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Abstract: Head and neck squamous cell carcinoma (HNSCC) is a group of cancers originating from
the mucosal epithelium in the oral cavity, larynx, oropharynx, nasopharynx, and hypopharynx.
Molecular factors can be key in the diagnosis, prognosis, and treatment of HNSCC patients. Long
non-coding RNAs (lncRNAs) are molecular regulators composed of 200 to 100,000 nucleotides that
act on the modulation of genes that activate signaling pathways associated with oncogenic processes
such as proliferation, migration, invasion, and metastasis in tumor cells. However, up until now, few
studies have discussed the participation of lncRNAs in modeling the tumor microenvironment (TME)
to generate a protumor or antitumor environment. Nevertheless, some immune-related lncRNAs
have clinical relevance, since AL139158.2, AL031985.3, AC104794.2, AC099343.3, AL357519.1, SBDSP1,
AS1AC108010.1, and TM4SF19-AS1 have been associated with overall survival (OS). MANCR is
also related to poor OS and disease-specific survival. MiR31HG, TM4SF19-AS1, and LINC01123 are
associated with poor prognosis. Meanwhile, LINC02195 and TRG-AS1 overexpression is associated
with favorable prognosis. Moreover, ANRIL lncRNA induces resistance to cisplatin by inhibiting
apoptosis. A superior understanding of the molecular mechanisms of lncRNAs that modify the
characteristics of TME could contribute to increasing the efficacy of immunotherapy.

Keywords: HNSCC; tumor microenvironment; LncRNAs; cancer-associated fibroblasts

1. Introduction

Cancer, a group of multifactorial diseases, is considered one of the main public health
problems, being the second cause of death worldwide [1]. According to GLOBOCAN, HN-
SCC incidence and mortality are about 800,000 and 400,000 cases, respectively, positioning
it as the sixth most common cause of cancer death around the world [2].

HNSCC develops from squamous cells in the mucosal epithelium lining the oral cavity,
larynx, oropharynx, nasopharynx, and hypopharynx [3,4]. This type of cancer is more
common in men, with a 3:1 ratio compared with women [5], and occurs mainly after the
age of 55 [6,7]. The main factors related to the development of this type of cancer are the
consumption of alcohol and tobacco [8], whose effect is proportional to the intensity of
exposure [9].

Additionally, it has been described that infection with high-risk human papillomavirus
(HPV), mainly genotypes 16, 18, 31, 33, and 35, acts synergistically in carcinogenesis. In this
regard, HNSCC can be classified as HPV-negative and HPV-positive [10–12]. HPV infection
is responsible for up to 60% of HNSCC cases, as it participates in the development of
oropharyngeal tumors, being the 90% of HPV-positive tumors related to HPV 16 infection.
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Interestingly, HPV infection, in addition to being an etiological factor, is related to the
prognosis of patients. It has been observed that HPV-positive cases show a favorable
prognosis, unlike those that are not [10,12].

Tumor Microenvironment

The TME is a very complex construct composed of extracellular matrices (ECM) and
cellular components such as tumor cells, immune cells, and cancer-associated fibroblasts
(CAFs), among others [13,14]. For this, tumors can be classified according to the cellular
infiltrate as inflamed tumors and immune-excluded and immune-desert tumors. Inflamed
tumors are characterized by abundant intratumoral and stromal immunological infiltrate.
Immune-excluded tumors have immunological infiltrate restricted to the stroma. Immune-
deserts lack infiltrate both in the tumor and in the stroma [15].

Even though in inflamed tumors there is an infiltrate of immune cells, in an immuno-
suppressive environment the tumor can evade the host response and progress [15,16]; this
also depends on the infiltrate and its relationship with a positive or negative prognosis.
The most common model to explain the tumor behavior is “cancer immunoediting”, which
refers to a dual action that the immune system can take, one of which is the protection
towards the host by eliminating tumor cells, the other is the programming of, those cells of
the immune system that are associated with the tumor and help tumor progression [17].
This process can be divided into three phases that are called the “three E” (elimination,
equilibrium, and escape). First, elimination refers to immunosurveillance mediated by the
immune cells; second, equilibrium is where the immune system promotes the generation
of tumor cells that survive the attack; finally, once immunological anergy and tolerance are
achieved, escape leads to cancer cells that can form tumors [17,18].

The immune infiltrate in TME includes cells from the adaptive immunity such as
cytotoxic T lymphocytes (CTL) that recognize and kill tumor cells through the release of
granzymes and perforins, CD4+ T cells that are essential for the proliferation and differentia-
tion of CD8+ T cells that infiltrate the tumor, innate immune cells such as natural killer (NK)
cells that have cytotoxic and cytokine-producing activity, tumor-associated macrophages
(TAMs) classified into two subpopulations (M1 with antitumor activity and M2 with protu-
mor activity and an immunosuppressive profile), mast cells that release preformed inflamma-
tory mediators in their granules, and finally stromal cells such as CAFs that are fibroblasts
functionally different from the normal population and participate in the remodeling of the
extracellular matrix and the production of protumoral cytokines [15,16,19–22].

The antitumor immune response is characterized by an infiltrate of CTL, B lympho-
cytes, CD4+ Th1 lymphocytes, regulatory T cells (Treg), M1 macrophages, and NK cells,
while CD4+ Th2 lymphocytes, M2 macrophages, neutrophils, and CAFs, among others,
participate in the protumoral immune response [16,19,20]. These cell populations have
intercellular communication through cytokines, chemokines, and non-coding RNAs (ncR-
NAs) [22–25], which will modulate the characteristics of TME [26]. ncRNAs represent
a large percentage of the genome with relevant functions in biological processes since
they control the expression of genes. ncRNAs can be classified according to their length
in microRNAs (miRNA), which have a length of approximately 22 nucleotides, and the
lncRNA, which are longer than 200 nucleotides [25,27].

2. Long Non-Coding RNAs

LncRNAs are non-coding chains of 200 to 100,000 nucleotides transcribed by RNA
polymerase II [28]. Generally, they have a poly-A tail and can be subjected to splicing
processes [27,29]. Their mechanisms of action are diverse both in the cytoplasm and in
the nucleus. In the cytosol, they are related to the regulation of mRNA decay as well
as its stability, functioning as sponges for miRNAs. Meanwhile, in the nucleus, they
are associated with promoter sites, participating in transcriptional repression, epigenetic
regulation, and nuclear architecture [30,31].
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LncRNAs play an important role in both innate and adaptive immune responses; it
has been shown that they affect essential processes such as differentiation or the immune
function [11,32,33]. It has been observed that some of the biological processes they regulate
are cell activation, proliferation, metabolism, and death [28,34].

3. LncRNAs in HNSCC Tumor Microenvironment
3.1. Tumor Cells

In recent years, the participation of lncRNAs in the tumorigenesis of cancer cells
involving the tumor microenvironment has gained relevance given that some of the lncR-
NAs are associated with poor prognosis (Table 1). In this regard, the lncRNA MIR31HG
is associated with poor prognosis since its expression is significantly correlated with ad-
vanced stages in laryngeal squamous cell carcinoma (LSCC) samples and in vitro and
in vivo analysis found that it promotes cancer cell growth [35]. In addition, USP2-AS1
promotes progression through proliferation, tumor growth, invasion, and the transition
from G0/G1 to the S phase of the cell cycle in both in vitro and in vivo models [36]. On the
other hand, the lncRNA TM4SF19-AS1 acts as a sponge for miR-153-3p since it binds to
LAMC1 (laminin gamma 1 subunit), which has been reported to be upregulated in patients
with HNSCC [37]; thus, TM4SF19-AS1 enhances proliferation, migration, invasion, and
epithelial–mesenchymal transition (EMT) through the expression of mesenchymal markers
(vimentin, N-cadherin) [38].

Table 1. Overview of lncRNAs in the HNSCC tumor microenvironment.

lncRNA Status of
Expression Model Participation in HNSCC

MiR31HG

Upregulated

LSCC cancer tissue
Plays an oncogenic role and its

overexpression can serve as a poor prognosis
marker [35].

USP2-AS1 In vitro model (HNSCC cell lines)

Inhibits cellular senescence, acts as an
oncogenic molecule, and promotes

progression through proliferation, tumor
growth, and invasion [36].

TM4SF19-AS1 In vitro model (HNSCC cell lines),
RNA sequencing dataset

Acts like sponge del miR-153-3p [38],
associated with OS and prognosis [39].

cLINC00460 HNSCC tissues and in vitro
model (HNSCC cell lines)

Regulates cancer progression and
mesenchymal marker expression in

CAFs [40].

HCG18

Tissue samples of HNSCC, HNSCC cell
lines, and xenograft model/in vitro

model (laryngeal and hypopharyngeal
squamous cell carcinoma cell lines)

Promotes cell proliferation and metastasis
and modulates progression through the

WNT signaling pathway [41,42].

HNSCAT1 In vitro model of primary keratinocytes
Overexpression of HNSCAT1 significantly

inhibited tumor progression through
HNSCAT1 interaction with miR-1254 [43].

LURAP1L-AS1 In vitro model of oral fibroblasts
Activation of the canonical NF-κB pathway,
inducing the transformation of NFs (normal

fibroblasts) into CAFs [44].

FLJ22447/lncRNA-
CAF

In vitro model of oral squamous cell
carcinoma (OSCC) (primary culture of

CAF) and OSCC cell line

Regulate IL-33 levels and prevented
p62-dependent autophagy–lysosome

degradation of IL-33 [45].
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Table 1. Cont.

lncRNA Status of
Expression Model Participation in HNSCC

LOC100506114 In vitro model of OSCC (primary
culture of CAFs)

Regulates fibroblast activation and promotes
OSCC cell proliferation and migration
through activation of TGFbR1/X2 and

migration through activation of the
TGFbR1/Smad3/ERK pathway of OSCC

cells [46].

H19 In vitro model of OSCC (primary
culture of CAFs)

Regulates the expression of enzymes,
regulatory molecules, and oncogenes and/or

oncogenes that indirectly modulate
pathways involved in glucometabolic

processes [47,48].

TIRY In vitro model of OSCC (primary
culture of CAFs)

It acts as a miRNA sponge and
downregulates miR-14 expression,

promoting invasion and metastasis through
WNT-β-catenin activation in oral cancer

cells [49].

ANRIL In vitro model (OSCC cell lines)

Encodes 3 tumor-suppressor proteins,
p15INK4b, p14ARF, and p16INK4a; its
transcription is a key requirement for

replicative or oncogene-induced senescence
and constitutes an important barrier for

tumor growth [39,50].

LncRNA-IL17R In vivo model of OSCC Regulate response to chemotherapy, and
cancer progression [51].

PRINS HNSCC RNA sequencing datasets

High expression in HPV-positive patients is
associated with better OS. Is involved in the

immune mechanisms, in mounting an
antiviral response by affecting some pattern

recognition receptors (PRRs) [52].

HOTAIR Tissue samples; in vitro and in vivo
models of LSCC

Highly expressed in the advanced clinical
stages of LSCC [53]. Exosomal HOTAIR

induces macrophages to M2 polarization by
PI3K/p-AKT/AKT signaling pathway and

these M2 macrophages facilitate the
migration, proliferation, and EMT of LSCC

in vitro and in vivo [54].

MANCR Tissue samples and in vitro model of
HNSCC

Is a high-risk factor in patients with HNSCC.
Is associated with peripheral nerves and the

extracellular matrix for highly expressed
genes and hence may play a crucial role in

the occurrence of HNSCC [55].

BARX1-DT
KLHL7-DT
LINC02154

RNA sequencing datasets and in vitro
model of LSCC

Patients with LSCC and high expression of
BARX1-DT [56], KLHL7-DT, and

LINC02154 [56,57] have worse OS. These
lncRNAs may boost the development of an

immunosuppressive TME by
downregulating the expression of key

immunomodulators such as CCR3, CXCL10,
and CXCL9 and subsequently decreasing the

recruitment of effector CD8+ T cells [56].
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Table 1. Cont.

lncRNA Status of
Expression Model Participation in HNSCC

TRG-AS1 RNA sequencing datasets and in vitro
model of HNSCC

The high expression indicates a favorable
prognosis in HNSCC. Is an essential lncRNA

involving TME formation. Knockdown of
TRG-AS1 inhibited the expression of HLA-A,

HLA-B, HLA-C, CXCL9, CXCL10, and
CXCL11 in vitro [32].

LINC02195 RNA sequencing datasets, tissue
samples, and in vitro model of HNSCC

There is a correlation between high
LINC02195 expression and favorable

prognosis in HNSCC. Is associated with
genes encoding MHC-I molecules, antigen

processing, and presentation and is related to
an increased number of CD8+ and CD4+ T

cells [58].

IFITM4P
Oral leukoplakia (OL) and OSCC tissue
samples, in vitro and in vivo models of

OL and HNSCC

Acts as a scaffold to facilitate the recruitment
of SASH1 to bind and phosphorylate TAK1
and further increase the phosphorylation of
NF-κB to induce PD-L1 transcription, hence

promoting immune evasion [59].

LINC01123 Tissue samples, in vitro and in vivo
models of HNSCC

High expression is associated with poor
prognosis in patients with HNSCC. Acts as a
miR-214-3p sponge to inhibit the activation

of CD8+ T cells and promote tumor immune
escape by upregulating B7–H3 [60].

LINC01355 In vitro and in vivo models of OSCC
Could induce the development of OSCC via
modulating the Notch signal pathway that

represses CD8+ T cell activity [61].

DCST1-AS1 In vitro and in vivo models of OSCC

Contributes to cancer progression by
enhancing the NF-κB signaling pathway to

promote OSCC development and M2
macrophage polarization [62].

CRNDE Tissue samples, in vitro and in vivo
models of OSCC

The expression is higher in stage IV of OSCC
than early stages. Can exhibit a crucial role in
activating CD8+ T cell exhaustion by sponge
miR-545-5p to induce TIM-3 expression [63].

HOTTIP RNA sequencing datasets,
in vitro/in vivo models of HNSCC

Is highly expressed in stages III-IV of
HNSCC [64]. Overexpression of HOTTIP

inhibits HNSCC progression and induces the
polarization of M1 macrophages because it

activates the TLR5/ NF-κB signaling
pathway by competitively sponging

miR-19a-3p and miR-19b-3p [65].

FENDRR Downregulated In vitro model of OSCC (primary
culture of CAF)

Downregulation of FENDRR can activate the
PI3K/AKT pathway in NFs and increases

matrix metalloproteinase 9 (MMP9)
expression [66].

LINC00426

Downregulated
in

nasopharyngeal
carcinoma cell

lines CNE1,
HNE1, and

TW03

HNSCC RNA sequencing datasets and
in vitro model with nasopharyngeal

carcinoma cell lines

Contributes to the innate immune
cGAS-STING signaling pathway, related to
the secretion of cytokines to recruit B cells
and T cells, and promoting immune cell

infiltration [11].
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Furthermore, LINC00460 is associated with the regulation of proliferation, migration,
invasion, and mesenchymal marker expression in vitro [40]. In the case of HCG18, lncRNA
is overexpressed in cell lines and patients with HNSCC regulating migration, invasion, and
modulating progression through the expression of cyclin D, which is a key protein in the
WNT signaling pathway and is directly associated with a poor prognosis of patients [41].

The lncRNAs not only act in the progression of cancer but also in tumor suppression,
being associated with a good prognosis. For instance, HNSCAT1 is downregulated in sam-
ples of advanced HNSCC, meanwhile its overexpression is associated with the formation
of minor tumors in vivo [43].

3.2. CAFs

Due to the heterogeneity of CAFs, several pathways participate in their activation.
Recently, the role of some lncRNAs that participate in the modulation of their activation
has been described as finding the stimulus with the factor PDGF-BB (platelet-derived
growth factor-BB), associated with differentiation towards CAFs [67], also increases the
expression of the lncRNA LURAP1L-AS1 (leucine-rich adaptor protein 1-like antisense
RNA 1) as well as the classical markers of CAFs (α-SMA (α-smooth muscle actin), FSP-1
(fibroblast-specific protein 1), and FAP (fibroblast activation protein)).When LURAP1L-AS1
silencing is performed, the expression of the markers decreases; it also participates in the
regulation of NF-κB through the LURAP1L-AS1/LURAP1L/IKKa/IκBa/NF-κB axis [44].
Another lncRNA overexpressed is FLJ22447 or lncRNA-CAF that, in conjunction with IL-33,
participates in NF activation toward CAFs. LncRNA-CAF silencing has an impact on the
decreased expression of classical CAF markers and lncRNA-CAF functions as a lncRNA
scaffold to maintain IL-33 protein stability and inhibit its degradation [45].

Recently, the lncRNA LOC100506114 was found to be overexpressed in the tumor
stroma, indicating that expression is driven by mesenchymal cells. Subsequently, increased
expression of LOC100506114 was found in CAFs isolated from patients in comparison
with NF [46]. Furthermore, functional analysis on tumor cells co-cultured with CAF-
conditioned medium determined the increase in migration, proliferation, and expression
of mesenchymal markers. Briefly, the studies showed that growth differentiation factor
10 (GDF10) promotes the functional transformation of an NF to a CAF via LOC100506114
that binds to the transcription factor RUNX2, which, in turn, participates in tumor growth,
invasion, and metastasis [46].

Some lncRNAs participate in the regulation of glucose metabolism of oral CAFs, as re-
ported by Yang et al., where lncRNA H19 was identified to modulate glucose metabolism [47].
When its expression is suppressed, it decreases glucose uptake and lactate secretion. It
also regulates fundamental processes such as proliferation and migration. It has been
reported that H19 exerts sponge or precursor functions of various miRNAs. In this case, it
was reported to be a precursor of Hsa-miR-675 that interacts with the PFKFB3 gene in the
glycolysis pathway in oral CAFs [48].

Important processes such as angiogenesis and metastasis are regulated by lncRNAs in
CAFs. However, they can result in a better or worse prognosis for patients, depending on
the regulation at the gene level. For instance, patients who overexpress FOXF1 adjacent
noncoding developmental regulatory RNA (FENDRR) have a better prognosis, because,
when it is overexpressed, there is less migration in vitro and it also can regulate proangio-
genic activity through the PI3K/AKT pathway [66]. Conversely, a lncRNA associated with
a poor prognosis is the new one called TIRY, which indirectly regulates cancer cells due
to the effect of CAF-conditioned medium on tumor cells, where it was reported that TIRY
is upregulated and facilitates increased invasion, migration, and metastasis in addition
to acting as a miRNA sponge of miR-14 and inducing activation of the WNT/b-catenin
pathway resulting in increased EMT [49].

There are molecules secreted by CAFs that regulate the expression of lncRNAs in
tumor cells as reported by Zhang et al., reporting that the Midkine molecule (MK) secreted
by the tumor stroma regulates the expression of the lncRNA ANRIL and participates
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directly in the resistance to cisplatin, showing that CAF-conditioned medium in stimulated
cancer cells induces cisplatin resistance, thus suggesting that the MK secreted by CAFs in a
paracrine manner towards tumor cells regulates the resistance to cisplatin by inhibiting
apoptosis [68].

The use of lncRNAs as therapeutic targets has gained relevance in recent years since
they could act in response to chemotherapy. For instance, it has been reported that, when
lncRNA IL7R is silenced and a TLR3 inhibitor is used, tumor cells are more sensitive to
treatment and apoptosis increases in epithelial cells cocultured with CAFs, in addition to
increasing the immune infiltrate with immune cells associated with a better prognosis such
as dendritic cells and CD8+ lymphocytes [51].

3.3. Immune-Related lncRNAs

In TME, tumor cells interact with other cell populations such as CAFs, endothelial cells,
and cells of the immune system [33] through complex communication networks, enhancing
tumor modulation of the microenvironment. Thus, TME plays an essential role in the
initiation, tumor growth, invasion, and metastasis (Figure 1). In addition, the HNSCC TME
is highly infiltrated by immune cells, which, depending on tumor biology, may mediate
immune surveillance or evasion through various mechanisms [3]. Recently, increasing
evidence has revealed that lncRNAs regulate the immune response in TME by controlling
the type of cellular infiltration, differentiation, and functions of immune cells [32,69], which
can suppress or favor the progression of cancer. Hence, the study of the involvement of
immune-related lncRNAs on the evolution of HNSCC has gained importance.
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Figure 1. Interactions in the TME are mediated by crosstalk between cells of the immune system,
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tumor escape. The image shows examples of crosstalk between some cellular components of the TME
through communication with lncRNAs and the effect that is observed.

Recent studies have identified immune-related lncRNAs in HNSCC impacting the
prognosis of patients. Using bioinformatic tools, Chen et al. selected seven immune-
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related lncRNAs associated with OS: AL139158.2, AL031985.3, AC104794.2, AC099343.3,
AL357519.1, SBDSP1, and AC108010.1. With these lncRNAs, they built a prognostic sig-
nature and classified HNSCC patients as low- or high-risk. Furthermore, they identified
that low-risk cases have a more significant infiltration of immune cells and enrichment of
pathways associated with the immune response. In contrast, high-risk cases are related
to the enrichment of metabolic pathways [70]. This result is consistent with previous
reports that identified nine immune-related lncRNAs in nasopharyngeal carcinoma, where
low-risk patients have active pathways associated with the immune response and a greater
intratumoral infiltrate of CD8+ T cells and B cells. In contrast, in high-risk patients, there is
an association with pathways involved in metabolism [71].

In the case of OSCC, previous research divided samples according to the expression
of eight ferroptosis-related lncRNAs with implications in the prognosis. In the low-risk
group, a significant decrease in AL512274.1, MIAT, and AC079921.2 was found, related to a
more intense immune response compared with the high-risk group, where the expression
of FIRRE, AC099850.3, and AC090246.1 increased [72]. Multiple reports relate the cases
of HNSCC that present a better prognosis with an active immune response, which can
be associated with an abundant infiltrate of immune cells [33]. However, there are tumor
characteristics that can modify the expression of specific immune-related lncRNAs and,
with this, induce an immunosuppressive TME.

Mutations in the tumor suppressor genes TP53 and CDKN2A are frequent in HNSCC,
and tumor cells that present these modifications can alter their pattern of expression of
lncRNAs. At the same time, conditions such as hypoxia induce the expression of specific
lncRNAs in immune cells. This crosstalk between tumor cells and immune cells induces the
formation of an immunosuppressive TME [73]. On the other hand, it has been observed that
there are lncRNAs expressed in tumor cells that promote immune activation. PRINS, an
overexpressed lncRNA in some cases of HPV-positive HNSCC, is related to the activation
of genes involved in the immune response. Among HPV-positive tumors, those with higher
PRINS levels are associated with a better prognosis [52]. Due to this, research is focused on
studying how lncRNAs regulate the differentiation and function of specific populations of
immune cells in TME, which ultimately impacts tumor progression.

Bioinformatic analysis of HNSCC samples has allowed the identification of various
lncRNAs associated with genomic instability [74] or with the immune response [75,76]
and related to the prognosis of patients for grouping the cases in low and high risk.
Furthermore, since the inflammatory infiltrates in TME can exert a dual anti- or protumor
function, the types of immune cell populations that infiltrate both groups of tumors have
been studied. Different reports agree that in the low-risk group, there is a greater infiltrate
of activated CD8+ T cells, activated CD4+ T cells, T follicular helper (T fh) cells [20,77],
Treg cells [20,76], NK cells, B cells [74], and resting mast cells [76], as well as decreased
numbers of M0 macrophages, activated mast cells [20], and CAFs [74]. In contrast, the
high-risk group is characterized by increased eosinophil infiltration, naive CD4+ T cells,
resting NK cells, M0 macrophages [76], M2 macrophages [78], activated mast cells [76],
and CAFs [74], accompanied by the decrease in the expression of human leukocyte antigen
(HLA) molecules [76] necessary to sustain the activation of the immune response. These
findings show that the cell populations in low-risk cases are associated with an anti-tumor
immune response, whereas an immunosuppressive microenvironment predominates in
high-risk tumors. For a better understanding of the factors involved in the modulation of
TME characteristics, the role played by some lncRNAs in the differentiation or polarization
of immune cells has been studied.

In LSCC, a considerable infiltrate of M2 macrophages plays a protumor role. HOTAIR
is a lncRNA expressed in LSCC tumor cells and can be released into exosomes, which is
related to M2 macrophage polarization via the downregulation of PTEN and the upregula-
tion of PI3K and AKT expression. In in vitro analysis, the co-culture of M2 macrophages
polarized with exosomes and LSCC cell lines increased the proliferation and migration
of tumor cells. Interestingly, the in vivo injection of exosome-treated macrophages pro-
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moted an increase in tumor size, downregulation of the epithelial marker E-cadherin, and
increased expression levels of the mesenchymal marker N-cadherin related to the EMT [54].
Regarding M1 macrophages, with bioinformatic analysis of databases, it has been identified
that in OSCC, LINC00460 is positively correlated with this cell phenotype and CASC9 is
negatively correlated; both have a strong correlation with the prognosis of patients [75].

Within the group of innate immune cells present in TME are neutrophils, the study
of which has gained importance in recent years due to the impact that the functions of
these cells have on tumor progression [79]. In an evaluation of the lncRNAs associated
with NETosis (formation of neutrophil extracellular traps (NETs)), in HNSCC, it was
found that low-risk patients present enrichment of pathways associated with the immune
response. At the same time, high-risk cases correspond to cold tumors associated with
NETosis activation. Among the lncRNAs identified, LINC00426 is a protective factor. When
nasopharyngeal carcinoma cell lines are transfected with this lncRNA, its overexpression
significantly increased the expression levels of p-STING, p-TBK1, and p-IRF3. In addition,
activation of the STING signaling pathway promotes the secretion of cytokines necessary
for the recruitment of T cells and B cells, such as CXCL10, CCL5, ISG15, and ISG56 [11].

MANCR is highly expressed in HNSCC tissue and cell lines, related to poor OS and
disease-specific survival. In vitro, MANCR silencing inhibits the proliferation, migration,
and invasion of HNSCC cell lines. However, in addition to acting as an oncogene, bioinfor-
matic analyses have revealed that its expression is positively correlated with the infiltrate of
neutrophils and γδ T cells but negatively with the presence of CD8+ T cells and B cells [55].
The type of inflammatory infiltrate is modulated by the cytokines secreted in the TME; this
cytokine secretion can, in turn, be affected by the expression of lncRNAs. For example,
BARX1-DT, KLHL7-DT, and LINC02154 are expressed in LSCC. These immune-related
lncRNAs can promote an immunosuppressive TME by decreasing the expression of CCR3,
CXCL9, and CXCL10, decreasing the recruitment of CD8+ T cells [56].

There are immune-related lncRNAs that, in addition to being involved with the
secretion of cytokines, are also related to the expression of other molecules necessary to
mount the antitumor immune response. For example, TRG-AS1 is expressed in warm
tumors with a high infiltration of cytotoxic cells, related to a better prognosis. It has been
shown in vitro that the silencing of TRG-AS1 in an OSCC cell line suppresses the expression
of HLA-A, HLA-B, and HLA-C molecules necessary for antigen presentation, as well as
CXCL9, CXCL10, and CXCL11 [32]. On the other hand, LINC02195 has high expression in
the nucleus and cytoplasm of HNSCC cells, which is associated with a good prognosis as it
has a positive correlation with the infiltrate of CD4+ T cells and CD8+ T cells, in addition to
being involved in the expression of the MHC-I, antigen processing, and presentation [58].

The set of molecules that regulate the immune response includes costimulatory and
coinhibitory molecules that are also targets for modification by lncRNAs. IFITM4P progres-
sively increases its expression from premalignant lesions such as OL to OSCC, thus acting
as an oncogene. In a murine model of carcinogenesis in the tongue, lipopolysaccharides
(LPS) bind to its receptor TLR4, which induces an increase in the expression of IFITM4P,
acceleration of the carcinogenesis process, and immune escape through overexpression of
the PD-L1 immunoregulatory ligand. IFITM4P induces PD-L1 expression in two different
ways. In the cytoplasm it acts as a scaffold for the recruitment of SASH1, which binds and
phosphorylates TAK1; this increases NF-κB phosphorylation, which ultimately induces
PD-L1 expression. In the nucleus, IFITM4P reduces the transcription of PTEN by increasing
the binding of KDM5A to its promoter and, with this, it upregulates PD-L1. In contrast, the
overexpression of IFITM4P increases the sensitivity to treatment with PD-1 mAb [59].

LncRNAs are associated with tumor immune evasion. LINC01123 is overexpressed
in HNSCC tissue and cell lines, mainly in the cytoplasm of the cells, which, together with
the overexpression of the immune checkpoint B7-H3, is associated with a poor prognosis
by promoting tumor immune evasion. Furthermore, LINC01123 is competitively bound
to miR-214-3p, and miR-214-3p, specifically targeting B7–H3; this inhibits CD8+ T cell
activation and favors tumor progression. By silencing LINC01123 in HNSCC cell lines,
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the cytotoxic activity of CD8+ T cells increased, thereby decreasing tumorigenicity and
increasing the secretion of factors associated with immune activation in vivo [60].

LncRNAs also participate in sculpting the TME and include the activation or inhibition
of specific pathways. For example, LINC01355 is overexpressed in OSCC and is associated
with antitumor evasion by inhibiting the activity of CD8+ T cells through activation of the
Notch pathway. Conversely, by deleting LINC01355 in OSCC cells, apoptosis of CD8+ T cell
is retrained, proliferation and cytolysis activity is enhanced, and tumor cell proliferation,
migration, and invasion are decreased [61].

The expression of lncRNAs in TME immune system cells has been less studied. How-
ever, the reported evidence shows that they have an impact on tumor progression due to
the bidirectional communication that exists between tumor cells and stromal cells. DCST1-
AS1 is overexpressed in OSCC tumor cells and M2 macrophages. Silencing this lncRNA
has been shown in vitro and in vivo to block NF-κB signaling, therefore repressing tu-
mor cell emergence, migration, and invasion, as well as protumor M2 polarization of
macrophages [62].

In the case of CRNDE, it is expressed in OSCC, mainly in advanced stages in tumor
cells and tumor-infiltrating T lymphocytes (TILs). Its expression in cancer cells exerts a
protumor function by sponging miR-545-5p, which leads to increased expression of the
immune checkpoint TIM-3 and suppresses the cytotoxicity of CD8+ T cells by contributing
to their depletion [63]. In a mouse model, injecting CD8+ T cells with CRNDE-knockdown
decreases tumor size, increases the number of IFN-γ and TNF-α-producing CD8+ T cells,
decreases TIM-3 expression, and increases miR expression -545-5p, activating the antitumor
immune response of CD8+ T lymphocytes [63].

Finally, HOTTIP is a lncRNA expressed by HNSCC tumor cells and present in the exo-
somes of M1 macrophages. Although it has been associated with a protumor function, one
study reported that exosomes from M1 macrophages, primarily through HOTTIP, inhibit
HNSCC progression by activating the TLR5/NF-κB signaling pathway by competitively
sponging miR-19a-3p and miR-19b-3p. In addition, they polarize circulating monocytes
and TAMs toward an antitumor M1 phenotype, inducing positive feedback [65].

3.4. LncRNAs: Therapeutic Targets and Clinical Relevance in HNSCC

Despite significant advances in the treatment of HNSCC, the mortality rate remains
around 50% [32]. It is essential to explore new therapeutic strategies to improve patients’
time and quality of life. Lately, immunotherapy has received rising attention in cancer
treatment for the OS advantages it offers; however, the overall response rate to immunother-
apy in patients with HNSCC is less than 20% [80]. The understanding of the molecular
mechanisms that modify the characteristics of the TME can contribute to the detection of
lncRNAs as novel biomarkers to provide new ideas for clinical diagnosis, immune-targeted
therapy, and drug discovery [33]. For example, identifying that HOTTIP polarizes circulat-
ing monocytes towards an antitumor M1 phenotype and suppresses HNSCC progression
through the upregulation of the TLR5/NF-κB signaling pathway may provide novel insight
into HNSCC immunotherapy [65].

LncRNAs may function as potential therapeutic targets (Figure 2), as it has been
reported that, when their lnc-IL7R function is suppressed, there is better sensitivity to
chemotherapy in oral cancer cell lines [51]. The mechanism by which IFITM4P induces
PD-L1 expression is known, so this lncRNA may serve as a new therapeutic target in
the blockage of oral carcinogenesis [59]. However, for most of the lncRNAs that show
alteration in expression in HNSCC, the exact mechanism by which TME conditions are
modified remains to be unknown; for this reason, more studies are required to clarify this
information to develop new therapeutic strategies [20].

Hereby, we present data that show that some immune-related lncRNAs have clinical
relevance, since AL139158.2, AL031985.3, AC104794.2, AC099343.3, AL357519.1,
SBDSP1 [70], and AC108010.1 TM4SF19-AS1 [39] have been associated with overall survival
(OS). MANCR [55] is also related to poor OS and disease-specific survival. MiR31HG [35],
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TM4SF19-AS1 [39], and LINC01123 [60] are associated with poor prognosis. Meanwhile,
LINC02195 [58] and TRG-AS1 [32] overexpression is associated with favorable prognosis.
Moreover, ANRIL [68] lncRNA induces resistance to cisplatin by inhibiting apoptosis. A
superior understanding of the molecular mechanisms of lncRNAs that modify the charac-
teristics of TME could contribute to increasing the efficacy of immunotherapy.
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4. Conclusions

LncRNAs involved in TME are clinically relevant, being indicators of survival, acting
in important processes such as chemoresistance and being indicators of prognosis. The
study of lncRNAs in cancer can contribute to a better understanding of the molecular
mechanisms that modify the characteristics of TME, allowing the detection of possible
therapeutic targets and biomarkers that contribute to the best selection of patients who are
candidates for immunotherapy, resulting in the increase in efficacy of this type of treatment
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