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Abstract: Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with different
molecular subtypes. Although progress has been made, the identification of TNBC subtype-associated
biomarkers is still hindered by traditional RNA-seq or array technologies, since bulk data detected by
them usually have some non-disease tissue samples, or they are confined to measure the averaged
properties of whole tissues. To overcome these constraints and discover TNBC subtype-specific
prognosis signatures (TSPSigs), we proposed a single-cell RNA-seq-based bioinformatics approach
for identifying TSPSigs. Notably, the TSPSigs we developed mostly were found to be disease-related
and involved in cancer development through investigating their enrichment analysis results. In
addition, the prognostic power of TSPSigs was successfully confirmed in four independent validation
datasets. The multivariate analysis results showed that TSPSigs in two TNBC subtypes-BL1 and LAR,
were two independent prognostic factors. Further, analysis results of the TNBC cell lines revealed that
the TSPSigs expressions and drug sensitivities had significant associations. Based on the preceding
data, we concluded that TSPSigs could be exploited as novel candidate prognostic markers for TNBC
patients and applied to individualized treatment in the future.

Keywords: single-cell RNA-seq; TNBC subtype-specific; prognosis signature

1. Introduction

Triple-negative breast cancer (TNBC) is characterized by the loss of expression of
the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth
factor receptor 2 (HER2) [1–4]. As the most aggressive and malignant subtype, it accounts
for approximately 10–20% of all breast cancers (BCs) and has a poorer prognosis, when
compared with other subtypes [5–7]. Since TNBC has significantly high heterogeneities
in different molecular subtypes [8], some classical TNBC subtyping approaches have
been proposed by using gene expression data and comprehensively applied in RNA-
seq or microarray analysis. For example, the classical PAM50 method used for the BC
subtyping was also applied in the TNBC subtyping, it contains five molecular subtypes
(luminal A, luminal B, HER2-enriched, basal-like, and normal-like,) and subsequent studies
found that the majority of TNBC tumors were of the basal-like PAM50 subtype [9–11].
Lehmann et al. first identified six molecular subtypes of TNBC, based on the microarray
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gene expression data from the bulk tumor tissues and named TNBCtype, which includes
basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), luminal androgen receptor
(LAR), mesenchymal (M), and mesenchymal stem-like (MSL) [12,13]. Subsequently, they
found that transcripts in the IM and MSL subtypes were not contributed from cancer
cells directly, so the classification criterion of TNBCtype was refined into TNBCtype-
4 with BL1, BL2, LAR, and M [14]. These TNBC subtype classification methods not
only provided the fundamental basis for the TNBC subtype stratification but also overall
enhanced the personalized study in different TNBC subtypes. For example, Gulbahce
et al. found significant differences in the PAM50 subtypes among different age groups
in TNBC, and observed that older women with the basal-like TNBC subtype had worse
survival outcomes [15]. Bareche et al. showed a significant genomic heterogeneity and
distinct overall survival among the TNBCtype subtypes, providing new insights into
the development of TNBC [16]. Harano et al. revealed that the immune cell infiltration
in tumors varied in the different TNBCtype-4 subtypes, which might lead to different
responses to chemotherapy [17]. Lehmann et al. conducted a comprehensive subtype-
specific analysis of TNBC, they identified characteristics and treatment strategies of the
TNBCtype-4 subtypes, which provided help for therapy of the TNBC subtypes [18].

Although TNBCtype-4 has been well established for TNBC research, the TNBC
subtype-specific prognosis signatures have not been identified yet. The major reasons
include the limited sample size of the gene expression data for each TNBC subtype and
the heterogeneity of the different TNBC cohorts. The availability of the high-quality single-
cell RNA-seq (scRNA-seq) of TNBC provides the opportunity to tackle this challenging
problem.

Distinguishing to RNA-seq or microarray technologies, the later scRNA-seq technol-
ogy enables to more accurately differentiate cell types at a single-cell resolution, which
gives more promise for precisely characterizing the gene expression in individual tumor
cells [19,20]. With the advantage of it, a couple of TNBC subtype researches have been
conducted to improve the understanding of the TNBC subtypes. Karaayvaz et al. assigned
868 TNBC malignant epithelial cells to the TNBCtype-4 subtypes and found that multiple
TNBC subtypes were expressed among the cells of each tumor, showing the intratumoral
heterogeneity of the gene expression subtypes [21]. Zhou et al. used scRNA-seq data
with 1189 cells to comprehensively analyze the gene regulatory network of the molecular
subtypes in TNBC patients and dissected the critical genes for each molecular subtype, and
found that the critical genes might play diverse roles in the different subtypes [22].

It’s critical to develop the TNBC subtype-specific prognosis gene signatures to facilitate
the personalized treatment for TNBC. Here, we presented a single-cell RNA-seq-based
method to identify the TNBC subtype-specific prognosis signatures. To comprehensively
investigate and assess the identified TSPSigs in multiple aspects, the function enrichment,
the differences from the background genes, prognosis, and a drug sensitivity analysis were
carried out. We found that most TSPSigs were closely related to the development of TNBC
and associated with drug sensitivities, and had a good prognostic efficiency, which could
provide new insights into the exploration of the TNBC subtypes and would aid in the
TNBC prognosis.

2. Materials and Methods
2.1. scRNA-Seq Datasets

We downloaded the TNBC scRNA-seq dataset and selected the GSE176078 cohort from
the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/ (accessed on
2 June 2021)), which comprised 42,512 cells of 10 TNBC patients and was detected by the
Illumina NextSeq 500 platform (GPL18573) [23]. Considering the presence of the tumor
microenvironment or non-tumor cells in GSE176078, we extracted 10,836 cancer epithelial
cells following the original cell annotation file (annotated by Garnett v.0.1.4) of this dataset
(Table 1). To avoid the influence of non-coding RNAs and pseudogenes annotated in the
sequencing platform, we only retained 17,497 protein-coding genes according to the gene
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annotation file (GRCh38) from GEOCODE (https://www.gencodegenes.org/ (accessed
on 8 December 2020)). At the same time, we removed low-quality cells and genes with
a too low expression and removed all of the mitochondrial and ribosomal genes as well.
Normalization by deconvolution was then performed for the unique molecular identifier
(UMI) counts of GSE176078. The flowchart of this study was shown in Figure 1.

Table 1. Summary of the TNBC subtype patients/epithelial cells in the datasets used in this study.

Series Platforms No. of Samples/Cells BL1 BL2 LAR M Others

GSE176078 Illumina NextSeq 500 (GPL18573) 10,836 cells 996 614 842 84 8300

TCGA Illumina HiSeq 2000 123 samples 29 19 13 29 33

METABRIC Illumina HT-12 v3 299 samples 105 55 60 54 25

GSE58812 Affymetrix Human Genome U133 Plus 2.0
Array (GPL570) 107 samples 30 17 12 22 26

GSE96058 Illumina HiSeq 2000 (GPL11154)
Illumina NextSeq 500 (GPL18573) 151 samples 49 21 22 32 27
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2.2. RNA-Seq and the Array Detection Datasets

Four external TNBC validation datasets and their corresponding clinical informa-
tion were downloaded separately from TCGA (UCSC Xena, https://xenabrowser.net/
(accessed on 15 July 2021)) [24], METABRIC (cBioportal, http://www.cbioportal.org/ (ac-
cessed on 23 July 2021)) [25], and GEO. Among them, TCGA and METABRIC contain 123
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and 299 TNBC patient samples, while GSE58812 [26] and GSE96058 [27] contain 107 and
151, respectively (Table 1).

2.3. TNBCtype-4 Subtypes Classification

To classify and identify the TNBC subtype for each cancer epithelial cell in GSE176078,
the TNBCtype tool (http://cbc.mc.vanderbilt.edu/tnbc/ (accessed on 10 October 2021))
was used and the cells with the highest positive correlation coefficient with the TNBCtype-
4 subtypes (BL1, BL2, LAR, and M) were respectively assigned to the corresponding
TNBC subtypes. The same classification was performed in four validation datasets by the
TNBCtype-4 subtyping approach.

2.4. TSPSigs Identification

Because the distinct TNBC subtype patients have a different clinical behavior [28,29],
we thought that the recognized TSPSigs should be specific and different. Therefore, we
identified TSPSig for each TNBC subtype using the CM1 score algorithm, a supervised
univariate method to measure the expression difference of objects between two different
classes [30]. In each TNBC subtype, the CM1 score for each gene in the subtype was
calculated by:

CM1i =
xi − yi

1 + (max{yi} −min{yi})
(1)

where xi is the average expression value of the gene i in the subtype, yi is the average ex-
pression value of the gene i in other subtypes; max{yi} and min{yi} represent the maximum
and minimum expression values of gene i in the other subtypes.

Then, the CM1 scores for all genes were calculated and arranged in descending order.
The most important eight genes (the top and bottom four genes correspond to the up- or
down-regulated ones, respectively) were then selected from the ranking list, as candidate
genes for the subtype. When the candidate genes for four TNBC subtypes were determined,
the overlapping genes in any two candidate gene lists were removed, and the corresponding
TSPSigs were generated.

2.5. Function Enrichment Analysis

We performed an enrichment analysis for TSPSigs using the R package “clusterProfiler”,
based on the canonical pathway gene set collections from the MSigDB database (https://
www.gsea-msigdb.org/gsea/msigdb/ (accessed on 1 December 2022)) (p value < 0.05) [31].

2.6. Representative Evaluation of TSPSigs

To determine whether TSPSigs were representative, we compared the differences in the
gene expression, the information entropy, and the inter-gene expression correlation between
TSPSigs and the background genes (generated by subtracting TSPSigs from 12,625 genes
detected by scRNA-seq).

2.7. Prognostic Evaluation of TSPSigs

We evaluated the prognostic powers of TSPSigs, using data from TCGA, METABRIC,
GSE58812, and GSE96058. For each TNBC subtype, patients in validation cohorts were
separated into high- and low-risk groups by the cutoff point defined by the “survminer”
package [32]. A Kaplan-Meier (K-M) survival curve and log-rank test were then used to
evaluate the difference in the overall survival (OS) between these two groups. For each
TSPSig, to detect whether it could be an independent prognostic factor, univariate and
multivariate Cox regression analyses were carried out with TSPSig and several clinical
features (age, stage, chemotherapy, tumor size, and hormone therapy) using the R package
“survival”. Then, the nomogram model was constructed for predicting the OS in patients
with this TNBC subtype [33]. The calibration curve and time-dependent receiver operating
characteristic (ROC) curve analyses were performed to validate the accuracy of each
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nomogram model for predicting the OS of the TNBC patients at 3- and 5-years. In addition,
the prognostic analysis of the TNBC patients who had received chemotherapy in TCGA,
METABRIC, and GSE96058, was performed to estimate the predictive powers of TSPSigs.
Similarly, a survival analysis of the disease-free interval (DFI), relapse-free survival (RFS),
and metastasis-free survival (MFS) in the TCGA, METABRIC, and GSE58812 datasets were
carried out, respectively.

2.8. Analysis of the TSPSigs Expressions Correlation with the Drug Sensitivities

To explore the effect of TSPSig on the therapeutic responses in each TNBC subtype, we
investigated the relations between the TSPSig expression and drug sensitivity. We down-
loaded the expression and drug sensitivity data (the half maximal inhibitory concentration
(IC50)) for the breast cancer cell lines from the Genomics of Drug Sensitivity in Cancer
(GDSC) (https://www.cancerrxgene.org/ (accessed on 17 November 2021)) and extracted
26 TNBC cell lines, which were then classified by the TNBCtype-4 subtyping approach.
For each TNBC subtype, the TNBC cell lines were divided into high- and low-expression
groups, based on the median expression value of TSPSig, and the differences in the IC50
values of the compounds between these two groups were compared. The Spearman correla-
tion coefficients were used to evaluate the correlations between the TSPSig expression levels
and the drug sensitivity to 367 compounds (p < 0.05 was considered significantly related).

3. Results
3.1. Identification of TSPSigs, Based on the scRNA-Seq Data

With the advantages of the scRNA-seq technology in enabling the accurate characteri-
zation of the cell properties from complex tissues, we carried out TNBC subtype analyses at
a single-cell resolution and aimed to identify TSPSigs for further uncovering the potential
pathogenic mechanisms of them. So GSE176078, which has 10 TNBC patients associated
with 42,512 cells was selected and used. To eliminate the influence of non-disease cells,
10,836 cancer epithelial cells with a “pure” disease state were extracted from their original
cell annotation file (Figure 2A). We removed the low-quality cells and protein-coding genes
with a too low expression, 10,701 cells and 12,625 genes finally remained. Following the
classification of the cancer epithelial cells by the TNBCtype-4 subtyping approach, the num-
bers of cells of BL1-, BL2-, LAR-, and M-subtypes were 996, 614, 842, and 84, respectively.
The application of the CM1 score method, 4, 6, 6, and 6 genes were separately discovered
and considered as the BL1-, BL2-, LAR-, and M-TSPSig (Figure 2B and Supplementary
Table S1). We found that eight out of the 22 genes of four TSPSigs were TNBC known
disease genes and they were recorded in DisGeNET (https://www.disgenet.org/ (accessed
on 18 October 2021)), including CD24, AR, EPCAM, NFIB, S100A4, IDH2, LGALS1, and
AZGP1 (Figure 2C). Among these, CD24 was found to be a promising treatment target for
TNBC and its overexpression was markedly associated with a shorter OS in TNBC [34,35].
Several reports found that AR was highly expressed in the LAR-subtype, compared with
other subtypes and demonstrated the prognostic worth of AR in TNBC [12,36]. As a tumor-
associated antigen, the EPCAM overexpression was in connection with a poorer prognosis
in most TNBC tumors [37,38]. NFIB was known for having a higher expression in TNBC
and could be served as a potential therapeutic target in the TNBC patients [39,40]. It has
been found that S100A4 was related to the TNBC cell motility, invasion, and metastasis [41].
Mutations of the IDH family gene-IDH1 and IDH2 were most frequently detected in TNBC
patients during the analysis of the discordance between the immunohistochemistry (IHC)-
based surrogate subtyping and the PAM50 intrinsic subtypes [42]. Galectin-1, encoded by
the LGALS1 gene, was found to be significantly up-regulated in the TNBC patients and
was regarded as a potential TNBC-specific cell surface marker [43]. AZGP1 was overex-
pressed in TNBC and might be used as a potential marker to discriminate TNBC from other
non-TNBC tumors [44]. These findings further demonstrated that the TSPSig genes were
closely related to TNBC.

https://www.cancerrxgene.org/
https://www.disgenet.org/
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Figure 2. Identification of TSPSigs. (A) UMAP plot for the TNBC cancer epithelial cells and other cells
in GSE176078. (B) Heatmap showed the CM1 scores of genes in TSPSigs. Annotated row: (1) CM1
score group: positive- and negative-CM1 scores were colored in red and purple, respectively, and
(2) TSPSigs. (C) Plot for the known TNBC disease genes (colored in red) in each TSPSig. Differences
between TSPSigs and the background genes in (D) the gene expression, (E) information entropy, and
the inter-gene expression correlation.

Functional enrichment analysis was then performed, and the results revealed the
functional heterogeneity among TSPSigs and their close associations with cancer devel-
opment (Supplementary Table S2). Among that, BL1-TSPSig was mainly enriched in the
“RHOB GTPase cycle”, “cell adhesion molecules (CAMs)”, and the “CXCR4-mediated
signaling events” pathways. BL2-TSPSig was mainly enriched in the “regulation of TLR by
endogenous ligand”, “endogenous TLR signaling”, and “RHO GTPases activate NADPH
oxidases” pathways. LAR-TSPSig was enriched in the “regulation of the androgen receptor
activity”, “RHO GTPase effectors”, and “TNF-alpha signaling” pathways. M-TSPSig was
mainly correlated with the “mitochondrial biogenesis”, “pyruvate metabolism and citric
Acid (TCA) cycle”, and the “tyrosine metabolism” pathways, etc.

3.2. TSPSigs Were More Representative

We then compared the differences between TSPSigs and the background genes in the
gene expression, information entropy, and inter-gene expression correlation, and found
that most TSPSigs were significantly higher than the background genes in the above
three aspects, indicating that TSPSigs were representative in their corresponding subtypes
(Figure 2D,E).

3.3. Evaluation of the TSPSigs’ Prognosis in Four Validation Cohorts

To evaluate the prognostic powers of TSPSigs, we performed a prognosis analysis in
four TNBC validation datasets, including TCGA (n = 123), METABRIC (n = 299), GSE96058
(n = 151), and GSE58812 (n = 107) (Table 1). The results showed that BL1-TSPSig could
efficiently stratify the BL1-subtype patients with an OS into the high-risk group (n = 27
and 13, respectively) and low-risk group (n = 2 and 92) in TCGA (HR = 0.15, p = 0.026)
and METABRIC (HR = 3.15, p = 0.001) (Figure 3A). BL2-TSPSig was able to successfully
stratify the BL2-subtype patients into high- and low-risk groups (n = 3 and 16) in TCGA
(HR = 11, p = 0.056) (Figure 3B). LAR-TSPSig could separately classify the LAR-subtype
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patients into the high-risk group (n = 20, 4 and 6) and low-risk group (n = 40, 8, and 16)
with significantly different OS in METABRIC (HR = 1.92, p = 0.042), GSE58812 (HR = 10.64,
p = 0.041), and GSE96058 (HR = 4.75, p = 0.048) (Figure 3C). M-TSPSig also had a good
efficiency in classifying the M-subtype patients into high- and low-risk groups (n = 8 and
14) in GSE58812 (HR = 4.92, p = 0.012) (Figure 3D).
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What’s more, we also explored the effectiveness of each TSPSig in predicting other clin-
ical outcomes with DFI, RFS, and MFS in TCGA, METABRIC, and GSE58812, respectively.
The results showed that BL1-TSPSig could effectively predict DFI (HR = 0.11, p = 0.057)
and RFS (HR = 3.18, p = 0.002) of the BL1-subtype patients in TCGA and METABRIC,
respectively (Supplementary Figure S1A). BL2-TSPSig could successfully predict DFI
(HR = 0.03, p = 0.001) of the BL2-subtype patients in TCGA (Supplementary Figure S1B).
LAR-TSPSig had good predictive powers in predicting MFS (HR = 10.22, p = 0.044) of
the LAR-subtype patients in GSE58812 (Supplementary Figure S1C). M-TSPSig could
successfully predict MFS (HR = 5.48, p = 0.008) of the M-subtype patients in GSE58812
(Supplementary Figure S1D). Taken together, most TSPSigs exhibited a good prognostic
efficacy in predicting the OS and other clinical outcomes of the TNBC subtype patients.
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3.4. Independent Prognostic Factor Assessment and the Nomogram Construction

To further investigate whether each TSPSig was a prognostic factor independent
of other clinical factors in the validation datasets, the univariate and multivariate Cox
regression analyses were performed (Table 2). Due to the small sample size (<50) of
the TNBC subtypes in the TCGA and GEO datasets, only the METABRIC dataset with
299 TNBC patient samples could be used for the analysis. We found that BL1-TSPSig
(HR = 2.692, p = 0.020) was an independent prognostic factor for patients with the BL1-
subtype. Stage (HR = 3.293, p = 0.037) was an independent prognostic factor for patients
with the BL2-subtype. In the LAR-subtype, LAR-TSPSig (HR = 2.369, p = 0.028) and tumor
size (HR = 1.021, p = 0.018) were two independent prognostic factors. While, tumor size
(HR = 1.028, p = 0.035) and stage (HR = 9.161, p = 0.014) were two independent prognostic
factors for patients with the M-subtype.

Table 2. Univariate and multivariate Cox regression analyses of the OS in each TNBC subtype.

Univariate Analysis Multivariate Analysis

Variables HR 95% CI p-Value HR 95% CI p-Value

BL1-subtype

BL1-TSPSig (high vs. low) 2.716 1.258–5.865 0.011 * 2.692 1.171–6.188 0.020 *

Chemotherapy (yes vs. no) 1.027 0.524–2.010 0.939 1.567 0.643–3.819 0.323

Age 1.021 0.994–1.049 0.126 1.018 0.984–1.053 0.302

Tumor_size 1.031 1.006–1.056 0.014 * 1.031 0.999–1.064 0.062 .

Stage (III vs. I/II) 1.310 0.314–5.472 0.711 0.597 0.107–3.342 0.557

BL2-subtype

BL2-TSPSig (high vs. low) 2.006 0.656–6.139 0.222 1.330 0.208–8.525 0.763

Chemotherapy (yes vs. no) 0.609 0.241–1.539 0.295 0.455 0.123–1.682 0.238

Age 1.035 1.000–1.074 0.067 . 1.028 0.981–1.077 0.247

Tumor_size 1.023 1.003–1.045 0.025 * 1.017 0.989–1.045 0.237

Stage (III vs. I/II) 3.400 1.320–8.759 0.011 * 3.293 1.075–10.093 0.037 *

LAR-subtype

LAR-TSPSig (high vs. low) 2.361 1.129–4.938 0.023 * 2.369 1.100–5.105 0.028 *

Chemotherapy (yes vs. no) 1.396 0.680–2.863 0.364 1.404 0.561–3.515 0.468

Age 1.015 0.982–1.050 0.376 1.008 0.968–1.051 0.694

Tumor_size 1.023 1.007–1.039 0.006 ** 1.021 1.004–1.039 0.018 *

Stage (III vs. I/II) 2.130 0.805–5.627 0.128 1.049 0.335–3.283 0.934

M-subtype

M-TSPSig (high vs. low) 0.497 0.147–1.674 0.259 0.501 0.143–1.759 0.281

Chemotherapy (yes vs. no) 1.195 0.515–2.775 0.678 1.283 0.372–4.424 0.693

Age 0.991 0.957–1.027 0.624 1.001 0.954–1.050 0.970

Tumor_size 1.025 1.000–1.051 0.046 * 1.028 1.002–1.055 0.035 *

Stage (III vs. I/II) 10.38 2.079–51.830 0.004 ** 9.161 1.558–53.863 0.014 *

TSPSig, the TNBC subtype-specific prognosis signature; **, p < 0.01; *, 0.01 ≤ p < 0.05; ., 0.05 ≤ p < 0.1.

Based on the multivariate Cox regression analysis, we then constructed a compre-
hensive nomogram for each TNBC subtype to predict the overall survival of the TNBC
patients at the 3- and 5-year follow-ups (Figure 4A). A calibration curve and ROC curve
were used to measure the predictive accuracy of the nomogram. The calibration curve
of each TNBC subtype showed a good agreement between the predicted and actual OS
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(Figure 4B). For the BL1-, BL2-, LAR-, and M-subtypes, the area under the ROC (AUC)
values of 3- and 5-years were 0.708 and 0.653, 0.655 and 0.705, 0.779 and 0.787, and 0.790
and 0.771, respectively, confirming that the nomogram models had a good capacity in
predicting the OS (Figure 4C).
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Similarly to the OS analysis, we also performed the above analysis for the RFS in the
METABRIC dataset, and the results showed that BL1-TSPSig and LAR-TSPSig were also
independent prognostic factors in predicting the RFS, and the nomogram performed well in
predicting the RFS in the corresponding TNBC subtype patients, which was consistent with
the result of predicting the OS (Supplementary Table S3 and Supplementary Figure S2).

3.5. The Predictive Powers of TSPSigs in Patients with Chemotherapy

Usually, TNBC patients are more sensitive to chemotherapy, but their tumors tend to
have a high risk for the disease progression [45–47], so we further examined the predic-
tive powers of each TSPSig for patients with chemotherapy in TCGA, METABRIC, and
GSE96058, which had 83, 157, and 104 patients, respectively (Supplementary Table S4).
Through the analysis, we found that BL1-TSPSig could perfectly classify the BL1-subtype
patients into high- (n = 8 and 19) and low-risk groups (n = 59 and 19) with a markedly
different OS in METABRIC (HR = 3.69, p = 0.002) and GSE96058 (HR = 0.11, p = 0.037)
(Figure 5A). Similarly, M-TSPSig had a good performance in stratifying the M-subtype
patients with chemotherapy into high- and low-risk groups (n = 6 and 15) in METABRIC
(HR = 0.22, p = 0.038). Yet, BL2-TSPSig and LAR-TSPSig were less able to distinguish
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patients with chemotherapy into high- and low-risk groups, significantly, whose p values
ranged from 0.068 to 0.087 in TCGA, METABRIC, and GSE96058.
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expressions and drug sensitivities. (A) Kaplan-Meier survival curves of the OS between high-risk and
low-risk patients with chemotherapy of each TNBC subtype in three validation datasets (METABRIC,
GSE96058, and TCGA). (B) Differences in the IC50 values of the BL2-subtype cell lines treated with
seven drug components between the BL2-TSPSig high- and low-expression groups. (C) Correlations
between each TSPSig expression level and drug sensitivity (IC50). A positive (or negative) correlation
means that the high expression of TSPSig was resistant (or sensitive) to the drug.

3.6. TSPSigs Expressions Were Associated with Drug Sensitivities

To further study the links between TSPSigs and the drug activities on the TNBC cell
lines, we obtained the gene expression and drug sensitivity data (IC50) of the TNBC cell
lines from GDSC. These cell lines were then classified into TNBCtype-4 subtypes, including
6 BL1-, 8 BL2-, 4 LAR-, and 6 M-subtypes (Supplementary Table S5). For each subtype, the
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high- and low-expression groups were determined by their corresponding TSPSig and the
differences in the drug sensitivity between these two groups were evaluated. We found
that the IC50 values of seven compounds (Avagacestat, Pazopanib, BX-912, GSK1070916,
JQ1, KU-55933, and OSI-027) in the BL2-TSPSig high-expression group were significantly
lower than in the low-expression group (p = 0.029), which suggested that the BL2-subtype
cell lines with a higher expression of BL2-TSPSig, were more sensitive to these seven
drugs (Figure 5B).

Next, a Spearman correlation analysis was performed to evaluate the correlations be-
tween four TSPSigs expression levels and drug sensitivities. We found that the expressions
of BL1-, BL2-, and M-TSPSig were significantly correlated (p < 0.05) with the sensitivities of
multiple drugs in their corresponding TNBC subtype cell lines (Figure 5C). Among them,
higher expression levels of BL1-TSPSig were associated with the increased sensitivity of
the BL1-subtype cell lines to PF-4708671 and Linifanib but led to an increased resistance to
SN-38 and PARP_0108. Higher expression levels of BL2-TSPSig could increase the sensitiv-
ity of the BL2-subtype cell lines to Avagacestat and Alisertib. What’s more, the M-subtype
cell lines with higher M-TSPSig expression levels were more sensitive to AZD7762, MIM1
and LCL161, and so on, but resistive to several compounds, such as Pictilisib, BPTES,
and GSK269962A.

4. Discussion

To our knowledge, studies on systematically identifying the TNBC subtype-specific
prognosis gene markers are still very lacking. Depending on the TNBC subtype-related
cells with a “pure” disease state extracted from the scRNA-seq data, we developed a
single-cell RNA-seq-based bioinformatics approach to identify TSPSigs and tried to capture
TSPSigs with real pathogenic functions in their respective subtypes. Through an analysis
of the TNBC scRNA-seq data of GSE176078, TSPSigs were identified, and we found some
TSPSigs were known disease genes and had a good capability in predicting patient survival
and effect on the drug response in the validation datasets. Therefore, we thought that
these TSPSigs would help to further open up new ideas for TNBC research and benefit the
personalized treatment.

Since distinct TNBC subtypes are biologically diverse and have a highly intertumoral
heterogeneity, it is very important and necessitated to classify its subtypes more accurately
in most research studies, so we applied the TNBCtype-4 subtyping approach, one of the
most widely used gene expression-based molecular classifications, to stratify all TNBC
patient cells or samples, no matter the scRNA-seq, RNA-seq and gene expression data from
GEO, TCGA, and METABRIC. We considered that its precise stratification in the TNBC sub-
types enables us to conduct individualized studies for patients in each subtype, facilitating
the identification of the subtype-specific prognosis signatures. To further construct TSPSigs,
we integrated the ranking feature method named the CM1 score, whose original function is
suitable for identifying specific biomarkers for individual subtypes in our approach. Indeed,
we found that TSPSigs captured by the CM1 score method were more representative and
they were significantly higher than background genes in the gene expression, information
entropy, and inter-gene expression correlation. In these TSPSigs, except the aforementioned
TNBC known disease-related genes described in the “Results” section, we also found that
some other genes of TSPSigs might serve as potential therapeutic and prognostic gene
targets in TNBC, which reinforced the associations between TSPSigs and TNBC. For in-
stance, RHOB was found to be critical for the TNBC cell migration and the RHOB inhibitors
could be conducive to the improved therapy response of the TNBC patients with brain
metastases [48]. The activity of UCHL1 was significantly increased in the TNBC cell lines
when compared to the non-TNBC cell lines and it might be a potential therapeutic target
for TNBC [49,50]. Recent research found that S100A9 was significantly highly expressed in
the TNBC subtype, which was associated with poorer clinical outcomes, and it could be
used as a prognostic indicator of TNBC [51]. Zhou et al. demonstrated that SPDEF might
be closely associated with the development and prognosis of TNBC [52]. By studying the
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relationship between the overexpression of MIF and the growth and metastasis of TNBC,
Charan et al. found that using MIF inhibitors may inhibit the progression and metastasis of
TNBC [53]. Summarily, combined with the evaluation results provided above, we believed
that these TSPSigs could be used as potential prognostic markers to guide the prognosis
treatment of TNBC patients. Interestingly, we found that higher expression levels of BL1-
and M-TSPSig led to the increased resistance of the corresponding subtype cell lines to
some drugs, whose drug targets were, respectively, TOP1, PI3K, GLS, EPHB4, the PARP
family gene (PARP1, PARP2 and PARP6), and the ROCK family gene (ROCK1 and ROCK2).
With the increase of the TSPSigs expression levels, the drug targets and pathways might be
affected, leading to drug resistance, but the specific reason of TSPSigs in mediating drug
activities may need further exploration in the future.

There were some shortcomings in our approach. Firstly, the TNBCtype-4 approach
could filter a large number of samples that did not meet the classification threshold cri-
teria during the subtyping, so the small sample size of each subtype in TCGA and GEO
potentially hampered the evaluations of TSPSigs for judging them as independent prog-
nostic factors; Secondly, although some known disease genes of TNBC existed and were
recorded in DisGeNET, the associations between the TNBC subtype and the known disease
genes were rarely reported, which makes it difficult to carry out a more comprehensive
TSPSig assessment, therefore, more in-depth explorations were needed to be conducted in
future work.

5. Conclusions

We proposed a single-cell RNA-seq-based approach to identify TSPSigs in specific
TNBC subtypes and analyzed them from multiple aspects. The analysis results demon-
strated that TSPSigs were closely correlated with the TNBC tumor development and had a
good ability to distinguish the distinct TNBC subtype patients with different clinical prog-
nostic outcomes. We expected that the systematic study of TSPSigs at a single cell resolution
will help provide a novel direction for exploring the subtype-related gene biomarkers for
the TNBC diagnosis and treatment, which will benefit the personalized treatment strategies
for the TNBC subtype patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12030367/s1, Table S1: Gene composition of each TNBC
subtype-specific prognosis signature (TSPSig); Table S2: Enrichment analysis results; Table S3:
Univariate and multivariate Cox regression analyses of the RFS in each TNBC subtype; Table S4:
Summary of the TNBC subtype patients with chemotherapy, in three validation datasets; Table S5:
Summary information of the TNBC subtype cell lines; Figure S1: Kaplan-Meier survival curves
of other clinical outcomes between high-risk and low-risk patients with each TNBC subtype, in
three validation datasets (DFI in TCGA, RFS in METABRIC, and MFS in GSE58812). (A) BL1-subtype,
(B) BL2-subtype, (C) LAR-subtype, (D) M-subtype; Figure S2: Nomogram, calibration curve and the
AUC of the nomogram model, based on the ROC curve used to predict the RFS time of patients with
each subtype in the METABRIC dataset. (A) Nomogram, (B) calibration curve, (C) ROC curve.

Author Contributions: Data curation, Z.W. and X.Q.; Formal analysis, K.X. and B.Z.; Funding
acquisition, C.X.; Project administration, B.Z.; Software, Y.Z.; Supervision, X.Z.; Investigation, T.C.;
Validation, K.X.; Vis-ualization, J.G.; Conceptualization, C.X. and X.S.C.; Writing—original draft,
K.X. and C.X.; Writing—review & editing, K.X. and X.S.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Science Foundation of Heilongjiang Province
(Grant Nos. YQ2019C012). HMU Marshal Initiative Funding (Grant Nos. HMUMIF-21008). The
Department of Heilongjiang Province (Grant No. 12541415). The Heilongjiang Natural Science Fund
Project (Grant No. LH2019C087). The Postdoctoral project of Heilongjiang Province (Grant No.
LBH-Z14130). National Natural Science Foundation of China (32200541). The China Postdoctoral
Science Foundation (2020M681118). The Heilongjiang Postdoctoral Foundation (LBH-Z20166). The
Fundamental Research Funds for the Provincial Universities of Heilongjiang (2020-KYYWF-1426).

https://www.mdpi.com/article/10.3390/cells12030367/s1
https://www.mdpi.com/article/10.3390/cells12030367/s1


Cells 2023, 12, 367 13 of 15

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the main text or in the Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, Y.; Jiang, Z.; Chen, C.; Wang, X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J. Exp.

Clin. Cancer Res. 2018, 37, 327. [CrossRef] [PubMed]
2. Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [CrossRef]

[PubMed]
3. Hua, Z.; White, J.; Zhou, J. Cancer stem cells in TNBC. Semin. Cancer Biol. 2022, 82, 26–34. [CrossRef] [PubMed]
4. Xiao, Y.; Ma, D.; Yang, Y.-S.; Yang, F.; Ding, J.-H.; Gong, Y.; Jiang, L.; Ge, L.-P.; Wu, S.-Y.; Yu, Q.; et al. Comprehensive metabolomics

expands precision medicine for triple-negative breast cancer. Cell Res. 2022, 32, 477–490. [CrossRef] [PubMed]
5. Aysola, K.; Desai, A.; Welch, C.; Xu, J.; Qin, Y.; Reddy, V.; Matthews, R.; Owens, C.; Okoli, J.; Beech, D.J.; et al. Triple Negative

Breast Cancer—An Overview. Hered. Genet. 2013, 2013 (Suppl. 2), 001.
6. Hossain, F.; Majumder, S.; David, J.; Miele, L. Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and

Future Directions. Cancers 2021, 13, 3739. [CrossRef] [PubMed]
7. Ferrari, P.; Scatena, C.; Ghilli, M.; Bargagna, I.; Lorenzini, G.; Nicolini, A. Molecular Mechanisms, Biomarkers and Emerging

Therapies for Chemotherapy Resistant TNBC. Int. J. Mol. Sci. 2022, 23, 1665. [CrossRef]
8. Dass, S.; Tan, K.; Rajan, R.S.; Mokhtar, N.; Adzmi, E.M.; Rahman, W.W.A.; Din, T.T.; Balakrishnan, V. Triple Negative Breast

Cancer: A Review of Present and Future Diagnostic Modalities. Medicina 2021, 57, 62. [CrossRef] [PubMed]
9. Parker, J.S.; Mullins, M.; Cheang, M.C.U.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised

Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [CrossRef]
10. Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.;

et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [CrossRef]
11. Filho, O.M.; Stover, D.G.; Asad, S.; Ansell, P.J.; Watson, M.; Loibl, S.; Geyer, C.E., Jr.; Bae, J.; Collier, K.; Cherian, M.; et al.

Association of Immunophenotype with Pathologic Complete Response to Neoadjuvant Chemotherapy for Triple-Negative Breast
Cancer: A Secondary Analysis of the BrighTNess Phase 3 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 603–608. [CrossRef]
[PubMed]

12. Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human
triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121,
2750–2767. [CrossRef] [PubMed]

13. Chen, X.; Li, J.; Gray, W.H.; Lehmann, B.D.; Bauer, J.A.; Shyr, Y.; Pietenpol, J.A. TNBCtype: A Subtyping Tool for Triple-Negative
Breast Cancer. Cancer Informatics 2012, 11, 147–156. [CrossRef] [PubMed]
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