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Abstract: The development of a neoantigen-based personalized vaccine has promise in the hunt
for cancer immunotherapy. The challenge in neoantigen vaccine design is the need to rapidly and
accurately identify, in patients, those neoantigens with vaccine potential. Evidence shows that
neoantigens can be derived from noncoding sequences, but there are few specific tools for identifying
neoantigens in noncoding regions. In this work, we describe a proteogenomics-based pipeline,
namely PGNneo, for use in discovering neoantigens derived from the noncoding region of the human
genome with reliability. In PGNneo, four modules are included: (1) noncoding somatic variant calling
and HLA typing; (2) peptide extraction and customized database construction; (3) variant peptide
identification; (4) neoantigen prediction and selection. We have demonstrated the effectiveness of
PGNneo and applied and validated our methodology in two real-world hepatocellular carcinoma
(HCC) cohorts. TP53, WWP1, ATM, KMT2C, and NFE2L2, which are frequently mutating genes
associated with HCC, were identified in two cohorts and corresponded to 107 neoantigens from non-
coding regions. In addition, we applied PGNneo to a colorectal cancer (CRC) cohort, demonstrating
that the tool can be extended and verified in other tumor types. In summary, PGNneo can specifically
detect neoantigens generated by noncoding regions in tumors, providing additional immune targets
for cancer types with a low tumor mutational burden (TMB) in coding regions. PGNneo, together
with our previous tool, can identify coding and noncoding region-derived neoantigens and, thus,
will contribute to a complete understanding of the tumor immune target landscape. PGNneo source
code and documentation are available at Github. To facilitate the installation and use of PGNneo, we
provide a Docker container and a GUI.

Keywords: neoantigen; noncoding regions; proteogenomics; prediction pipeline; tumor immunotherapy

1. Introduction

Neoantigens are considered to be promising therapeutic targets owing to their tumor
specificity, and to their neither being affected by pre-existing immune tolerance nor gener-
ating autoimmunity [1]. Thus, neoantigens can be used as potential targets for therapeutic
vaccines. A neoantigen vaccine is designed to trigger de novo T cell response and broaden
the endogenous repertoire of tumor-specific T cells [2]. A phase-I trial of a neoantigen-based
peptide vaccine showed that four patients with stage III melanoma induced CD4+ T cell and
CD8+ T cell responses after vaccination and remained disease-free for a median follow-up
of 25 months after vaccination. This demonstrates the potent tumor-specific immunogenic-
ity and antitumor activity of neoantigen vaccines [3]. However, one major challenge in
neoantigen vaccine design is the rapid and accurate identification of neoantigens that can
induce T cell responses in patients.
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The advent of next-generation sequencing has provided opportunities to efficiently
identify tumor-specific antigens in individual patients, leading to the exploration of clinical
target therapies. In fact, several pipelines have been developed to predict neoantigens,
such as pVACtools [4], NeoPredPipe [5], Neopepsee [6], etc. Although the development of
these tools has opened the way for identifying potentially immunogenic neoantigens [7],
limitations to these tools exist. First, most traditional prediction pipelines were developed
based on genomic and transcriptomic data. Many false-positive neoantigens inevitably
occur, due to the large number of mutations in individual patients and the limited perfor-
mance of MHC ligand binding prediction [8]. In addition, studies have shown that the
mRNA measurements of many genes correlate poorly with protein expression [9,10]. With
advances in mass spectrometry (MS)-based proteomics, the combination of proteomics and
genomics, i.e., proteogenomics, has been a major force in driving personalized neoantigen
vaccine identification [11–13]. It allows the presence verification of those peptides that are
most likely to generate an immune response based on neoantigen prediction pipelines;
thus, such peptides may be moved into subsequent functional selection processes. Pro-
teogenomics has greatly reduced the number of false positives for predicted neoantigens
and has eased the burden of experimental validation. Our group previously developed
proteogenomics neoantigen prediction pipelines, ProGeo-neo [14] and ProGeo-neo2.0 [15],
and WEN B et al. developed NeoFlow [16].

Another limitation of the currently existing neoantigen prediction pipelines is that they
almost all focus on genomic coding regions. While variants in protein-coding regions have
received the most attention, numerous studies have noted the importance of noncoding
variants in cancers [17]. Exomes only account for 2% of the human genome, whereas up
to 75% of the genome has been shown to be transcribed and potentially translated [18].
Therefore, many allegedly noncoding regions are actually protein-coding. For example,
long noncoding RNAs (LncRNA) are a type of noncoding RNA with a length of more
than 200 nt, lacking a protein-coding function due to the lack of a complete open read
frame (ORF) [19]. Intriguingly, several recent studies have noted LncRNAs as a source
of new peptides [20,21]. Of particular relevance to tumor neoantigen discovery, 99% of
cancer mutations are located in noncoding regions [17]. Therefore, focusing on the exome
as the only source of tumor neoantigens is very restrictive. Notably, peptides derived from
the noncoding regions have been shown to bind to MHC molecules, some of which were
identified as the targets of T cells [22–24]. Subsequently, landmark studies demonstrated
that the noncoding regions are the main source of targetable tumor-specific antigens [25,26].
However, an efficient and easy-to-use tool to predict and investigate the personalized
neoantigens from noncoding regions is still lacking.

Herein, we present PGNneo, an integrated computational pipeline to predict non-
coding neoantigens from RNA-seq and MS data. We demonstrated the effectiveness of
PGNneo and validated our methodology in two real-world hepatocellular carcinoma
(HCC) cohorts. In addition, we applied PGNneo to a colorectal cancer (CRC) cohort,
demonstrating that the tool can be extended and verified in other tumor types. PGNneo is
an efficient tool to identify noncoding neoantigens and can be easily installed and deployed
at https://github.com/tanxiaoxiu/PGNneo. To be more user-friendly, we also provide a
Docker version at (https://hub.docker.com/r/xiaoxiutan/pgnneo) and a GUI.

2. Methods
2.1. Data Collection

The paired-end sequencing data of lncRNA from 5 HCC patient-derived xenograft
(PDX) samples, including tumor and normal tissues, were obtained from Hu et al. [27].
The proteomics datasets of the HCC cell line were downloaded from the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) (accessed on 21 September
2020) with the identifier, PXD000529. This cohort is hereinafter referred to as HCC_HF.
Another HCC cohort (hereinafter referred to as HCC_HT) from a previous collaboration
with Jiang et al. [28] included RNA-seq files and MS raw data from 10 patients (early stage

https://github.com/tanxiaoxiu/PGNneo
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of HCC, subtype 3) were downloaded from the Gene Expression Omnibus (GEO) (accession
number GSE124535) (accessed on 15 November 2021) and iProX database (http://www.
iprox.org, accession number IPX0000937000) (accessed on 15 November 2021), respectively.
Detailed sample information is provided in Table S1 in the Supplementary Materials. In
addition, we collected a CRC cohort [29], including RNA-seq data and MS raw data from
three CRC cell lines and RNA-seq data from one normal fetal small intestine cell line. This
can be downloaded from the GEO (accession number GSE195985) (accessed on 2 October
2022) and the ProteomeXchange Consortium (Identifier PXD028309) (accessed on 2 October
2022), respectively. Detailed sample information of this cohort is presented in Table S12 in
the Supplementary Materials.

The human reference genome (hg38) and Proteome (version 101) were downloaded
from UCSC (http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz) (ac-
cessed on 1 September 2020) and the Ensembl database (http://www.ensembl.org/) (ac-
cessed on 1 September 2020), respectively. Contaminated protein sequences were avail-
able in a FASTA format from the common repository of adventitious proteins (cRAP)
(http://www.thegpm.org/crap/) (accessed on 1 September 2020).

2.2. RNA-Seq Data Processing

RNA-seq raw data were cleaned by Trimmomatic (v0.39) (Max Planck Institute of
Molecular Plant Physiology, Golm, Germany) [30], with the standard adapters trimmed
and low-quality reads filtered. All clean reads were aligned to the human reference genome
using the Burrows–Wheeler alignment tool (BWA, v0.7.17) (Wellcome Trust Sanger Institute,
Cambridge, UK) [31] with the default parameters. The resulting .sam file was converted
to .bam, sorted, and indexed using samtools [32]. The Picard [33] tool, MarkDuplicates
(Broad Institute, Cambridge, MA, USA), was used to identify duplicates. To correct as
many systematic errors in the sequencing process as possible, we performed base quality
score recalibration. The Picard AddorReplacereAdgroups tool (Broad Institute, Cambridge,
MA, USA) was used to modify the headers of BAM files for subsequent processing. Somatic
single nucleotide variants (SNVs), and insertions and deletions (Indels), were detected
by GATK Mutect2 (v4.1.9) (The Broad Institute of Harvard and MIT, Cambridge, MA,
USA) [34] from the BAM files of paired tumor and normal samples. The GATK FilterMu-
tectCalls (The Broad Institute of Harvard and MIT, Cambridge, MA, USA) tool was used to
filter somatic mutations using default parameters, with true positive mutations marked
with “PASS” and we selected “PASS” mutations.

Since affinity predictions for the peptide-MHC interface are MHC-specific, it is critical
to know the patient HLA types. HLA alleles in each sample were inferred from trimmed
RNA-seq data using OptiType (University of Tübingen, Tübingen, Germany) with the
default settings, which has been demonstrated to achieve HLA typing with ~97% accu-
racy [35,36].

2.3. Mutation Annotation and Peptide Extraction

The annotation of mutations and the extraction of the peptide are shown in Figure 1.
Somatic mutation data that were obtained based on RNA-seq data were annotated us-
ing Annovar [37] to identify noncoding-region somatic mutations, including SNVs and
indels. The noncoding regions that we used specifically included: “downstream”, “inter-
genic”, “intronic”, “ncRNA_exonic”, “ncRNA_intronic”, “ncRNA_splicing”, “splicing”,
“upstream”, “UTR3”, and “UTR5”. After mutation filtering, nucleotide sequences with a
set interval length were obtained according to the mutation sites and reference genome
using Bedtools (University of Virginia School of Medicine, Charlottesville, VA, USA) [38].
Specifically, 100 nucleotide sequences were taken from along each side of the mutation site.
To generate the nucleotide sequences containing the mutation, we replaced the reference
bases with mutant bases, i.e., we replaced the “REF” column with the “ALT” column in the
mutation table.

http://www.iprox.org
http://www.iprox.org
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
http://www.ensembl.org/
http://www.thegpm.org/crap/
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Figure 1. Generation of the variant peptides.

For the translation of nucleotide sequences in the genome, six-frame translation is the
classical method. Six-frame translation has the advantage of being independent of any a
priori annotation of the nucleotide sequence [39,40]. Thus, according to the 64 codons, the
mutant nucleotide sequences were translated into novel proteins via six-frame translation.
The termination codons were replaced with “*” and the protein sequences were cleaved
into short peptides according to “*”. The short peptides that did not contain the mutations
were then filtered out. Finally, we obtained tumor protein sequences containing mutations
from noncoding regions.

2.4. Database Construction and Peptide Identification

Identifying a mutant peptide expressed at the protein level is a crucial step. In this
study, MaxQuant (Max-Planck Institute for Biochemistry, Martinsried, Germany) [41], a
proteomics identification quantitative tool, was used to identify the peptides. To search
the proteomics data, we first constructed a customized database for each individual tumor
sample, including human reference proteins, common contaminant protein sequences in
the laboratory (cRAP), and cancer-specific proteomes.

Then, to filter for true peptides, all MS/MS spectra were searched using MaxQuant
in the customized peptide database. A separate target-decoy search strategy was used.
Decoy peptides were generated from the peptides of corresponding target databases using
a reversed tryptic approach. The parameters of MaxQuant were set as follows: (1) the
variable modifications included protein N-terminal acetylation with methionine oxidation;
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(2) strict trypsin specificity was required, allowing up to two missed cleavages; (3) the car-
bamidomethylation of cysteine was set as a fixed modification. In addition, false discovery
rate (FDR) thresholds for protein peptides were specified at 1%. The minimum required
peptide length was set to 7 amino acids. Finally, we extracted the cancer-specific mutant
peptides identified by MS data and provided evidence in terms of protein expression level.

2.5. Neoantigen Prediction and Selection

PGNneo uses NetMHCpan 4.1 (Department of Bio and Health Informatics, Technical
University of Denmark, Kgs. Lyngby, Denmark) [42] to calculate the binding affinity of
peptides to patient-specific HLA alleles. To match the length of the peptides bound by
MHC-I molecules, the peptides that were filtered by mass spectrometry were cleaved
into short peptides containing mutated 8–11 mers. The percentile rank score was proven
to exhibit higher sensitivity and less bias in HLA-peptide identification than the half-
maximum inhibitory concentration (IC50) [43]. Therefore, the percentile rank (%rank)
value was used as the metric of HLA-peptide binding prediction, and peptides with a
%rank < 2 were considered to be candidate neoantigens. Similar sequences often originate
from a common ancestral sequence and they are likely to have similar spatial structure
and biological function; in fact, tumor-infiltrating T cells were found to exhibit a cross-
reactivity that recognizes both tumor neoantigens and homologous non-tumor microbial
antigens [44]. Therefore, to filter candidate neoantigens, sequence similarity analysis
was performed using the basic local alignment search tool (BLAST) (National Center
for Biotechnology Information, Bethesda, MD, USA) [45]. In total, 746 experimentally
immunogenic neoantigens, collected from an in-house database, dbPepNeo2.0 [46], were
used to build the target sequence database, while candidate neoantigens were treated as
retrieval sequences. Then, BLASTp was used to identify homologous sequences so that the
degree of homology between candidate neoantigens and immunogenic neoantigens could
be established. We adjusted several default options to increase the sensitivity of BLAST
searches that were performed with short input sequences. The peptides were reported to
have sequence identity to immunogenic neoantigens if the percentage of identical matches
was above 60%.

2.6. PGNneo Pipeline Implementation

PGNneo is open-source software written in Python, shell, and R. The software is
divided into four toolkits, based on four modules. The user needs to configure the path and
parameters of the software before applying the toolkits. After completing the configuration,
the pipeline can be run by executing the command line. A more detailed tutorial on the use
of PGNneo is available in the User’s Manual. The PGNneo source code and documentation
are available at https://github.com/tanxiaoxiu/PGNneo. To facilitate the installation
and use of PGNneo, we provide a Docker container (Docker: https://hub.docker.com/r/
xiaoxiutan/pgnneo) and a GUI.

3. Results
3.1. The Workflow of the PGNneo Pipeline

Here, as shown in Figure 2, a versatile and comprehensive workflow, PGNneo, is
presented to identify neoantigens in the noncoding region. In PGNneo, several input
datasets are required, including RNA-seq profiles and MS datasets. First, the RNA-seq
profiles from the paired tumor and normal samples are used to screen for somatic mutations
in the noncoding regions, and the amino acid sequences containing mutant sites in the
noncoding region can thus be identified. Then, those expressed sequences can be filtered
using MS datasets. Eventually, the resulting peptides are used for neoantigen prediction
and selection by using MHC affinity and the database dbPepNeo2.0 [46].

https://github.com/tanxiaoxiu/PGNneo
https://hub.docker.com/r/xiaoxiutan/pgnneo
https://hub.docker.com/r/xiaoxiutan/pgnneo
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Figure 2. Overview of the PGNneo pipeline for proteogenomics-based noncoding neoantigen prediction.

The general computational framework of PGNneo consists of the following modules.
(1) Noncoding somatic variant calling and HLA typing. Identifying somatic mutations in
tumor cells is a key step in the neoantigen presentation pathway. For this purpose, paired
tumor and normal samples were used for somatic variant calling. Prior to annotation,
we removed any low-quality somatic mutations. Eventually, the noncoding mutations
were extracted. The prediction of HLA typing was performed, based on the RNA-seq
data from tumor samples. (2) Peptide extraction and customized database construction.
Working according to the mutation information, the nucleotide sequences were obtained
and were then translated into proteins by six-frame translation. The process of extraction
of the peptide is shown in Figure 1. Eventually, tumor mutant peptides were obtained.
Subsequently, these mutant protein sequences and reference proteins were combined to
construct a customized protein database. (3) Variant peptide identification. The resulting
peptides were filtered using MS datasets. The proteomic data provided evidence not
only for the presence of peptides at protein levels but also for the binding of peptides to
MHC molecules. (4) Neoantigen prediction and selection. Candidate neoantigens were
predicted, according to peptides and HLA types, using NetMHCpan 4.1. The candidate
neoantigens were filtered using the database dbPepNeo 2.0, which is an in-house dataset
using 746 experimental immunogenic peptides as a reference. The resulting datasets at
different filtering stages could then be obtained and downloaded according to the user’s
preference. Table 1 summarizes the software used in PGNneo.

Table 1. Summary of the tools available in PGNneo.

Module Software Function

(1) Noncoding somatic variant
calling and HLA typing Trimmomatic-0.39 [30] Trims adapters and filters

low-quality reads
BWA-0.7.17 [31] Sequence alignment

SAMtools(V1.7) [32] Converts .sam files to .bam,
sort, and index files

GATK4.2.0.0 [34] Call somatic mutation

Picard-2.23.9 [33] Modifies the headers of
.bam files

OptiType-1.3.5 [35] Predicts HLA typing
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Table 1. Cont.

Module Software Function

(2) Peptide extraction and
customized database

construction
Annovar [37] Mutation annotation

Bedtools(v2.29.2) [38] Sources the
nucleotide sequence

(3) Variant peptide
identification MaxQuant [47] Peptide identification

(4) Neoantigen prediction
and selection NetMHCpan-4.1 [42]

Calculates the binding affinity
of peptides to patient-specific

HLA alleles
Blast-2.11.0+ [45] Sequence similarity analysis

3.2. Evaluation of PGNneo Pipeline Results

To evaluate the performance of PGNneo, we performed sequence similarity analy-
sis using two independent datasets. The positive dataset comprises 746 experimentally
validated immunogenic neoantigens (Positive) collected from the dbPepNeo2.0 dataset,
and the background control dataset contains 6400 mutant peptides (Random) of length
8–11 residue [48]. We performed sequence similarity analysis on the candidate neoanti-
gens (unfiltered) that were obtained from the two cohorts of HCC_HF and HCC_HT with
the positive dataset and random dataset, respectively. Two sequences exhibiting more
than 60% of identical matches and an E-value of less than 0.5 are considered to be similar.
Figure 3 shows that the results obtained from the positive and random datasets were
significantly different in both the HCC_HF and HCC_HT cohorts, with p-values of 0.0278
(<0.05) and 0.01704 (<0.05), respectively (Wilcoxon test). The results indicate that the
candidate neoantigens predicted by our method are more likely to have immunogenic
potential. Therefore, filtering using the positive datasets was incorporated into the pipeline.
This can be considered as an in silico verification step in the pipeline for the prediction
of neoantigens.

Figure 3. Evaluation of candidate neoantigens predicted by PGNneo, based on independent datasets:
boxplot of the positive and random peptides in the HCC_HF cohort (A) and the HCC_HT cohort (B),
with a * p-value < 0.05, ascertained by a Wilcoxon test.
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3.3. Neoantigen Prediction, Selection, and Cross-Comparison from HCC Cohorts

PGNneo was applied to two independent HCC cohorts. We statistically analyzed the
number of key steps in the pipeline for each sample (Figure S1 in the Supplementary Materials).
In the HCC_HT cohort, one sample deviated significantly from other samples, possibly due
to data quality problems, so this sample was deleted; finally, for this cohort, 9 samples were
retained. The average number of key steps in the pipeline on the HCC_HF and HCC_HT
cohorts are shown in Figure 4A. After filtering and annotation, an average of 3260 and
1178 noncoding mutations were obtained (Tables S2 and S3 in the Supplementary Materials).
At the protein level, an average of 2339 and 610 peptides were identified by MS data analy-
sis. HLA genotypes were predicted from the RNA-seq fastq file using the Optitype, and
MHC-I binding predictions for the filtered peptides were predicted with netMHCpan4.1.
As a result, an average of 3518 and 932 candidate neoantigens were obtained in the two
cohorts, respectively (Tables S4 and S5 in the Supplementary Materials). After screening
for HCC_HF, an average of 77 noncoding high-confidence neoantigens were eventually
identified in each sample, ranging from 37 to 147 (Table S6 in the Supplementary Materials).
However, in the HCC_HT cohort, an average of 13 noncoding high-confidence neoantigens
were identified per sample, ranging from 4 to 23 (Table S7 in the Supplementary Materials).
Upon comparing the results of the two cohorts, we found 403 overlapping non-coding
mutations and 189 overlapping candidate neoantigens in the two cohorts (Figure 4B,C);
however, no overlap was found in the high-confidence neoantigens. The results show
that neoantigens are unique and the number of neoantigens varies greatly between differ-
ent datasets.

Figure 4. Results overview for the neoantigen discovery process. (A) The average number of key
steps in the PGNneo on the HCC_HF cohort and HCC_HT cohort, respectively. (B) Overlapping
non-coding mutations in the HCC_HF cohort and the HCC_HT cohort. (C) Overlapping candidate
neoantigens in the HCC_HF cohort and the HCC_HT cohort.

In addition, 26 and 28 unique HLA alleles were predicted for the two cohorts, re-
spectively (Table S8 in the Supplementary Materials). We further calculated the frequency
of HLA alleles in the sample population using the getHlaFrequencies function in the mi-
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dasHLA package of R [49]. Then, the mean value of neoantigens bound by each HLA
allele was calculated, based on the count of HLA alleles, thus normalizing the number of
neoantigens. The frequency of HLA alleles and the number of corresponding neoantigens
are given in Table S9 in the Supplementary Materials. Based on the ranking of the nor-
malized number of neoantigens, the 10 most frequent binding HLA alleles that matched
with candidate neoantigens in two cohorts are shown in Figures 5A and 5B, respectively.
The results showed that HLA alleles exhibited a preference for the binding of neoantigens,
while HLA-A33:03 and HLA-A23:01 accounted for the largest binding proportion in the
HCC_HF and HCC_HT cohorts. Moreover, the same candidate neoantigen can bind to
different HLA alleles; this neoantigen is more likely to be present and may be applicable to
a wider range of individuals.

Figure 5. The number of predicted neoantigens binding with each HLA allele. (A) The top 10 HLA
alleles matched with candidate neoantigens in the HCC_HF cohort. (B) The top 10 HLA alleles
matched with candidate neoantigens in the HCC_HT cohort.

3.4. The Sharing of Noncoding Neoantigens and Genes in Different Samples

We further analyzed the overlapping neoantigens and their corresponding genes in the
two cohorts. In the HCC_HF cohort (lncRNA-seq data from 5 HCC PDX samples and MS
data from the HCC cell line), 10 neoantigens were found to be in common in at least 2 pa-
tients (Table S10 in the Supplementary Materials). These overlapping neoantigens are called
“shared neoantigens” and have the potential to be designed as shared neoantigen vaccines.
Conversely, neoantigens across the 5 patients were mapped to 118 unique genes, and 6 of
these genes were observed in at least 2 patients (Table S10 in the Supplementary Materials).
These overlapping genes are “hot-spot mutations” where the corresponding neoantigens
may be in common among multiple patients. Unfortunately, no overlapping neoantigens
or genes were found in the HCC_HT cohort (with paired RNA-seq data and MS data from
10 human HCC samples). This may be because the HCC_HF cohort dataset comprises
unpaired lncRNA-seq data and MS data; the MS data is cell line data with lower hetero-
geneity, so that shared neoantigens can be found, while the HCC_HT cohort is of paired
RNA-seq data and MS data from patients with a higher degree of individualization. To
some extent, this explains the individualization of neoantigens in real patients. Therefore,
this also reinforces the necessity for more research on hot-spot mutations for building up
data resources for shared neoantigens.

3.5. Function Verification Analysis of Frequently Mutated Genes and Neoantigens in HCC

In order to correlate the predicted neoantigens with the clinical information garnered
from patients, we explored the association between the predicted neoantigens and the
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pathogenesis of HCC. Rao et al. [50] summarized the frequently mutated genes and their
functions that are associated with HCC. We compared candidate neoantigen-associated
genes in the HCC_HF cohort and HCC_HT cohort with the frequently mutated genes
associated with HCC. The TP53, WWP1, ATM, KMT2C, and NFE2L2 mutant genes as-
sociated with HCC were identified in two cohorts and corresponded to 98 neoantigens
(Table S11 in the Supplementary Materials). Table 2 only shows information about the
26 candidate neoantigens that bind most strongly to HLA. Among them, TP53 is one of
the most studied tumor suppressors, with multiple functions, and is associated with DNA
damage checkpoints and repair defects. WWP1 is associated with the activation of onco-
genic pathways in HCC; the overexpression of WWP1 promotes tumorigenesis in HCC
patients and predicts poor prognosis. The loss of ATM reduces hepatocyte apoptosis and
fibrosis, suggesting that the activation of ATM in response to oxidative stress plays a role
in hepatic fibrosis development. KMT2C and KMT2D are functionally similar and may be
involved in chromatin localization and genomic instability. NFE2L2 deficiency may render
cells susceptible to oxidative stress-mediated DNA damage. Genes that are highly mutated
in HCC may be attractive potential therapeutic targets.

Table 2. Strongly bound neoantigens that are generated by frequently mutated genes in HCC.

Gene Neoantigen HLA %Rank Bind Level

WWP1 VSHDGATAL HLA-C*03:04 0.009 SB
NFE2L2 KTDAQAISL HLA-C*04:03 0.025 SB

TP53 TMAGQLLHV HLA-A*02:06 0.052 SB
NFE2L2 SSRPAWPTR HLA-A*33:03 0.08 SB
KMT2D QQKNPSLFL HLA-B*13:02 0.126 SB
NFE2L2 GQHSETPSL HLA-B*15:01 0.154 SB
NFE2L2 WPGHQFFKY HLA-B*35:01 0.155 SB
KMT2C IVSSRFCTR HLA-A*31:01 0.167 SB
KMT2D QQKNPSLFLI HLA-B*13:02 0.185 SB
NFE2L2 GIWPGHQFF HLA-B*15:25 0.206 SB
NFE2L2 LFFETRSRF HLA-A*24:02 0.226 SB

ATM AEAGEPLEP HLA-B*40:06 0.232 SB
WWP1 YRCVPPHPANF HLA-C*06:02 0.258 SB
KMT2C KLGDNHFFM HLA-A*02:01 0.293 SB
NFE2L2 ATRTGRLWWR HLA-A*31:01 0.323 SB
NFE2L2 HPKSKQISCTW HLA-B*58:01 0.362 SB
NFE2L2 IWPGHQFF HLA-A*24:02 0.376 SB
KMT2D QKNPSLFLI HLA-B*13:02 0.379 SB
NFE2L2 RMPVIQAAW HLA-A*24:20 0.385 SB
NFE2L2 RMPVIQAAW HLA-B*58:01 0.396 SB
WWP1 FSCLSLSGGW HLA-B*58:01 0.432 SB
ATM RACQRQAVGIK HLA-A*30:01 0.433 SB

NFE2L2 KTDAQAISL HLA-C*03:04 0.442 SB
NFE2L2 GQHSETPSLLK HLA-A*11:01 0.46 SB

TP53 ATMAGQLLHV HLA-A*02:06 0.474 SB
WWP1 VSHDGATAL HLA-C*04:03 0.48 SB

3.6. Extended Application of PGNneo to Other Tumor Types

In addition, we applied PGNneo to another tumor type with moderate TMB, colorectal
cancer (CRC) [29]. Firstly, 4206, 3664, and 5823 non-coding mutations were obtained on
COLO205, SW620, and HCT116 cell line data, respectively, and further predictions yielded
217, 330, and 291 candidate neoantigens. In addition, to evaluate the potential immuno-
genicity of candidate neoantigens, we obtained high-confidence neoantigens based on the
filtering of an experimentally validated immunogenic neoantigen database constructed
by our group. Detailed results on sample information, noncoding region mutations, HLA
typing, candidate neoantigens, and high-confidence neoantigens are provided in Table S12
in the Supplementary Materials. The results demonstrate that our pipeline can be applied
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to multiple tumor types. The biological mechanisms of noncoding neoantigens may be
cross-verified as the application of PGNneo expands.

3.7. Comparing PGNneo with Other Tools

To complete the identification and comparison of neoantigens from both coding and
noncoding regions, we applied four other common neoantigen prediction tools, including
ProGeo-neo [14], pVACtools [4], Neopredpipe [5], and TSAFinder [51], to compare their
performance with our own tool, PGNneo. pVACtools, Neopredpipe, and TSAFinder
require fastq data for RNA-seq and/or VCF data for mutations as input, and ProGeo-neo
requires the additional input of MS data. For two HCC cohorts, we randomly selected three
patient samples, HCC42, HCC67, and HCC1076, for comparison across five neoantigen
prediction tools. Since most neoantigens are composed of 9 amino acids, we only compared
the prediction of 9-mer neoantigens [52]. The number of candidate neoantigens obtained
by the five tools is shown in Figure 6. It is worth noting that PGNneo introduces MS data
and shows candidate neoantigens after MS filtering so that the results of PGNneo are more
stringent. Although ProGeo-neo also has a module for MS data filtering, unfortunately,
no neoantigens were obtained after MS data identification. This is consistent with studies
on neoantigens in the coding region of HCC, which suggested that the tumor mutational
burden (TMB) of HCC is relatively low and neoantigens in coding regions are scarce [53].
In contrast, the other tools do not have an MS filtering step, and we only show their
candidate neoantigens as predicted by peptide-MHC binding affinity (Table S13 in the
Supplementary Materials).

Figure 6. The number of candidate neoantigens predicted by PGNneo, ProGeo-neo, pVACtools,
NeoPredPipe, and TSAFinder.

In addition, PGNneo sets up a module for secondary filtering by using 746 experimen-
tally validated neoantigens, resulting in high-confidence neoantigens. Twenty, three, and
one high-confidence 9-mer neoantigens were obtained in samples HCC1076, HCC42, and
HCC67, respectively (Table S13 in the Supplementary Materials). Furthermore, we explored
the association between these high-confidence neoantigens and the pathogenesis of HCC.
The high-confidence neoantigen genes TNFSF14, GAD1, STARD1, and DHRS4-AS1 have
been reported in the literature to be closely associated with HCC [54–56]. Specifically,
TNFSF14 and GAD1 are highly expressed in HCC [54]; STARD1 promotes the progression
of non-alcoholic steatohepatitis to HCC via bile acids [55]; DHRS4-AS1 ameliorates HCC
by suppressing proliferation and promoting apoptosis via the miR-522-3p/SOCS5 axis [56].

Moreover, we analyzed the overlap of the candidate neoantigens predicted by dif-
ferent tools. For three samples, HCC1076, HCC42, and HCC67, the number of neoanti-
gens identified by at least three tools was 411, 80, and 3, respectively (Table S14 in the
Supplementary Materials). We recommend using multiple tools to predict neoantigens,
which may yield more reliable results. Our investigation demonstrates that for cancer types
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with a low TMB, the source of neoantigens may be enriched when the noncoding region
is taken into consideration. Therefore, PGNneo aims to expand the scope of neoantigen
prediction and provide a richer neoantigen reference for some cancer types with a low TMB
in the coding region.

4. Discussion

Although some algorithms and tools have been developed to tackle the problem of
neoantigen prediction, most are based on coding regions. However, in the human genome,
98% of the sequence involves noncoding regions, and most DNA sequence variants occur in
the noncoding regions [17]. The general properties of sequence variants are also applicable
to noncoding variants, such as SNVs and Indels. What is more, noncoding variants can also
generate neoantigens. However, there are few prediction tools that operate on noncoding
regions; the majority of tools focus on exonic variant calling, which is based on genomic
data rather than transcriptomic data. For this reason, we developed a proteogenomics-
based pipeline, PGNneo, to identify those neoantigens derived from noncoding regions,
based on transcriptomic data from the human genome. Furthermore, we successfully
validated the effectiveness of PGNneo through its application in two HCC cohorts. A
total of 386 and 113 high-confidence neoantigens were identified in the two HCC cohorts,
respectively. In addition, we applied PGNneo to a CRC cohort, demonstrating that the tool
can be extended to multiple tumor types.

Compared with the traditional neoantigen prediction pipeline, PGNneo has several
advantages. First, it focuses on neoantigens in noncoding regions, which provides a new
source of neoantigens for low-TMB tumor types. Studies have shown that for cancer types
with a low TMB, such as liver cancer, the source of neoantigens should be extended to
noncoding regions for better applicability to immunotherapy [53]. Second, it combines
transcriptomics and proteomics data, furthering the proteogenomics neoantigen prediction
pipelines for coding regions in our research group [14,15]. Most of the previously developed
neoantigen prediction tools are based on genomic data only, and the predicted false-positive
rate of neoantigens is relatively high. Combined with proteomic data, the accuracy of
neoantigen prediction can be improved. Moreover, proteogenomics holds the promise
of providing deeper mechanistic insights to enable the better matching of patients to
targeted therapies than when analyzing each type of omics data separately. In addition,
our pipeline uses RNA-seq data from paired tumor and normal tissues to call somatic
mutations. Mutations in the RNA-seq data provide a better reference for a proteomics
dataset than WES, mainly because of the ability of RNA-seq to identify novel somatic
variants, while for oncogenes that are highly expressed in cancer, RNA-seq provides higher
sequencing coverage than WES and, therefore, has higher statistical confidence in detecting
variants [57]. Thus, in our pipeline, the customized searchable peptide database was
derived from tumor RNA-seq data.

Compared to the coding-region-based proteogenomic prediction pipeline established
by our group, in terms of data requirements, ProGeo-neo requires data at the genomic,
transcriptomic, and proteomic levels of the patients, while PGNneo only requires tran-
scriptomic and proteomic data from patients, and not WES/WGS data. This is because the
neoantigen prediction step in ProGneo-neo is performed based on the mutations detected
by WES/WGS, whereas in PGNneo, the step is based on RNA-seq data. Therefore, the
application scenario of the PGNneo can be further expanded.

There are still some limitations to our study, so we will expand on the following aspects.
To further enrich the types of neoantigens, we may later update the tool to predict those
neoantigens derived from gene fusion and RNA splicing, which will provide more potential
neoantigen targets for developing therapeutic cancer vaccines. In addition, considering
the complementary roles of coding-region-based and noncoding-region-based pipelines
in identifying neoantigens, we will integrate neoantigen prediction tools such as ProGeo-
neo that have already been developed within the group to further facilitate their use by
researchers. Moreover, as noncoding neoantigens have been shown to have strong tumor
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specificity, more relevant studies have since emerged in the field. Recently, Cai et al. [58]
developed IEAtlas, an atlas of HLA-presented immune epitopes derived from noncoding
regions, which provides a valuable data resource for studying the immunogenicity of
noncoding epitopes. Therefore, we will combine the data from IEAtlas to further improve
the predictive power of PGNneo. Even though the subsequent experimental validation of
candidate neoantigens is essential for real-world clinical application, our computational
methods can narrow down the range of neoantigens to a certain extent and thereby pave
the way to improved preclinical vaccine design. Therefore, PGNneo may prove to be a
useful tool for cancer researchers and clinicians.

5. Conclusions

In this study, we developed a proteogenomics-based pipeline to predict neoantigens in
noncoding regions, namely, PGNneo. PGNneo is a pipeline that integrates state-of-the-art
computational tools. It mainly includes four modules: (1) noncoding somatic variant calling
and HLA typing; (2) peptide extraction and customized database construction; (3) variant
peptide identification; (4) neoantigen prediction and selection. PGNneo can be easily
applied to RNA-seq data and MS data drawn from patients of different cancer types. In
summary, PGNneo can specifically detect the neoantigens generated by noncoding regions
in tumors, providing guidance for cancer types with a low TMB in coding regions. PGNneo,
together with our previous tool, can improve the identification of coding and noncoding
region-derived neoantigens and will contribute to a more complete understanding of the
tumor immune landscape. This capability holds promise for broadening the repertoire of
candidates for therapeutic cancer vaccination and T cell-based therapy and may ultimately
extend the neoantigen clinical benefits of immunotherapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12050782/s1, Figure S1: Results of key steps in neoantigen
prediction based on PGNneo for each sample; Table S1: Detailed sample information of the HCC_HF
cohort and HCC_HT cohort; Table S2: Noncoding mutations in the HCC_HF cohort; Table S3:
Noncoding mutations in the HCC_HT cohort; Table S4: Candidate neoantigens in the HCC_HF cohort;
Table S5: Candidate neoantigens in the HCC_HT cohort; Table S6: High-confidence neoantigens
in the HCC_HF cohort; Table S7: High-confidence neoantigens in the HCC_HT cohort; Table S8:
HLA alleles of each sample in the HCC_HF cohort and HCC_HT cohort; Table S9: The frequency
of HLA alleles and the number of corresponding neoantigens in the HCC_HF cohort and HCC_HT
cohort; Table S10: Overlap of noncoding neoantigens and noncoding genes between samples in the
HCC_HF cohort; Table S11: Frequently mutated genes associated with HCC and the corresponding
neoantigens; Table S12: Detailed results on sample information, noncoding region mutations, HLA
typing, candidate neoantigens, and high-confidence neoantigens in the CRC cohort; Table S13:
Candidate neoantigens, as predicted by five tools; Table S14: Overlap of candidate neoantigens, as
predicted by five tools; User’s Manual: Detailed tutorials for using the PGNneo tool.
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