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Abstract: Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver can-
cer, has high mortality rates because of its limited treatment options and acquired resistance to
chemotherapy. Sulforaphane (SFN), a naturally occurring organosulfur compound found in cru-
ciferous vegetables, exhibits multiple therapeutic properties, such as histone deacetylase (HDAC)
inhibition and anti-cancer effects. This study assessed the effects of the combination of SFN and
gemcitabine (GEM) on human iCCA cell growth. HuCCT-1 and HuH28 cells, representing moderately
differentiated and undifferentiated iCCA, respectively, were treated with SFN and/or GEM. SFN
concentration dependently reduced total HDAC activity and promoted total histone H3 acetylation in
both iCCA cell lines. SFN synergistically augmented the GEM-mediated attenuation of cell viability
and proliferation by inducing G2/M cell cycle arrest and apoptosis in both cell lines, as indicated by
the cleavage of caspase-3. SFN also inhibited cancer cell invasion and decreased the expression of
pro-angiogenic markers (VEGFA, VEGFR2, HIF-1α, and eNOS) in both iCCA cell lines. Notably, SFN
effectively inhibited the GEM-mediated induction of epithelial–mesenchymal transition (EMT). A
xenograft assay demonstrated that SFN and GEM substantially attenuated human iCCA cell-derived
tumor growth with decreased Ki67+ proliferative cells and increased TUNEL+ apoptotic cells. The
anti-cancer effects of every single agent were markedly augmented by concomitant use. Consistent
with the results of in vitro cell cycle analysis, G2/M arrest was indicated by increased p21 and
p-Chk2 expression and decreased p-Cdc25C expression in the tumors of SFN- and GEM-treated mice.
Moreover, treatment with SFN inhibited CD34-positive neovascularization with decreased VEGF
expression and GEM-induced EMT in iCCA-derived xenografted tumors. In conclusion, these results
suggest that combination therapy with SFN with GEM is a potential novel option for iCCA treatment.

Keywords: chemoresistance; angiogenesis; EMT; cell cycle arrest; apoptosis

1. Introduction

Intrahepatic cholangiocarcinoma (iCCA) is the second most common hepatic malig-
nancy arising from intrahepatic bile duct epithelium [1]. The prognosis of iCCA is poor
because of early local invasion; metastasis to the liver, lymph nodes, and other organs; and
insufficient early diagnosis [1,2]. Currently, only a small number of patients with iCCA can
undergo curative resection. Meanwhile, the treatment landscape of unresectable advanced
iCCA has primarily been limited to chemotherapy. At present, the first-line chemotherapy
for unresectable iCCA is gemcitabine (GEM) and cisplatin (CDDP) based on the ABC-02
study, and second-line chemotherapy includes 5-fluorouracil, folinic acid, and oxaliplatin
(FOLFOX) based on the ABC-06 study [3,4]. However, median overall survival, even with
these options, is limited to just one year [4]. Additionally, combination treatment with
multiple anti-cancer drugs often results in severe adverse effects [3,4]. Currently, several
approaches are employed to find novel combinatory treatments with standard chemothera-
peutic drugs, including GEM for other types of cancer, such as the highly aggressive diffuse
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malignant peritoneal mesothelioma and pancreatic ductal adenocarcinoma [5,6]. Likewise,
there is an urgent need to identify novel therapeutic targets for iCCA with less adverse
event profiles by combining GEM.

Histone deacetylases (HDACs) play a key role in epigenetically regulating the expres-
sion and activity of various factors relevant to carcinogenesis and cancer development [7,8].
HDACs comprise a family of enzymes categorized into four classes in humans based on
their homology to yeast HDAC analogs: classes I (HDAC1, 2, 3, and 8), II (HDAC4, 5,
6, 7, 9, and 10), III (sirtuins), and IV (HDAC11). Class I, II, and IV HDACs require zinc-
dependent cofactors for their enzymatic activity, and class III HDACs require nicotinamide
adenine dinucleotide-dependent cofactors [7,9]. Histone acetyltransferases (HATs) catalyze
the transfer of an acetyl group from acetyl coenzyme A, while HDACs remove acetyl
groups from histones and organize a non-permissive chromatin conformation, leading
to interference with the transcription of cancer-related genes [10]. Aberrant HDAC activ-
ity leads to diverse transcriptional gene regulation relevant to cancer cell differentiation,
angiogenesis, proliferation, apoptosis, migration, and metastasis [10,11]. HDAC activity
represses p53 and BAX and induces BCL-2, which promotes cell cycle progression and
regulates apoptosis in cancer cells [12,13]. Morine et al. have reported that intratumor
HDAC expression is positively correlated with HIF-1α, a stimulus factor for local hypoxia
and increased angiogenesis in resected iCCA tissues [14]. Thus, HDAC inhibitors have the
potential to thwart cell growth, accelerate differentiation, and induce apoptosis, and they
have been proposed as novel therapeutic options for a variety of malignancies, including
iCCA [10,11,15].

Sulforaphane (SFN), an isothiocyanate cleavage product of glucoraphanin, can be
obtained from damaged cruciferous vegetables such as broccoli, cauliflower, cabbage, and
Brussels sprouts [16]. SFN possesses anti-oxidative properties with multiple pharmaco-
logical actions, including anti-diabetic and anti-microbial effects [17,18]. Remarkably, SFN
has been suggested to display anti-cancer and chemopreventive properties by inhibiting
HDAC activity and epigenetically modifying the expression of critical cytoprotective genes
involved in the regulation of the cell cycle and apoptosis [19,20]. A recent report revealed
that SFN could inhibit total HDAC activity in cancer cells [19]. Moreover, recent findings
indicated that SFN augments the response to several carcinostatic agents by enhancing the
sensitivity and suppressing the resistance of cancer cells to these agents [21,22].

Based on these findings, the present study investigated the combinatorial effect of
SFN and GEM on human iCCA cell growth and malignant potential using iCCA-derived
murine xenograft models.

2. Materials and Methods
2.1. Compounds and Cell Culture

D,L-sulforaphane (1-isothiocyanate-4-methylsulphinylbutane, purity ≥ 98%) was pur-
chased from Toronto Research Chemicals Inc. (Toronto, ON, Canada), and gemcitabine
(2′-deoxy-2′,2′-difluorocytidine, purity ≥ 98%) was purchased from Tokyo Chemical In-
dustry Co., Ltd. (Tokyo, Japan). Two human iCCA cell lines, HuCCT-1 (cat: JCRB0425)
and HuH28 (cat: JCRB0426) were obtained from the Japanese Collection of Research
Bioresources Cell Bank (Osaka, Japan). These cells were cultured in RPMI-1640 (Nacalai
Tesque, Inc., Kyoto, Japan) supplemented with 10% fetal bovine serum (FBS) and 1%
ampicillin/streptomycin. The primary human biliary epithelial cell line (HIBEpiC, cat:
#5100) was purchased from ScienCell Research Laboratories, Inc. (Carlsbad, CA, USA).
HIBEpiC cells were cultured in Epithelial Cell Medium (ScienCell Research Laboratories)
supplemented with 2% FBS and 1% epithelial cell growth supplement (ScienCell Research
Laboratories), and 1% ampicillin/streptomycin. The cells were grown at 37 ◦C in a 5%
CO2 atmosphere.
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2.2. Human iCCA Xenograft Model

Six-week-old male athymic nude mice (BALB/cSlc-nu/nu) (Japan SLC, Inc., Shizuoka,
Japan) were housed in stainless steel mesh cages (2/cage) under controlled conditions
(temperature: 23 ± 3 ◦C, relative humidity: 50 ± 20%, 10–15 air changes/h, illumination:
12 h/d). The animals were allowed tap water access ad libitum throughout the study
period. Eighty mice were used in total for the xenograft assay, and tumor inoculation was
performed as described [23]. Briefly, a million cells were suspended in 200 µL of medium
containing Matrigel (Corning, Tewksbury, MA, USA; 1:1), and the same type of million
cells was inoculated subcutaneously into the bilateral flanks of each mouse. Tumors were
measured with a caliper, and the tumor volume was calculated using the following formula:

1
2

[
(Width)2 × Length

]
(1)

Five days after inoculation, mice were orally administered with SFN (50 mg/kg/day)
or intraperitoneally injected with GEM (100 mg/kg) twice a week or concomitant ad-
ministration [23,24] (n = 10). Saline solution was equivalently given to the vehicle group
(n = 10). The condition and health of mice were monitored daily after the injection of tumor
cells, and all mice were sacrificed 30 days after drug administration under anesthesia with
barbiturate overdose (intravenous injection, 150 mg/kg pentobarbital sodium). All the
animal procedures were performed as per the recommendations of the Guide for Care and
Use of Laboratory Animals (National Research Council, Washington, DC, USA). The study
was approved by the animal facility committee of Nara Medical University (Authorization
number: #12853).

2.3. Detection of HDAC/HAT Activity and Total Histone H3 and H4 Acetylation

HuCCT-1 and HuH28 cells were treated with different concentrations of SFN (0–80 µM)
or GEM (0–10 µM) for 3 h. To measure HDAC activity, nuclear extracts were obtained
from cultured cells or 20 mg of subcutaneous tumor samples using an EpiQuik™ Nuclear
Extraction Kit (Epigentek, Farmingdale, NY, USA) according to the manufacturer’s protocol.
HDAC activity was measured in 10 µg of nuclear extract using an EpiQuik™ HDAC
activity/inhibition assay kit (Epigentek) according to the manufacturer’s instructions. HAT
activity was also measured in 10 µg of nuclear extract from cultured cells using an EpiQuik™
HAT activity/inhibition assay kit (Epigentek) according to the manufacturer’s instructions.

To detect total histone H3 and H4 acetylation, histone extracts were obtained from
cultured cells using an EpiQuik™ Total Histone Extraction Kit (Epigentek). Histone H3
and H4 acetylation was detected in 100 ng of histone extract using an EpiQuik™ Total
Histone H3 Acetylation Detection Fast Kit and an EpiQuik™ Total Histone H4 Acetylation
Detection Fast Kit (Epigentek) according to the manufacturer’s instructions, respectively.

Dimethyl sulfoxide (DMSO, Nacalai Tesque, Inc.) was used as a vehicle, and HDAC
activity and total histone H3 acetylation in cells treated with SFN and/or GEM were
measured relative to that in the vehicle treatment group.

2.4. Histone H3 Peptide Array

HuCCT-1 and HuH28 cells were treated with a concentration of dimethyl sulfoxide
(DMSO, Nacalai Tesque, Inc.) as a vehicle or SFN (20 µM) for 3 h. Nuclear extracts
were obtained from cultured cells using an EpiQuik™ Nuclear Extraction Kit (Epigentek,
Farmingdale, NY, USA) according to the manufacturer’s protocol. To profile the binding
specificity of histone H3 acetylation, we used a Pre-Sure™ Histone H3 Peptide Array ELISA
Kit (Epigentek) according to the manufacturer’s instructions and previous report [25]. Total
nuclear extracts were diluted to 1 ug/mL, added to the array plate and incubated for 2 h at
room temperature. Histone H3 Acetylation Antibody Panel Pack I and Pack II (Epigentek)
were applied as primary antibodies to detect the binding of H3 lysines (K)9, K14, K18, K27,
K36, K56, and K79 to histone peptides. Following the incubation with primary antibodies
at 37 ◦C for 60 min, samples were incubated with secondary antibodies (0.4 µg/mL) at
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room temperature for 60 min and then developed at room temperature for 10 min away
from light. Arbitrary units were measured at the absorbance (450 nm) to represent the
relative levels of binding specificity and calculated the ratio to the values of Veh treatment.

2.5. Cell Viability Assay and Analysis of Cytotoxic Synergy

HuCCT-1 and HuH28 cells were seeded in 96-well plates with RPMI-1640, as previ-
ously described. Then, the cells were treated with different doses of SFN (0–80 µM) or GEM
(0–10 µM) for 24 h. Cell viability was evaluated by The Premix Water-Soluble Tetrazolium
salt (WST)-1 Cell Proliferation Assay system (Takara Bio, Kusatsu, Japan) according to
the manufacturer’s protocol. Cell viability was assessed relative to that in the groups
without each treatment, and half-maximal inhibitory concentration (IC50) was calculated
via non-linear regression analysis using GraphPad Prism 9 ver 9.3.1 (GraphPad Software
Inc., La Jolla, CA, USA) [26].

To assess the synergy of drug combinations, a combination index (CI) was calculated
by the Chou-Talalay method using CompuSyn software version 1.0 (ComboSyn, Inc., New
York, NY, USA) [27]. CI gives a quantitative definition of synergism (CI < 1), additive effect
(CI = 1), and antagonism (CI > 1). For this purpose, the cells were also exposed to different
concentrations of SFN and GEM for 24 h.

2.6. Statistical Analysis

All data were statistically analyzed using GraphPad Prism 9 software. Data were
indicated as the mean ± standard deviation (SD). Means were compared between two
groups by Student’s t-test. A one-way analysis of variance followed by Bonferroni’s
post hoc test was performed for multiple comparisons. p < 0.05 denoted a statistically
significant difference.

Additional methods can be found online in the Supplementary Material.

3. Results
3.1. SFN Attenuates HDAC Activity and Promotes Histone H3 Acetylation in Human iCCA Cells

We initially examined the effects of SFN and GEM on HDAC activity, moderately dif-
ferentiated HuCCT-1 cells and undifferentiated HuH28 cells. As presented in Figure 1A,B,
SFN concentration-dependently reduced HDAC activity in both HuCCT-1 and HuH28 cells,
and the suppressive effects were significant at concentrations exceeding 20 µM. On the
contrary, GEM did not alter HDAC activity in these cells at any concentration (Figure S1A).
Meanwhile, the activity of HAT, a key enzyme that acetylate conserved lysine amino acids
on histone proteins, was significantly increased by treatment with SFN at concentrations
exceeding 20 µM (Figure 1C,D). Reflecting the reduced HDAC activity, total histone H3
acetylation in both iCCA cell lines was increased by treatment with SFN in a concentration-
dependent manner (Figure 1E,F). On the other hand, total histone H4 acetylation was
not altered by treatment with SFN (Figure 1G,H). We further determined the acetylation
patterns of specific lysine residues on the tails of histone H3 modified by treatment with
SFN in iCCA cells. To this end, nuclear protein extracts of both HuCCT-1 and HuH28 cells
treated with SFN (20 µM) were utilized for the identification of the acetylation profile of
H3 on K9, K14, K18, K27, K36, K56 and K79. As shown in Figure 1I,J, treatment with SFN
particularly increased acetylation as compared to vehicle treatment at H3K9 and H3K27 in
both HuCCT-1 and HuH28 cells. Moreover, we confirmed that SFN did not affect HDAC
activity in normal HIBEpiC cells (Figure S1B).
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Figure 1. HDAC activity and histone H3 acetylation by treatment with SFN in iCCA cells. (A–H) HDAC
activity (A,B), HAT activity (C,D), total histone H3 acetylation (E,F), and total histone H4 acetylation
(G,H) in HuCCT-1 and HuH28 cells treated with SFN (0–80 µM). The values are shown as fold changes
relative to 0 µM for each treatment group. Data are mean± SD (n = 3 independent experiments with
n = 8 samples per condition). ** p < 0.01 compared with the group treated with vehicle (Veh) at the
same concentration. (I,J) Graphical analysis of the binding intensity of H3K9ac, H3K14ac, H3K18ac,
H3K27ac, H3K36ac, H3K56ac, and H3K79ac in HuCCT-1 (I) and HuH28 (J) cells treated with SFN
(20 µM) by using Histone H3 Peptide Array ELISA Kit. The values are shown as fold changes relative to
Veh treatment at the same concentration.

3.2. SFN Has a Synergistic Effect with GEM-Mediated Cell Growth Inhibition in Human
iCCA Cells

Next, we investigated the impact of SFN and GEM at different concentrations on
the viability of HuCCT-1 and HuH28 cells. As presented in Figure 2A,B, SFN efficiently
ameliorated HuCCT-1 and HuH28 cell viability with IC50 values of 27.4 and 34.2 µM,
respectively. Meanwhile, GEM attenuated the viability of both cell lines (IC50 of 0.57 µM
for HuCCT-1 cells and 0.71 µM for HuH28 cells) as expected (Figure 2A,B). Both agents did
not affect the cell viability of normal HIBEpiC at this range of concentrations (Figure S1C).

Based on the optimal concentrations, we calculated CI to evaluate whether the cy-
totoxic effect of combined SFN and GEM against iCCA cell growth is synergistic against
iCCA cell growth. As shown in Figure 2C, the CI values calculated by CompuSyn software
were 0.552/0.624/0.497, 0.228/0.406/0.183, and 0.227/0.136/0.119, when SFN (6.8 µM)
and GEM (0.14/0.28/0.57 µM), SFN (13.7 µM) and GEM (0.14/0.28/0.57 µM), and SFN
(27.4 µM) and GEM (0.14/0.28/0.57 µM) were concurrently administered to HuCCT-1 cells,
respectively. These CI values were less than 1.0, indicating that the combination of SFN with
GEM has synergistic effects on suppressing the viability of HuCCT-1 cells. Combination
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treatment with SFN and GEM also exerted a synergistic effect against HuH28 cell viability.
The CI values were 0.699/0.738/0.628, 0.519/0.714/0.487, and 0.323/0.414/0.299 when SFN
(8.5 µM) and GEM (0.17/0.35/0.71 µM), SFN (17.1 µM) and GEM (0.17/0.35/0.71 µM), and
SFN (34.2 µM) and GEM (0.17/0.35/0.71 µM) were concurrently cultivated (Figure 2D).
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Figure 2. Cell viability and proliferation by treatment with SFN and GEM in iCCA cells. (A,B) Cell
viability and IC50 in HuCCT–1 (A) and HuH28 (B) cells treated with SFN (0–80 µM) or GEM
(0–10 µM). (C,D) The synergism of SFN and GEM on HuCCT–1 (C) and HuH28 (D) was evaluated
by the combination index (CI) values. CI gives a quantitative definition of synergism (CI < 1),
additive effect (CI = 1), and antagonism (CI > 1) (E,F). Cell proliferation of HuCCT–1 and HuH28 cells
incubated with SFN and/or GEM at each IC50 for 0–48 hrs. The values are shown as fold changes
relative to 0 µM for each treatment group (A,B) and the values at the start of each treatment (E,F). Data
are mean± SD (n = 3 independent experiments with n = 8 samples per condition) (A,B,E,F). * p < 0.05,
** p < 0.01 compared with the values of 0 µM for each treatment group (A,B). a p < 0.01, b p < 0.01,
c p < 0.01 compared with the group treated for 48 h with Veh, SFN or GEM, respectively (E,F).

We further confirmed that the combination of SFN and GEM at IC50 significantly
suppressed the proliferative activity of HuCCT-1 and HuH28 cells in a time-dependent
manner (Figure 2E,F).

3.3. SFN Induces G2/M Arrest and Promotes Apoptosis in Human iCCA Cells

SFN-mediated HDAC inhibition has been reported to enhance histone acetylation
and derepress p21 and BAX gene expression, resulting in the induction of cell cycle ar-
rest/apoptosis in several types of cancer cells [19,28,29]. Based on these findings, we
examined the effects of SFN on the cell cycle/apoptosis and the expressions of associated
genes, including these key targets in human iCCA cells. As presented in Figure 3A,B, SFN
or GEM significantly blocked both HuCCT-1 and HuH28 cells in the G2 phase compared to
the effects of the vehicle, and the drugs in combination had significantly stronger effects
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than either agent alone. The mRNA expression of CDKN1A and BAX were significantly
increased by treatment with SFN as compared to vehicle treatment in both HuCCT-1 and
HuH28 cells (Figure 3C). Treatment with SFN as well as GEM upregulated p21 and p-Chk2
and downregulated p-Cdc25C at the protein level, corresponding to the induction of G2/M
arrest, in both cell lines (Figure 3D). SFN- or GEM-treated HuCCT-1 and HuH28 cells also
increased pro-apoptotic BAX expression and decreased anti-apoptotic BCL-2 expression
(Figure 3E). In both cell lines, combination treatment augmented the upregulation of BAX
compared to the effect of every single agent (Figure 3E). SFN and GEM further enhanced
the cleavage of caspase-3, reflecting the induction of cell apoptosis in both HuCCT-1 and
HuH28 cells (Figure 3F).
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Figure 3. Cell cycle and apoptosis by treatment with SFN and GEM in iCCA cells. (A,B) Repre-
sentative images of flow cytometric analysis for cell cycle distribution and percentages of cells at
different cell cycle phases (G0/G1, S and G2/M) in HuCCT–1 (A) and HuH28 (B) cells treated with
SFN and/or GEM. After the incubation with both agents for 12 h, cells were stained with propid-
ium iodide (PI) and subjected to flow cytometry. (C) Relative mRNA levels of CDKN1A and BAX
in HuCCT–1 and HuH28 cells. (D,E) Western blots for the markers related to G2/M arrest, p21,
p–Chk2(Thr68) and p–Cdc25C(Ser216) (D), and the markers related to apoptosis, BAX and BCL–2 (E).
(F) Cleaved caspase–3 level in HuCCT–1 or HuH28–cultured media. The mRNA expression levels
were measured by quantitative RT-PCR (qRT–PCR), and GAPDH was used as an internal control
for qRT–PCR (C). Actin was used as an internal control for western blotting (D,E). The values are
shown as fold changes relative to the vehicle–treated group (Veh) (C,F). Data are mean ± SD (n = 3
independent experiments with n = 3 for A and B, n = 8 for C,F). a p < 0.01, b p < 0.01, c p < 0.01
compared with the group treated with Veh, SFN or GEM, respectively.

3.4. SFN Inhibits Cancer Cell Invasion, Migration, Angiogenic Activity, and
Epithelial-Mesenchymal Transition (EMT) in Human iCCA Cells

Next, we investigated the effects of SFN and GEM on malignant potential, including
cell invasion, migration, angiogenic activity, and EMT in human iCCA cells. First, the
effects of both agents on the invasiveness of HuCCT-1 and HuH28 cells were evaluated
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using a Matrigel invasion assay. Either drug alone significantly reduced the invasiveness
of both HuCCT-1 and HuH28 cells (Figure 4A,B). It was noteworthy that concomitant
treatment with SFN and GEM extensively reduced cell invasion to less than 20% of the con-
trol, exceeding the effects of each drug (Figure 4A,B). Correspondingly, cell migration was
also suppressed by treatment with SFN or GEM in both iCCA cells (Figure 4C). Moreover,
combination treatment enhanced the suppressive effect of every single agent (Figure 4C).
We next examined the effects of SFN on the angiogenic activity of iCCA cells. Treatment
with SFN significantly reduced the mRNA expression of pro-angiogenic markers, including
VEGFA, VEGFR2, HIF1A, and NOS3 in both HuCCT-1 and HuH28 cells (Figure 4D,E).
Moreover, we assessed the effects of both agents on the EMT status. There were differences
in EMT-related markers between HuCCT-1 and HuH28 cells, which have different levels of
differentiation. Specifically, HuCCT-1 cells, which are moderately differentiated, exhibited
higher expression of the epithelial markers CDH1 and KRT19 and lower expression of the
mesenchymal markers CDH2, VIM, MMP2, and MMP9 than undifferentiated HuH28 cells,
consistent with a previous report (Figure 4F) [30]. As presented in Figure 4G,H, treatment
with GEM downregulated the epithelial markers and upregulated the mesenchymal mark-
ers in HuCCT-1 and HuH28 cells, indicating the EMT progression. Notably, SFN efficiently
inhibited the GEM-induced progression of EMT in iCCA cells (Figure 4G,H).
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Figure 4. Cell invasion, pro-angiogenic property and EMT by treatment with SFN and GEM in iCCA
cells. (A) Representative images of invasive HuCCT-1 and HuH28 cells treated with SFM and/or
GEM. Scale bar; 50 µm. Red arrow; invasive cells. (B) Quantification of both cell lines invasion.
(C) Quantification of both cell lines migration. (D,E) Relative mRNA expression of pro-angiogenic
markers (VEGFA, VEGFR2, HIF1A, and NOS3) in HuCCT-1 and HuH28 treated with SFN and/or
GEM. (F) Comparison between HuCCT-1 and HuH28 in the relative mRNA expression of the ep-
ithelial markers (CDH1 and KRT19) and mesenchymal markers (CDH2, VIM, MMP2 and MMP9)
related to EMT. (G,H) Relative mRNA expression of epithelial markers (G) and mesenchymal mark-
ers (H) in HuCCT-1 and HuH28 treated with SFN and/or GEM. GAPDH was used as an internal
control for qRT-PCR. The values are shown as fold changes relative to the vehicle-treated group (Veh)
(B–E,G,H) or the values of the HuCCT-1 group (F). Data are mean ± SD (n = 3 independent exper-
iments with n = 6 for B and n = 8 for B–G samples per condition); a p < 0.01, b p < 0.01, c p < 0.01
compared with the group treated with Veh, SFN or GEM, respectively (B–E,G,H). ** p < 0.01, indicat-
ing a significant difference between groups (F).
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3.5. SFN Potentiates the GEM-Mediated Reduction of the Human iCCA-Derived Xenograft
Tumor Growth

Given the suppressive effects of SFN and GEM on human iCCA cell growth, the
anti-cancer property of both agents was examined using iCCA-derived xenograft models
(Figure 5A). Initially, we determined the experimental dose of SFN for in vivo study. As SFN
is also known to exert anti-oxidative effects via Nrf2 activation, we measured the hepatic
mRNA levels of anti-oxidative markers in nude mice treated with different doses of SFN
to identify a dose that could exert bioactivity in mice [19]. As presented in Figure S2, oral
administration of SFN for four weeks increased the hepatic mRNA expression of Hmox1,
Nqo1, and Gstm3 in a dose-dependent manner even with concomitant GEM treatment
(100 mg/kg twice a week), and we identified 50 mg/kg/day as the minimal dose that
significantly induced these anti-oxidative genes.
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Figure 5. iCCA-derived xenograft tumor growth by treatment with SFN and GEM.(A) Experimental
protocol. (B) Time course of HuCCT-1 and HuH28-grafted tumor volumes. (C) Representative images
and weights of resected tumors at the end of the experiment. (D) Representative pictures of HuCCT-1
and HuH28-grafted subcutaneous tumors stained with H&E. C; cancerous lesions, Scale bar; 100 µm.
(E) HDAC activity in the resected subcutaneous tumor tissues. The values are shown as fold changes
to the vehicle-treated group (E). Data are mean ± SD (n = 20 tumors/10 mice; B,C,E). a p < 0.01,
b p < 0.01, c p < 0.01 compared with the group treated with Veh, SFN or GEM, respectively at the end
of the experiment (B). * p < 0.05, ** p < 0.01, indicating a significant difference between groups (C,E).

Based on this result, we employed 50 mg/kg/day as the experimental dose for the
xenograft assay. Serological assessments revealed that this dose of SFN did not cause
hepatocellular, biliary, or renal damage in mice, even when used together and combined
with GEM (Figure S3). In mice treated with either SFN (50 mg/kg/day) or GEM (100 mg/kg
twice a week), the HuCCT-1 and HuH28-grafted subcutaneous tumor growth was markedly
attenuated (Figure 5B). After treatment for 30 days, the subcutaneous tumor volumes and
weights were significantly reduced in mice treated with either SFN or GEM relative to the
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findings in vehicle-treated mice (Figure 5B,C). Notably, concomitant treatment with both
agents significantly potentiated their inhibitory effects on tumor growth relative to every
single agent (Figure 5B,C). H&E staining illustrated that the viable cancer area in resected
subcutaneous tumors was decreased by treatment with SFN and GEM (Figure 5D). We
confirmed that the utilized dose of SFN effectively decreased HDAC activity in the resected
subcutaneous tumor tissues to less than 60% of that in the vehicle group (Figure 5E).

3.6. SFN Suppresses Cell Proliferation and Induces Apoptosis in Human iCCA-Derived
Xenograft Tumors

We next quantitatively investigated cancer cell viability in xenograft tumors derived
from HuCCT-1 and HuH28 cells (Figure 6 and Figure S4, respectively). In HuCCT-1–
derived xenograft tumors, Ki67-positive cancer cell proliferation was attenuated by each
drug alone, and the effect was enhanced by using the drugs in combination (Figure 6A).
Quantitative analysis revealed the potent reduction of proliferative cells to less than 20%
of the control level by combination treatment (Figure 6B). Treatment with SFN and GEM
significantly increased the nuclear expression of p21 and cytosolic expression of p-Chk2 and
conversely decreased the expression of p-Cdc25C (Figure 6C–E). These findings aligned
with the observation of G2/M arrest following treatment with SFN and GEM in iCCA cells.
Meanwhile, we found that TUNEL-positive cell apoptosis was simultaneously increased
by treatment with SFN and GEM in HuCCT-1–derived xenograft tumors (Figure 6F,G).
Notably, the effects of SFN and GEM on intratumor cancer cell viability were also observed
in the HuH28-derived xenograft tumors (Figure S4A–G)
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Figure 6. Cell proliferation and apoptosis in iCCA-derived xenograft tumors by treatment with
SFN and GEM. (A,C,F) Representative images of HuCCT-1-grafted tumors stained with Ki67 (A),
p21, p-Chk2, and p-Cdc25C (C), TUNEL (F). Red triangles indicate intratumor apoptotic cells. Scale
bar; 100 µm. (B) Quantification of Ki67+ proliferative cancer cells. The values are indicated as
Ki67+ cancer cells/total cancer cells (%) in high power field (HPF). (D) Quantification of p21+ cancer
cells. Quantitative values are indicated as p21+ cancer cells/total cancer cells (%) in HPF. (E) Semi-
quantitation of p-Chk2+ or p-CdC25C+ cancer cells in HPF. The values are shown as fold changes
relative to the vehicle-treated group. (G) Quantification of TUNEL+ apoptotic cancer cells. The values
are indicated as TUNEL+ cancer cells/total cancer cells (%) in HPF. Each quantitative analysis was
performed for 10 fields per section. Data are mean ± SD (n = 20 tumors/10 mice; B,D,E,G). * p < 0.05,
** p < 0.01, indicating a significant difference between groups.
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3.7. SFN Attenuates Intratumor Angiogenesis and GEM-Mediated EMT in Human iCCA-Derived
Xenograft Tumors

Moreover, the effects of SFN and GEM on malignant potential, including pathological
angiogenesis and EMT in the xenograft tumors, were examined according to the findings
of the in vitro study. As presented in Figure 7A, CD34-positive neovascularization in
xenograft tumors derived from both HuCCT-1 and HuH28 was significantly reduced by
treatment with SFN. However, these anti-angiogenic effects were not observed in GEM-
treated mice (Figure 7A). The semi-quantitative analysis illustrated that the number of new
CD34-positive intratumor vessels was decreased by 50% in SFN-treated mice compared
to that in vehicle-treated mice (Figure 7B). In parallel with reduced neovascularization,
the intratumor expression of VEGFA and VEGFR2 was decreased in SFN-treated mice
(Figure 7C). Regarding EMT-related markers, we found that the intratumor mRNA expres-
sion of epithelial markers (CDH1 and KRT19) was decreased in GEM-treated mice, and
this effect was efficiently inhibited by SFN treatment (Figure 7D). In contrast, treatment
with SFN considerably attenuated the GEM-mediated increases in mesenchymal markers
(CDH2, VIM, MMP2, and MMP9, Figure 7D). Moreover, the effects of both agents on EMT-
related markers were similarly observed at the protein levels (Figure S5A,B). These findings
indicate that SFN ameliorated resistance to GEM by suppressing tumor angiogenesis and
EMT in iCCA cells.
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Figure 7. Intratumor angiogenesis and EMT in iCCA-derived xenograft tumors by treatment with
SFN and GEM. (A) Representative images of CD34+ neovascularization in the HuCCT-1 and HuH28-
grafted tumors. Scale bar; 100 µm. (B) Semi-quantitation of CD34+ vessels in the high-power field
(HPF) by ImageJ software. Quantitative analysis included 10 fields per section. (C,D) Relative mRNA
expression of pro-angiogenic VEGFA and VEGFR2 (C) and epithelial CDH1 and KRT19/mesenchymal
CDH2, VIM, MMP2 and MMP9 (D) in the HuCCT-1 and HuH28-grafted subcutaneous tumors.
GAPDH was used as an internal control for qRT-PCR. The values are shown as fold changes relative
to the vehicle group (B–D). Data are mean ± SD (n = 20 tumors/10 mice). * p < 0.05; ** p < 0.01
indicating a significant difference between groups.
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4. Discussion

This study first demonstrated that SFN, a phytochemical isothiocyanate agent, effec-
tively augmented the inhibitory effect of GEM on iCCA growth. Our results demonstrated
that SFN exerted multifunctional properties against the malignant potential of iCCA,
including anti-proliferative, pro-apoptotic, anti-invasive/migratory, anti-EMT and anti-
angiogenic effects. As the functional mechanism underlying these effects of SFN, we
suggested the inhibitory action on HDAC activity as well as the inductive action on HAT
activity leading to enhancement of histone H3, particularly H3K9 and H3K27 acetylation.
Previous studies reported that the dysfunction of HDAC enzymes and altered acetylation
status is relevant to the growth and malignant progression of CCA, including iCCA, and
several HDAC inhibitors have displayed suppressive effects on iCCA [14,15,31–33]. For
instance, chidamide, an HDAC inhibitor, has been reported to exert antitumor activities in
iCCA by promoting HDAC3-mediated forkhead box O1 acetylation [15]. Another report
has shown that peanut testa possessing HDAC inhibitory activity induces apoptosis in
iCCA cells [34]. Moreover, a recent report has demonstrated that SFN increases HAT
activity in human malignant melanoma cells [35]. These pieces of evidence support the
possible involvement of epigenetic modification in the SFN-mediated anti-cancer property
against human iCCA cells in our study. On the other hand, we found that SFN did not affect
histone H4 acetylation. The present study did not identify a pharmacological mechanism
to explain the differential effect of sulforaphane on H3 and H4 acetylation. Thus, a detailed
analysis is required in the future.

The present study primarily elucidated that SFN effectively suppressed cell prolifera-
tion in both moderately differentiated and undifferentiated iCCA lines. Several reports have
shown that SFN-mediated anti-cancer effects were involved in an increase of acetylated
histone H3 specifically associated with the promoter region of the p21 and BAX genes in
cancer cells [36,37]. Consistently with this evidence, our results showed that SFN increased
p21 expression leading to the phosphorylation of Chk2 and dephosphorylation of Cdc25C,
and consequently, it blocked cell cycle progression in the G2/M phase in human iCCA
cells. SFN also upregulated BAX expression, downregulated BCL-2 expression, and sup-
pressed the cleavage of caspase-3, indicating the activation of the mitochondrial apoptotic
pathway. It is known that H3K9ac and H3K27ac are highly correlated with transcriptional
activation [38]. Therefore, we hypothesized that SFN-mediated HDAC inhibition possibly
promoted the transcriptional activity of p21 and BAX by binding to both genes, enhancing
the binding of active modification of histones such as H3K9ac and H3K27ac to regulate
the expressions of both genes, thereby suppressing cell proliferation and augmenting cell
apoptosis. However, further investigation is necessary to clarify the histone acetylation in
the promoters of p21 and BAX, as well as the possible targets downstream of decreased
HDAC in SFN-treated human iCCA cells.

Of note, present results showed that a combination of SFN and GEM was likely to
ameliorate xenograft iCCA tumor progression more potently than cultured cell growth.
This discrepant finding is suggested to be attributable to the impact of SFN on other
malignant phenotypes, including cell invasion, angiogenesis, and EMT. The combination
treatment of SFN and GEM effectively suppressed cell invasion and migration at the doses
with tolerable cytotoxicity, consistent with the results from Wang et al. that co-treatment
of iCCA cells with several types of HDAC inhibitors (trichostatin A and valproic acid)
and GEM inhibited cell invasion, migration [33]. Moreover, we found that treatment
with GEM accelerated EMT, as indicated by the downregulation of epithelial markers
and upregulation of mesenchymal markers in both cultured iCCA cells and xenografted
tumors. It was noteworthy that SFN effectively inhibited GEM-induced EMT in both
iCCA cell lines. Among the malignant phenotypes, EMT has recently gained attention as a
potential mechanism of chemoresistance because of its ability to promote the acquisition of
cancer stemness and confer resistance to chemotherapy [39]. Indeed, resistance to GEM
in iCCA is also associated with EMT phenotype and cancer stem-like properties in the
tumor [40]. EMT is regulated by epigenetic changes, including histone modifications, and
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HDAC inhibitors are considered to modify EMT-related factors’ expression depending
on the cancertype [41]. Meanwhile, SFN is reported to inhibit EMT in several cancer cell
types by molecular mechanisms independently of histone modification [42–44]. Recent
studies illustrated that SFN could suppress the EMT in lung cancer cells by inhibiting the
GSK3β/β-catenin pathway and ERK5 activation [42,45]. Li et al. also demonstrated that
SFN-mediated inhibition of the sonic hedgehog–GLI pathway resulted in the suppression
of EMT in pancreatic cancer [46]. These findings evoke a hypothesis that the SFN-mediated
suppression of EMT in iCCA cells involves mechanisms beyond the inhibition of HDACs.
Thus, additional analyses are needed to clarify the underlying mechanism.

Furthermore, tumor-associated angiogenesis and VEGF expression are known to be
correlated with iCCA cancer progression, metastasis, and prognosis [47]. A previous ob-
servational study found that VEGF was expressed in 53.8% of 106 patients with iCCA,
and it was significantly associated with intrahepatic metastasis [48]. Notably, SFN ex-
erts anti-angiogenic effects by inhibiting hypoxia-induced HIF-1α and VEGF expression
in several cancers, including prostate, colon, and liver cancers [49–51]. Moreover, SFN
has been demonstrated to directly suppress proliferation, tubular formation, and matrix
metalloproteinase production in vascular endothelial cells [52]. We substantiated that
SFN reduced the expression of pro-angiogenic genes such as VEGFA, VEGFR2, HIF-1α,
and eNOS in iCCA cells and attenuated CD34-positive neovascularization in xenografted
tumors. As the inhibition of angiogenesis has been reported to abolish chemoresistance to
GEM, this anti-angiogenic property of SFN is potently associated with the augmentation of
GEM-mediated anti-cancer effects on iCCA [53].

The empirical results reported in this study should be considered in light of some
limitations. First, we demonstrated that the combination of SFN and GEM synergistically
augmented the anti-cancer effect on human iCCA cells by calculating the CI. However,
our study did not fully elucidate the pharmacological interaction between both agents to
explain this synergistic effect. Although the inhibition of GEM-induced EMT by SFN is
likely to be associated with this synergy, we will probably need further detailed research
by comprehensive molecular profiling. Second, although we defined the dose of SFN
(50 mg/kg/day) for the in vivo study, optimization is performed by evaluating the anti-
oxidative property of SFN in the liver. We confirmed that this dose efficiently reduced
HDAC activity in the xenografted tumors. Additionally, we observed that the doses of
SFN and GEM did not cause hepatic, biliary, or renal toxicity in mice. Thus, these doses
are assumed to be within the tolerance range for in vivo experiments. Third, the current
first-line chemotherapy for iCCA is based on GEM and CDDP. Therefore, additional study
is necessary to substantiate the enhanced efficacy of GEM and CDDP in combination with
SFN in the latest clinical setting.

In summary, the present study demonstrated that combination with SFN synergisti-
cally augments the tumor suppressive effects of GEM on human iCCA cell growth. This
effect of SFN is based on the inhibition of HDACs, leading to G2/M arrest; apoptosis; and
suppressed invasion, migration, EMT, and angiogenesis. As a less-toxic phytochemical, SFN
might eventually emerge as a viable modulator of GEM for patients with advanced iCCA.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12050687/s1, Figure S1: HDAC activity and cell viability in
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Figure S3: Liver, biliary and renal function in the HuCCT-1 and HuH28-xenografted mice; Figure S4:
Cell proliferation and apoptosis in iCCA-derived xenograft tumors by treatment with SFN and GEM;
Figure S5: Protein levels of EMT-related markers in human iCCA-derived xenograft tumors;Table S1:
List of primers for quantitative RT-PCR; Supplementary materials and methods [54,55].
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