figure 2C), was also capable
of inducing ferroptotic cell death in dopaminergic neurons [90], demonstrating that a
lipid mediator derived from DGLA is initiating ferroptosis in specific cell types. This
demonstrates the power of C. elegans to tease out the roles of PUFAs and PUFA-derived
lipid mediators in ferroptosis in a live animal system.

13. Conclusions

PUFAs play central roles in ferroptosis due to their propensity to form peroxyl radicals
that propagate by chain reaction throughout a membrane, leading to irreparable membrane
damage and cell death. While membrane PUFAs are protected from peroxidation by several
mechanisms, the misregulation or depletion of these protective enzymes and molecules
lead to excess peroxidation and ferroptotic damage. Iron contributes to the promotion
of lipid peroxidation in both the autoxidation pathway and by acting as a cofactor for
enzymatic peroxidation. Studies in C. elegans and other cell models suggest that ferroptosis
can be triggered by enzymatic conversions of PUFAs, although membrane damage is likely
propagated by autoxidation.
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