
Citation: Shilleh, A.H.; Russ, H.A.

Cell Replacement Therapy for Type 1

Diabetes Patients: Potential

Mechanisms Leading to

Stem-Cell-Derived Pancreatic β-Cell

Loss upon Transplant. Cells 2023, 12,

698. https://doi.org/10.3390/

cells12050698

Academic Editor: Sang Woo Kim

Received: 16 November 2022

Revised: 9 February 2023

Accepted: 20 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Cell Replacement Therapy for Type 1 Diabetes Patients:
Potential Mechanisms Leading to Stem-Cell-Derived
Pancreatic β-Cell Loss upon Transplant
Ali H. Shilleh 1,* and Holger A. Russ 1,2,3,*

1 Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus,
Aurora, CO 80045, USA

2 Department of Pharmacology and Therapeutics, School of Medicine, University of Florida,
Gainesville, FL 32610, USA

3 Diabetes Institute, School of Medicine, University of Florida, Gainesville, FL 32610, USA
* Correspondence: ali.shilleh@ocdem.ox.ac.uk (A.H.S.); holger.russ@ufl.edu (H.A.R.)

Abstract: Cell replacement therapy using stem-cell-derived insulin-producing β-like cells (sBCs) has
been proposed as a practical cure for patients with type one diabetes (T1D). sBCs can correct diabetes
in preclinical animal models, demonstrating the promise of this stem cell-based approach. However,
in vivo studies have demonstrated that most sBCs, similarly to cadaveric human islets, are lost upon
transplantation due to ischemia and other unknown mechanisms. Hence, there is a critical knowledge
gap in the current field concerning the fate of sBCs upon engraftment. Here we review, discuss
effects, and propose additional potential mechanisms that could contribute toward β-cell loss in vivo.
We summarize and highlight some of the literature on phenotypic loss in β-cells under both steady,
stressed, and diseased diabetic conditions. Specifically, we focus on β-cell death, dedifferentiation
into progenitors, trans-differentiation into other hormone-expressing cells, and/or interconversion
into less functional β-cell subtypes as potential mechanisms. While current cell replacement therapy
efforts employing sBCs carry great promise as an abundant cell source, addressing the somewhat
neglected aspect of β-cell loss in vivo will further accelerate sBC transplantation as a promising
therapeutic modality that could significantly enhance the life quality of T1D patients.

Keywords: cell replacement therapy; type 1 diabetes; stem-cell-derived β-like cells; autoimmune
diabetes; transplantation; ischemia; transdifferentiation; dedifferentiation; cell death; pancreatic pro-
genitor

1. Introduction

The pancreas consists of two main compartments, the exocrine and endocrine tissue,
both with distinct functions. Exocrine tissue consists predominantly of acinar cells that
release digestive enzymes into the duodenum via a ductal system, making up most of the
cell mass found in the organ. The pancreas also contains endocrine cells that are organized
together into highly vascularized cell clusters called the islets of Langerhans. Endocrine
cells within islets secret hormones that exquisitely regulate and maintain blood sugar
levels within a tight physiological range. Representing only about ~1–2% of the organ
tissue, the main endocrine cells are insulin-producing β-cells, glucagon-producing α-cells,
somatostatin-producing δ-cells, polypeptide-producing PP cells, and ghrelin-producing
ε-cells [1]. Out of all endocrine cells, only β-cells express and secrete insulin in response to
elevations in blood glucose levels. β-cell dysfunction or loss is key in contributing toward
the development of diabetes, and much research has focused on this fascinating cell type.

Diabetes presents as two major subtypes. In both, the inadequate release of insulin re-
sults in hyperglycemia that can be life-threatening. The most common diabetes form, type 2

Cells 2023, 12, 698. https://doi.org/10.3390/cells12050698 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12050698
https://doi.org/10.3390/cells12050698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-5092-5744
https://orcid.org/0000-0001-5117-2927
https://doi.org/10.3390/cells12050698
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12050698?type=check_update&version=2


Cells 2023, 12, 698 2 of 19

diabetes (T2D), affecting 462 million people globally, is characterized by the insulin resis-
tance of peripheral tissues and (subsequent) β-cell dysfunction, exhaustion, and loss [2]. In
type 1 diabetes (T1D), the patient’s own insulin-producing β-cells are specifically destroyed
through an autoimmune-mediated attack predominantly of T-cells, resulting in insulin
deficiency. Type 1 diabetes (T1D) is a chronic condition that affects 1 in 500 Americans by
the age of 15 [3]. Current treatment for both T1D and late-stage T2D consists of injecting
endogenous insulin. Exogenous insulin replacement therapy falls short of recapitulat-
ing the exact physiological function of a β-cell, and patients are susceptible to acute and
long-term complications [4–6]. Hypoglycemic conditions, induced by injecting too much
insulin, can result in a life-threatening coma and are a constant risk for patients living with
T1D and a practical cure that would alleviate the risks and concerns of current insulin
therapy is desperately needed. Therefore, research efforts have focused on promoting cell
replacement therapy approaches, such as β-cell proliferation and/or neogenesis and islet
transplantation, to identify a practical cure for T1D patients. In this review, we will discuss
aspects of cell replacement therapy with a focus on current and potential underappreciated
challenges associated with stem-cell-derived β-cell transplantation.

2. Current and Potential Cell Replacement Strategies for T1D Patients
Islet Transplantation to Restore β-Cell Mass

A proof of principal for a potential practical cure has been shown with the estab-
lishment of the Edmond protocol in 2000. In this protocol, isolated allogenic cadaveric
islets are infused in the portal vein of long-standing T1D patients that receive non-steroid
immunosuppression [7,8]. Importantly, islet recipients achieve on average ~35 months
of insulin independence [9]. Subsequently, islet transplantation was often performed in
conjunction with kidney transplantation [10]. However, there are several challenges associ-
ated with this procedure that prevent it from becoming widely accessible for patients. A
major drawback with islet transplantation is the limited availability of high-purity isolated
human cadaveric donor islet material. This is required to restore euglycemia in patients.
Typically, each patient receives 10,000 islet equivalents (IEQs) per kilogram of body weight,
an amount that usually needs to be extracted from two donor pancreases. In addition,
initial clinical trials showed some patients requiring multiple islet infusions throughout the
study, further highlighting the need for an abundant source of functional insulin-producing
cells. The chronic immune suppression of patients, especially in children and adolescents,
is problematic due to long-term complications, including severe and chronic infections
and malignancy. In addition, studies have shown that immune suppressive agents impair
β-cell function and survival using animal models [11,12]. Indeed, functional cadaveric
islet grafts are frequently lost within 2–5 years due to recurring autoimmunity, side effects
of immunosuppressants, and other unknown mechanisms [9,13]. The lack of sufficient
donor islets has prompted the search for alternative and abundant sources of functional
β(-like) cells for replacement therapy purposes, and much progress has been made using
different approaches.

Since porcine insulin has been shown to be physiologically well-matched to humans,
the xenotransplantation of porcine islets has been considered an effective strategy to pro-
vide adequate amounts of islet material to treat T1D patients. However, immunological
responses, such as instant blood-mediated inflammatory reaction (IBMIR) [14–16], hypera-
cute, and cellular rejection, remain major hurdles to overcome and improve porcine islet
survival [17–21]. Therefore, several strategies have been explored to overcome immune
complications in this setting. The development of genetically modified pigs lacking the
expression of certain surface proteins that play key roles in immune rejection upon porcine
islet transplantation demonstrates promising results in improving porcine islet survival
through combating IBMIR and hyperacute rejection. Preclinical studies also revealed that
the blockade of co-stimulatory cell surface molecules suppresses T cell activation, ham-
pers cellular rejection, and improves islet survival in vivo. With no evidence of porcine
endogenous retrovirus (PERV) transmission, clinical studies of porcine islet xenotransplan-
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tation in T1D patients showed initial successes; however, most recipients failed to maintain
long-term normal glycemic levels. Encapsulating pig islets has been suggested as effective
in reducing xenogeneic immune rejection and prolonging graft survival and was tested
in two clinical studies in T1D patients but showed only minimal reduction in their daily
insulin needs [22–26].

3. Alternative Approaches to Increase Functional β-Cell Mass

Other strategies have aimed at inducing β-cell replication or neogenesis via the trans-
differentiation of pancreatic non-β cells to replenish the β-cell mass. Recently, DYRK1A
inhibition in conjugation with other pathway manipulations has been shown to be effective
in inducing increased β-cell proliferation [27–32]. If safe β-cell-specific delivery modalities
can be identified, inducing the proliferation of remaining β-cells in diabetic patients might
provide a viable therapeutic strategy [33].

Transdifferentiation refers to the change in functional cell phenotype of a differen-
tiated cell into another rather than the differentiation of a less specialized stem cell into
a functional cell type. Pancreatic duct ligation (PDL) has been shown to promote β-cell
transdifferentiation from ductal, acinar, and alpha cells in mice [34–37], although some
observations could not be repeated in another study [38]. Similarly, the overexpression of
MafA, Pdx1, and Ngn3 can trigger β-cell transdifferentiation predominantly from mouse aci-
nar cells in vivo [39]. Recently, a group induced alpha cell transdifferentiation into β-cells
in vivo by infusing adeno-associated viruses carrying Pdx1 and MafA into the pancreatic
duct of NOD mice [40]. However, such experimental strategies, while carrying the potential
for endogenous β-cell repopulation in T1D patients, are awaiting translation to human
systems and/or clinical settings.

4. Stem-Cell-Derived β-Cells as an Abundant Cell Source

One attractive approach that has advanced rapidly and shows tremendous potential
as an abundant source of functional insulin-producing cells for clinical use is the direct
differentiation of human pluripotent stem cells (hPSCs) into stem cell-derived β-like cells
(sBCs) [41–44]. Mouse development studies have identified critical transcription factors
and signaling events during pancreas organogenesis, and subsequent work defined the
necessary culture conditions to mimic key development stages to direct the differentiation
of sBC from pluripotent stem cells [45–48]. Specifically, several groups focused their ef-
forts on utilizing recombinant proteins and small molecules to generate subsequent cell
types resulting in pancreatic cells: definitive endoderm generation [49,50], posterior gut
specification [50–53], formation of pancreatic bipotent progenitors [54–56], and endocrine
differentiation [41–43,50,57]. Although sBCs generated with early protocols were glucose-
responsive, cells still displayed features of immature, fetal-like β-cells, and thus performed
poorly in dynamic glucose-stimulated insulin secretion (dGSIS) perifusion assays. Several
methods, such as the manipulation of key signaling pathways [58–60], media composition
and in vitro culture extension [61,62], and the use of surface markers and fluorescence-
activated cell sorting (FACS) to enrich reaggregated sBCs resulted in a more mature β-cell
phenotype that closely resembles primary adult islets [22,44,62–64]. Clear criteria defining
a mature, functional β-cell that allows distinction from β-cell surrogates has recently been
discussed in detail elsewhere [65]. Interestingly, sBC maturation also seems to be accom-
plished upon transplantation, which in return restored euglycemia and reversed diabetes
in preclinical mouse models [41–43,66,67]. However, the early events taking place during
the immediate engraftment of sBC have not been studied in detail. A considerable body of
work has shown that the majority of functional β-cell mass is lost from human islets upon
engraftment, suggesting that such drastic effects may also apply to sBCs due to unknown
underlying cellular and molecular mechanisms [68]. Potential mechanisms that might occur
are: (i) cell death, (ii) dedifferentiation, and (iii) transdifferentiation. Recent work identified
distinct human β-cell subpopulations in sBC and human islets in vitro and provided the
possibility of (iv) β-subtype interconversion upon engraftment as an additional mechanism.
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Hence, there is a critical knowledge gap in the research field concerning the fate of sBC
upon engraftment. Expanding our knowledge of the contributing mechanisms would
expedite our progress in promoting the current approaches of delivering sBC as an effective
cell replacement therapy for T1D patients. In addition, sBC cell therapy might represent an
attractive treatment modality for T2D patients due to the absence of reoccurring autoim-
munity if allogeneic rejection can be avoided in a localized manner. In this review, we will
discuss findings and potential mechanisms driving β-cell loss upon engraftment (Figure 1),
its implications for cell replacement therapy, and strategies to improve our understanding
of the events affecting human β-cells upon transplantation.
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Figure 1. Reported and potential molecular and cellular mechanisms driving human pancreatic β-cell
loss upon transplantation.

5. Engrafted β-Cell Loss via Cell Death

Classically, the main mechanism associated with islet cell death in vitro and in vivo is
apoptosis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) has
shown that a considerable proportion of isolated human islets harvested from donor pan-
creases are lost in vitro within 5 days of culture due to apoptosis [69]. The high propensity
of β-cells to undergo apoptosis within islet preparations might be due to the increased
metabolic rate that is not met under cell culture conditions. Later studies determined
the caspase cascade as the major intrinsic mediator of apoptosis in cultured islets after
being exposed to toxic levels of glucose [70]. Glucotoxicity downregulated BCL-2 (anti-
apoptotic protein) expression in isolated islets, which acts as an intrinsic signal to activate
caspase-associated apoptosis [71,72]. Similarly, after 24 h of transplantation, TUNEL stain-
ing showed that approximately a quarter of all β-cells in human islets engrafted in the
kidney capsule of immunodeficient mice are lost due to apoptosis [73]. Overall, although
the exact mechanisms contributing to primary β-cell death upon transplantation are poorly
understood, the current literature predominantly attributes the observed loss to ischemia
and nutrient deprivation. Mediated by endothelial cells, in situ, pancreatic islets are highly
vascularized and are under a continuous supply of oxygen and nutrients, ensuring optimal
function. However, this supply is lost during the islet isolation process, which involves



Cells 2023, 12, 698 5 of 19

the use of digestive enzymes and mechanical force to separate the islets from the native
organ [74]. Due to loss of blood flow and imperfect culturing conditions, endothelial
cells, which are critical in providing cellular matrix proteins that fine-tune the function of
β-cells, eventually die in vitro [75]. Since blood flow is abolished after isolation, islets are
under an acute nutrient deficiency and exposed to oxidative stress mediated by hypoxia.
Isolated islets depend on passive nutrition diffusion to satisfy the activities of the highly
metabolic β-cells. Thus, culture conditions are insufficient in supplying uniform O2 levels
to all β-cells, especially cells located at the core of the islet, negatively effecting β-cell
survival in vitro, with necrotic cores present, especially in larger islets due to low oxygen
accessibility [76–78]. Similarly transplanted human and rodent islets have been shown to
have reduced graft oxygen tension in the initial stages of engraftment and to suffer a drastic
loss of β-cells in vivo [79–84]. Therefore, several in vitro pre-transplant priming methods
have been adopted to improve islet survival in transplants, such as oxygenation treatment,
culture in hyperoxic conditions, and modulation of seeding density; however, these strate-
gies have failed to be exceedingly successful [85–87]. Further mechanistic analysis revealed
several signaling pathways, such as anaerobic glycolysis and hypoxia-inducible factor
(HIF)-related pathways, to be associated with β-cell survival under hypoxic conditions;
however, further investigation is required [84,88–93]. Finally, other necrotic-regulated
mechanisms such as pyroptosis [94,95], ferroptosis [96–101], and necroptosis [102–107]
have been implicated to contribute toward β-cell death during islet isolation, culture, and
transplantation; however, these mechanisms have not been comprehensively elucidated as
of yet.

Most in vivo sBC studies have focused on the metabolic action and long-term thera-
peutic capacity of engrafted, surviving cells using preclinical animals starting at 3–4 weeks
post-transplantation when grafts are fully vascularized. However, most studies have largely
neglected the early phase of sBC transplantation. In a recent study, sBCs constitutively
expressing luciferase were transplanted subcutaneously or under the kidney capsule of
immunodeficient mice, and total graft mass was quantified using bioluminescence [68].
As expected, on the day of transplantation, robust expression of luciferase was detected;
however, 7 days post-transplant, this expression was significantly reduced in both sites,
indicating substantial graft loss. In addition, the hPSC cell line employed also contains a
GFP reporter driven by the insulin promoter, allowing quantification of sBCs before and
after transplant. Flow cytometry analysis revealed that approximately 70% of sBCs were
lost, while the total graft was only 50% reduced within the first 7 days of engraftment,
indicating a preferential loss of sBCs compared to other cells present. The main drivers
of graft loss are considered to be ischemia-induced hypoxia and nutrition deprivation.
Amino acid supplementation and adjusting the physiological oxygen levels to 5% in cul-
ture improved sBC graft survival significantly. In situ, pancreatic islets are abundantly
vascularized with a continuous supply of oxygen and nutrients; therefore, this study fur-
ther highlights the importance of vascularization to sBC survival and function in vivo.
Pepper and colleagues showed the pre-vascularization of the subcutaneous site followed
by the transplantation of pancreatic endoderm (PEC) cells improved stem cell-derived
β-cell functionality and survival in vivo, providing further evidence for the notion that
appropriate vascularization is critical for β-cell survival and function [108]. Several groups
focused on engrafting sBCs that incorporate endothelial cells alone or in combination with
mesenchymal cells [109–113]. In a recent elegant study, micro-vessels isolated from adipose
tissue have been shown to improve and accelerate the vascularization of sBC grafts, as well
as their survival and function in vivo [114]. Finally, using oxygen-generating biomaterials
shows promising results to improve islet survival in vivo that could be applied to future
sBC engraftments [109,113,115–119]. Altogether, the literature has provided data suggest-
ing hypoxia and nutrient deprivation as two key contributors to sBC graft decline that can
be mitigated by providing better engraftment solutions. Understanding what distinguishes
sBCs that survive the first week of engraftment from sBCs that are lost during this period
could provide additional means to preserve total functional graft mass.
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6. De-Differentiation upon Transplantation: Do β-Cells Revert to
Progenitor/Precursor Cells?

Cell death is the most explored mechanism contributing to immediate β-cell loss upon
transplant in vivo, while other potential means resulting in the observed β-cell loss have not
been thoroughly investigated. One such mechanism could be β-cell dedifferentiation. Ded-
ifferentiation is loosely defined as the loss of a mature, functional β-cell phenotype and/or
the acquisition of progenitor/precursor traits [120,121]. Dedifferentiation of mouse β-cells
has been shown by: upregulation in the expression of progenitor genes (e.g., Foxo1, Neurog3,
and Aldh1a3), enrichment of disallowed β-cell makers (e.g., Hk2, Ldha, and Mct1) [122,123],
mis-localization, loss or reduced expression of key β-cell transcription factors (e.g., Nkx6.1,
MafA, and Pdx1), and altered expression of metabolic genes (e.g., Glut2 and Gck) [123].

In vitro and in vivo models of type 2 diabetes (T2D) have suggested oxidative stress,
ER stress, and nutritional stress as main contributors to β-cell dedifferentiation. The loss
of FOXO1 expression has been suggested as a key trigger of β-cell dedifferentiation. Mice
lacking Foxo1 developed hyperglycemia and β-cell dysfunction [124,125]. A lineage-tracing
analysis revealed that Foxo1-deficient β-cells dedifferentiated into a progenitor cell pop-
ulation expressing NEUROG3 (a key early endocrine progenitor maker), as well as the
early developmental markers OCT4, NANOG, and L-MYC [124]. Another recent study
revealed a decline of FOXO1 expression as well as key β-cell markers NKX6.1 and MAFA in
db/db mouse islets and human islets isolated from T2D patients compared to controls [126].
Additional analysis revealed an upregulation of the progenitor marker ALDH1A3 [127],
specifically in β-cells of T2D patients, providing evidence for dedifferentiation in humans
similar to mice [128]. These results were further supported by earlier animal studies using
Foxo1-/- or db/db deficient mice, in which mouse β-cells similarly showed an upregula-
tion in ALDH1A3 and NEUROG3 with concomitant downregulation of the expression
of β-cell markers MAFA and NKX6.1 [127,129,130]. SOX9, a transcription factor critical
for pancreas development, has also been suggested as a novel regulator of β-cell dedif-
ferentiation into a developmentally earlier, pancreatic progenitor-like cell type. The von
Hippel–Lindau/hypoxia-inducible factor (VHL/HIF) has been implicated previously to
regulate cellular responses to hypoxia [131,132]. Hebrok and colleagues have shown that
the deletion of Vhlh in mice resulted in glucose intolerance, reduced β-cell mass, and de-
creased the expression of key β-cell markers (MafA, Pdx1, and insulin) [133]. Further protein
analysis revealed the loss of Vhlh in mice triggered a progenitor program that resulted
in the emergence of SOX9-expressing cells. Using mouse and rat insulinoma cell lines,
hypoxic oxygen levels triggered similar dedifferentiation programs in cultured β-cells by
perturbing the expression of key β-cell genes while increasing Sox9 expression [63].

Investigating β-cell dedifferentiation in the human setting has been more challenging.
A series of early reports suggested that β-cells dedifferentiate upon culturing in vitro,
resulting in the derivation of a proliferative cell population but also a significant reduction
in insulin expression [134–138]. However, the dedifferentiation hypothesis was contested
by others as simply being the result of β-cell death and the expansion of pre-existing mes-
enchymal cells within cell preparations. Using genetic lineage-tracing analysis on isolated
primary human islets employing Cre/lox technology that was previously restricted to
transgenic animals provided direct evidence for β-cell dedifferentiation as initially postu-
lated [139]. These results were subsequently confirmed by another group [140]. Subsequent
work revealed a critical role in the activation of key developmental pathways during the
dedifferentiation process, suggesting potential leverage points to prevent β-cell dediffer-
entiation [141]. Indeed, the inhibition of signaling pathways induces redifferentiation
of expanded, dedifferentiated human β-cells marked by increased insulin and key β-cell
marker expression [142–147]. Similar experiments using lineage-traced mouse islets demon-
strated mouse β-cell dedifferentiation in vitro but a lack of proliferation, unlike human
β-cells, providing an example of distinct species differences [148]. Although it is challeng-
ing to prove the occurrence of dedifferentiation of human β-cells in situ, recent studies
implicated dedifferentiation events. The increased frequency of a chromogranin A-positive
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hormone-negative (CPHN) population in T1D and T2D isolated human islets sections and
decreased β-cell levels have been reported and could represent dedifferentiation, although
the authors suggested emerging regeneration as the sources of CPHN cells [149–151]. Sim-
ilarly, higher levels of non-endocrine cells compared to endocrine-expressing cells were
detected in sections of human islets transplanted into T1D patients [152]. Taken together,
these studies provide strong support for the occurrence of β-cell dedifferentiation in mice
and humans and point toward its potential implication in sBC transplantation settings.
However, additional studies are needed to provide rigorous evidence for the potential
dedifferentiation of human β-cells in different transplantation settings. Taking advantage
of genetic lineage tracing or barcoding strategies would likely provide key advances to fill
current knowledge gaps.

7. Transdifferentiation upon Transplantation: Do β-Cells Convert into Other
Hormone-Expressing Cells?

Another potential mode of β-cell loss upon transplantation could be transdifferen-
tiation. Transdifferentiation is referred to as the loss of the β-cell phenotype and acqui-
sition of features of other endocrine hormone-expressing cells. Transdifferentiation can
occur via two different mechanisms: a direct shift into displaying characteristics of other
hormone-expressing endocrine cells in addition to the loss of β-cell features, or indirectly
via dedifferentiating into a precursor/progenitor stage first, followed by the acquisition of
other endocrine cell features. All endocrine cells arise from early pancreatic cells marked
by PDX1 expression during development [153,154]. Pancreatic lineages become further
specified by specific transcription factors, some of which exhibit antagonistic actions at key
lineage decisions by inhibiting each other. PTF1α and NKX6.1 are critical in specifying
pancreas progenitors further. PTF1α expression gives rise to exocrine tissue [155,156]. In
contrast, NKX6.1 expression [157,158] segregates the ductal and endocrine lineages from
the exocrine acinar cells during development [36,159,160]. Notch induction of bipotent
progenitors marked by PDX1 and NKX6.1 expression triggers endocrine differentiation,
giving rise to a transient expression NEUROG3 [161–163]. This is followed by endocrine cell
specification, which is also governed by key transcription factors: PAX4 expression gives
rise to β-and δ-cells [164,165], while Arx4 is necessary for α-cell development [166,167].
Using knock-out approaches, these studies showed that ARX and PAX4 act antagonistically
to give rise to their respective lineage endocrine hormone cell types. These differentiated en-
docrine hormone cells have been viewed as terminally differentiated cells that acquire their
specialized function and lose the ability to proliferate and differentiate into other cell types.
However, several mouse studies have shown that endocrine cells can transdifferentiate into
other cell types under forced genetic and diabetic stress conditions.

As a proof of principal, β-cell transdifferentiation into α-cells has been initially ex-
plored via altering key transcription factors using mouse models. Overexpression of ARX
in all endocrine cells showed a drastic reduction in the levels of β- and δ-cells and increased
α- and PP cells [168]. Similarly, the overexpression of ARX in all β-cells resulted in transdif-
ferentiation into α- and PP cells. Furthermore, the loss of key β-cell transcription factors
also resulted in β- to α-cell transdifferentiation. Supported by lineage-tracing analysis,
endocrine precursor and β-cell-specific KO mouse models of Nkx6.1 revealed a signifi-
cant reduction in the β-cells and a significant increase in all other hormone-expressing
cells (α, δ, PP, ε) [169]. Further studies revealed enrichment in Neurog3 expression in
adult islets of cell-type-specific KO Nkx6.1 mice, suggesting that β-cells are potentially
dedifferentiating into a precursor cell type before acquiring a non-β-endocrine cell phe-
notype [170]. Similarly, the deletion of the tinman domain of Nkx2.2 in conjugation with
lineage analysis resulted in β- to α-cell transdifferentiation and eventually hyperglycemia
in young adult mice (3.5 weeks and older) [171,172]. Importantly, in the described studies,
no significant changes in the total endocrine cell mass or any polyhormonal cells were
found, suggesting two things: the transdifferentiation events included a loss of β-cell
phenotype with some aspects of dedifferentiation first, followed by acquiring an α-cell



Cells 2023, 12, 698 8 of 19

type phenotype thereafter. Other than pancreatic developmental transcription factors, a
recent study ablated Xbp1 in adult mouse islets, a major regulator of the unfolded protein
response (UPR) and β-cell function, which resulted in β- to α-cell transdifferentiation
and subsequently in hyperglycemia and diabetes. Interestingly, these studies observed an
increase in the expression of the progenitor marker Sox9, suggesting a dedifferentiating
phase before the β- to α-cell transition [173]. In sum, mouse studies revealed conditions of
β-cell transdifferentiation; however, findings were based on hormone expression analysis
but mostly lacked comprehensive functional assays.

Only limited observations have been reported documenting human β-cell transdiffer-
entiation in vitro and in vivo. Supported by lineage tracing analysis, the reaggregation of
islet cells in vitro resulted in the transition of β-cells into α-cells [174]. Moreover, there are
several lines of evidence suggesting the occurrence of transdifferentiation of human diabetic
islets. IHC analysis of T2D human isolated islets showed higher levels of bi-hormonal cells
expressing glucagon and insulin [175,176]. This study also described a cell population that
expresses the α-cell hormone glucagon and the β-cell marker NKX6.1 but not insulin and
could represent a midway transdifferentiation phenotype between β- and α-cells. Another
study showed higher levels of polyhormonal cells in lean-isolated T2D primary islets,
further supporting the occurrence of transdifferentiation [149]. However, these studies
were performed on isolated human islets in vitro, and therefore one potential explanation
for the emergence of bi/polyhormonal cells could be attributed to the isolation process
and poor culturing conditions. Moreover, currently, it is unknown if transdifferentiation
occurs in T1D islets due to the rarity of such samples and the difficulty in capturing islets
at different stages of the disease in situ.

Currently, the field lacks a comprehensive composition analysis of transplanted pan-
creatic islets in both human and rodent models. In the setting of sBC grafts, scRNA-seq,
protein, and functional analyses showed an improvement in sBC maturation and functional-
ity upon engraftment [66,67]. However, it appears that the graft displays more α-cells than
β-cells compared to sBCs in vitro that possess more insulin-expressing cells [63]. Interest-
ingly, polyhormonal cells generated as an unwanted byproduct during the differentiation of
sBCs seem to resolve in vivo into α-like cells [63]. Polyhormonal cells lack NKX6.1 expres-
sion; thus, the transition of these cells into α-like cells upon engraftment might resemble
aspects of the transdifferentiation observed in the Nkx6.1 KO mice [169,170]. In addition,
enterochromaffin cells have recently been identified as an unwanted off-target differentia-
tion product [44]. While examples exist that convincingly demonstrate transdifferentiation
in animal models, the available human data are limited. To corroborate transdifferentiation
phenomena in sBC transplantation settings will require careful additional experimentation.
Understanding the underlying molecular mechanisms of transdifferention, as well as ded-
ifferentiation, might allow formulating strategies to preserve a pristine β-cell phenotype
upon transplantation.

8. β-Cell Subtype Interconversion upon Transplant

While in the past β-cells have been commonly viewed as a rather homogenous popu-
lation, functionally different β-cells were already described decades ago, and the concept of
β-cell heterogeneity and subpopulations has recently received increased attention [177–179].
Indeed, β-cells can be subdivided into distinct subpopulations both in mice and humans.
Several molecular markers label mature/immature β-cell subpopulations in mouse islets,
such as E-cadherin, FLTP and UCN3 [180–182]. Recent advances in scRNAseq revealed
3–5 distinct β-cell subpopulations based on differential mRNA transcription in cadaveric
human islets [183,184]. Dr. Grompe and associates identified four β-cell subtypes (β1,
2, 3, and 4) in adult human pancreas marked by the surface protein markers CD9 and
ST8SIA1 [185]. A sorting strategy using antibodies against CD9 and ST8SIA1 allowed
differential gene expression analysis that revealed distinct transcriptional gene profiles,
many associated with β-cell functionality. Glucose-stimulated insulin secretion (GSIS) ex-
periments showed that β1 cells, the most abundant subtype in healthy individuals, are also
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the most functional subpopulation. Interestingly, the distribution of β-cell subpopulations
in cadaveric T2D human islets is skewed towards less functional subtypes. Altogether,
this study provides a thorough characterization of human β-subtypes in both healthy and
diseased islets; however, the distribution of these subtypes in transplant settings has yet to
be discovered.

Aside from molecular markers, β-cell subtypes can be categorized based on insulin
secretory profiles [177,186,187], functional properties (pacemaker cells such as Hub cells
and first responders) [188–192], and other phenotypes. Supplemented with human islet
data, animal studies have identified a subpopulation of β-cells that acquire a senescence
and senescence-like secretory phenotype (SASP) [193]. Senescence is a state in which cells
cease to divide but remain metabolically active with an altered phenotype. Some but not
all senescent β-cells exhibit SASP by secreting a mixture of chemokines, cytokines, and
ECM molecules, among others. The activation of the DNA damage response (DDR) due
to cellular stress has been demonstrated to give rise to senescence and SASP in different
cell systems [194–196]. Thompson et al. showed SASP-like β-cells, both mouse and human,
exist in higher numbers in T1D compared to healthy pancreatic islets. Other than being
growth-arrested, SASP cells exhibit non-cell-autonomous activities by secreting factors that
affect the viability and function of neighboring (β-) cells and trigger the chemotaxis of
immune cells, which leads to the progression of diabetes in T1D mouse models. Strikingly,
using senolytic drugs, the clearance of SASP-like β-cells prevents diabetes in a T1D mouse
model and preservesβ-cell mass and functionality. Interestingly, a similar senescence/SASP
β-subpopulation was also identified and characterized in both human and mouse T2D
islets. Similarly, clearance of senescent cells in T2D via senolysis improved glucose levels
and β-cell function and identity [197]. Altogether, these findings highlight the consequence
of SASP cells on disease development and progression, and it will be vital to determine if
senescence and SASP occur in sBCs in vitro and in vivo.

Heterogeneity in sBC clusters is less investigated, but multiple scRNA data sets
have been published showing distinct subpopulations. Veres et al. performed the first
comprehensive scRNA-seq on stem-cell-derived islets at various stages of the differentiation
protocol and revealed an endocrine hormone-expressing cell population consisting of β-,
α- and polyhormonal cells, an endocrine non-hormone+ population, and a previously
unreported enterochromaffin population [44]. However, no detailed analysis focused on
the sBC subpopulation was performed. These results were subsequently supported by
two other groups identifying similar populations with different cell distributions [44,66,67].
Recently, we adopted a more specific approach by performing scRNA-seq analysis on
sorted sBCs and identified 7 β-cell subtypes based on an unsupervised cluster analysis.
These data revealed a mature β-cell subpopulation marked by the expression of surface
ENTPD3 (also known as NTPDase3) protein. The sorting of ENTPD3+ sBC followed by
reaggregation and functional evaluation using dynamic GSIS revealed secretion patterns
similar to primary human islets, while ENTPD3− sBC did not, providing the first evidence
for defined heterogeneity within sBCs [62]. Interestingly, these data also revealed other
β-subtypes, such as polyhormonal sBC, a proliferative cell sBC population, IGF2+ sBCs,
and a distinct CD9-labeled sBC population, suggesting that experiments to further stratify
sBCs in vitro and in vivo are warranted. Such studies will cumulatively contribute toward
optimizing sBC grafts’ functionality in vivo, further promoting cell therapy as the most
practical treatment for diabetic patients.

9. Conclusions

The lack of donor islets has prompted us and others to generate sBCs as an abundant
source of human functional human β-cells. Preclinical studies demonstrated the ability
of sBCs to function in vivo and restore euglycemia in diabetic mouse models. However,
in vivo studies have also demonstrated that the majority of sBCs, similarly to cadaveric
human pancreatic islets, are lost upon transplantation, but the underlying mechanisms re-
main largely unknown. Currently, there are multiple ongoing clinical trials in T1D patients
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with some promising results, further promoting stem cell-derived pancreatic progenitors
and sBCs as an attractive therapeutic approach for diabetes treatment. Current literature
demonstrates that considerable sBC loss occurs upon transplant into preclinical animal
models, suggesting this likely happens in humans as well. Understanding the underlying
mechanisms resulting in β-cell loss will allow the formulation of strategies to counteract
these undesired effects, thereby providing improvements to current cell replacement efforts.
Ultimately, improving β-cell survival and function will reduce the graft size needed to
restore euglycemia in patients and thus also reduce the cost of this therapy. Currently, β-cell
death is largely perceived as the main contributor to β-cell graft mass loss upon transplant.
However, we argue that this basic view might be an oversimplified representation of what
actually might occur to β-cells upon transplant. Indeed, recent work has highlighted
underappreciated aspects of β-cell biology, most notably the plasticity displayed by β-cells
under certain experimental and disease conditions, as well as β-cell heterogeneity. We
hypothesize here that β-cell mass loss upon engraftment likely constitutes a mélange of
different phenomena occurring in parallel. It will require focused experimental approaches
that allow accurate cell fate tracking in vivo to determine if other mechanisms in addition
to β-cell death contribute significantly to graft loss. The notion that sBCs could transdiffer-
entiate into other hormone-expressing cells might be exploited for improved β-cell function.
Other islet cell types have been shown to be critical for β-cell function; thus, generating
stem-cell-derived islet-like structures upon transplant might be beneficial. However, sBCs
dedifferentiate into a less differentiated, potentially proliferative state, which could require
additional (long-term) safety considerations. Obtaining detailed molecular and cellular
insights into potential mechanisms will allow the development of preventative strategies.
We envision such efforts to be similar to current research efforts aimed at reducing the
well-recognized problem posed by ischemia-induced graft loss. Indeed, many research
groups use innovative strategies, most notably in the bioengineering space, to provide
adequate oxygen and nutrient supply to islets and/or β-cells immediately after transplant
to counteract ischemia-induced detrimental effects. Another important question relates
to the presence and/ or formation of distinct β-cell subpopulations upon transplant. In-
deed, we and others have shown that β-cell subpopulations exhibit differential functions.
Obviously, providing the most functional sBC to patients in the cell replacement setting
is highly desired over subpar phenotypes. However, it is tantalizing to speculate how
different β-cell subpopulations might interact with the immune system and if an immune-
privileged population can be identified and exploited for replacement therapy. Reduced
immunogenicity of a small β-cell subpopulation has indeed been proposed in autoimmune
animal models previously. Furthering our understanding of human β-cell biology in the
setting of sBC transplantation might also provide interesting insights that could apply to
autoimmune mechanisms in patients and provide novel model systems to investigate them.
Overall, understanding the exact mechanisms contributing to sBC loss upon transplant
will allow the development of informed strategies to prevent sBC loss and might allow the
delivery of greater numbers of sBC with superior function. Such second-generation cell
replacement therapy approaches would effectively provide distinct advantages, such as the
need for reduced graft mass to be transplanted. Overall, advances in stem cell-based cell
replacement therapy for diabetic patients have been impressive within the last few years,
and we anticipate that progress will further accelerate to allow this curative approach to
reach a wide patient population in the near future.
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