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Abstract: Immunotherapy has brought new hope for cancer patients in recent times. However,
despite the promising success of immunotherapy, there is still a need to address major challenges
including heterogeneity in response among patients, the reoccurrence of the disease, and iRAEs
(immune-related adverse effects). The first critical step towards solving these issues is understanding
the epigenomic events that play a significant role in the regulation of specific biomolecules in the
context of the immune population present in the tumor immune microenvironment (TIME) during
various treatments and responses. A prominent advantage of this step is that it would enable
researchers to harness the reversibility of epigenetic modifications for their druggability. Therefore,
we reviewed the crucial studies in which varying epigenomic events were captured with immuno-
oncology set-ups. Finally, we discuss the therapeutic possibilities of their utilization for the betterment
of immunotherapy in terms of diagnosis, progression, and cure for cancer patients.
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1. Introduction

Immunotherapy (a type of cancer treatment that relies on empowering the body’s
own immune cells to fight cancer) has expanded to include: i—immune checkpoint/ligand
inhibitors (CTLA-4, PD-1, PD-L1/L2, TIM3, and TIGIT) [1–12]; ii—adoptive T-cell trans-
fer therapy (CAR-T, TCR-T, TIL and NK cell) [13–17]; iii—cancer vaccines (T-vec, BCG
and Sipuleucel-T) [18,19]; and iv—immunomodulators (thalidomide, lenalidomide and
pomalidomide) [20–23]. Immunotherapy has revolutionized cancer treatment, providing
significant clinical benefits to patients with different types of cancers. However, only a
small subset of patients benefit from immunotherapy, which highlights limitations of this
therapy. Major limitations include the low response rate evidenced by primary/acquired
resistance and iRAEs [24–27]. These limitations can be attributed to epigenetic changes
acquired by the TIME that play an imperative role in the development of intra/inter tumor
heterogeneity by favoring the evolution of transcriptionally distinct clonal populations of
cancer cells, which ultimately aid tumor progression and development [28,29].

Epigenetic aberrations are considered hallmarks of cancer development and pro-
gression [30]. In the TIME, cancer cells escape immune-mediated cell death by utilizing
epigenetic mechanisms to escape host immune recognition and immunogenicity [31,32]. In
the tumor microenvironment (TME), in addition to cancer cells, immune cells also undergo
various epigenetic modifications that alter their effector cytokine expression, cancer im-
munosurveillance, immune-checkpoint molecule expression, and tumor-associated antigen
presentation with MHC molecules [33,34]. Additionally, epigenetic modulators such as
DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis)
can re-program the TIME to increase the susceptibility of tumor cells to cytotoxic T-cell-
mediated killing, leading to enhanced anti-tumor immune responses [35,36]. Moreover,
unlike genetic alterations, epigenetic modifiers can be pharmacologically altered to revert
the changes acquired during cancer initiation and progression [37–40].
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An improved understanding of epigenetic events related to immunotherapy resistance
would be helpful in designing potential combination strategies for immunotherapy. Multi-
ple factors including constitutive PD-L1 expression in cancer cells, a lack of tumor antigens,
defective antigen presentation and processing machinery, the exhaustion of infiltrated T
cells, and the presence of an immunosuppressive population—such as Tregs, myeloid-
derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs)—could
contribute to acquired resistance to immunotherapy [41–43] for TAMs [44].

Therefore, combination therapies involving epigenetic drugs/targets and immunother-
apy can serve as improved therapeutic strategies for cancer management by boosting
anti-tumor immunity.

2. Epigenetic Modifiers

Epigenetic modification involves a broad range of heritable and reversible changes
in gene expression without altering DNA sequences [45,46]. Epigenomic modifications
regulate transcription via the modulation of chromatin through the following mecha-
nisms: (1) the post-translational modifications (PTMs) of histone proteins, (2) CpG methy-
lation/demethylation, (3) ATP-dependent nucleosomal repositioning, (4) histone variant
exchange, and (5) the action of noncoding RNAs (such as micro RNAs) and (6) chromatin
loops [45,47]. Histone tail chemical modifications such as acetylation, methylation, and
DNA methylation, which are heritable marks and crucial for the accurate transmission of
chromatin states and subsequent gene expression, are the most studied epigenetic modifi-
cations [48]. Importantly, these epigenetic modifications are profoundly altered in tumor
generation and progression [49]. One important unanswered question is which hierarchical
order of events leads to altered gene expression during cancer development. The enzymes
involved in epigenetic modifications include DNA methyltransferases (DNMTs), DNA
demethylases, histone methyltransferases (HMTs), histone demethylases (HDMs), histone
acetyltransferases (HAT), and histone deacetylases (HDACs). DNMT inhibitors (DNMTis)
and HDAC inhibitors (HDACis) are the most common epigenetic modulators in clinical
use; they, along with the immune modulators, have been identified to regulate the function
of immune cells in multiple tumor types (Table 1).

Table 1. Clinical trials of epigenetic agents combined with immune checkpoint inhibitors for
cancer therapy.

NCT Identifier Malignant Conditions Therapeutics (Single or Combined) Start Year Status

NCT05089370 •Malignant Melanoma

•Combination Product: Oral
Decitabine/Cedazuridine (DNMT
inhibitor) in Combination with
Nivolumab (PD-1 inhibitor)

2022 Recruiting

NCT04705818

•Advanced Solid Tumor
•Advanced Colorectal
Carcinoma
•Advanced Soft tissue
Sarcoma
•Advanced Pancreatic
Adenocarcinoma
•Adult Solid Tumor

•Drug: Durvalumab (PD-L1 inhibitor)
•Drug: Tazemetostat (EZH2 inhibitor) 2021 Recruiting

NCT04648826

•Sarcomas
•Melanomas
•Germ Cell Tumors
•Epithelial Malignancies
(Excluding Lung and Renal
Cell Carcinomas)
•Pulmonary Metastases

•Drug: Bintrafusp alfa (bifunctional
fusion protein composed of the
extracellular domain of the
TGF-receptor II fused to an IgG1
antibody blocking PD-L1)
•Drug: Azacytidine (DNMT1 inhibitor)

2021 Withdrawn
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Table 1. Cont.

NCT Identifier Malignant Conditions Therapeutics (Single or Combined) Start Year Status

NCT04190056

•Anatomic Stage IV Breast
Cancer AJCC v8
•Prognostic Stage IV Breast
Cancer AJCC v8

•Biological: Pembrolizumab
(PD-1 inhibitor)
•Drug: Tamoxifen (antiestrogen)
•Drug: Vorinostat (HDAC inhibitor)

2021 Recruiting

NCT04471974

•Castration-Resistant
Prostate Carcinoma
•Metastatic Prostate
Adenocarcinoma
•Metastatic Prostate Small
Cell Carcinoma
•Stage IV Prostate Cancer
AJCC v8
•Stage IVA Prostate Cancer
AJCC v8
•Stage IVB Prostate Cancer
AJCC v8

•Drug: ZEN-3694 (BET
bromodomain inhibitor)
•Drug: Enzalutamide (nonsteroidal
antiandrogen (NSAA) medication)
•Biological: Pembrolizumab
(PD-1 inhibitor)

2021 Recruiting

NCT04708470

•Cancer
•Solid Tumor
•Metastatic Checkpoint
Refractory HPV-Associated
Malignancies
•Microsatellite Stable Colon
Cancer (MSS)

•Drug: Bintrafusp Alfa (bifunctional
fusion protein composed of the
extracellular domain of the
TGF-receptor II fused to an IgG1
antibody blocking PD-L1)
•Drug: NHS-IL12 (tumor-targeting
immunocytokine)
•Drug: Entinostat (HDAC inhibitor)

2021 Recruiting

NCT04257448

•Pancreas Cancer
•Pancreatic Adenocarcinoma
•Pancreatic Ductal
Adenocarcinoma

•Drug: Romidepsin (HDAC inhibitor)
•Drug: Azacitidine (DNMT inhibitor)
•Drug: Nab-Paclitaxel (stops cancer
cells from separating into two new cells)
•Drug: Gemcitabine (induces
interferon signaling)
•Drug: Durvalumab (PD-L1 inhibitor)
•Drug: Lenalidomide capsule (potent
molecular analog of thalidomide)

2020 Recruiting

NCT04611711
•Patients With Digestive
System Tumors Resistant to
PD-1 Inhibitors

•Drug: Decitabine (DNMT inhibitor) +
TQB2450 injection (PD-1 inhibitor)
•Drug: Decitabine (DNMT inhibitor) +
TQB2450 injection (PD-1 inhibitor) +
Anlotinib (VEGFR inhibitor)

2020 Not yet
recruiting

NCT04553393
•Refractory or Relapsed
Aggressive r/r BNHL With
Huge Tumor Burden

•Drug: Chidamide (HDAC inhibitor)
•Drug: Decitabine (DNMT inhibitor)
•Biological: Decitabine-Primed Tandem
CAR19/20-Engineered T Cells

2020 Recruiting

NCT04407741 •Solid Tumor
•Lymphoma

•Drug: SHR2554 (EZH2 inhibitor)
•Drug: SHR1701 (PD-1 and
TGF-β inhibitor)

2020 Recruiting

NCT04414969

•Immune Checkpoint Inhibitor
•Chemotherapy Effect
•Epigenetic Disorder
•NK/T-Cell Lymphoma of
Nasal Cavity

•Drug: Anti-PD-1 antibody +
Peg-Asparaginase + Chidamide
(HDAC inhibitor)

2020 Recruiting

NCT04250246 •Melanoma
•Non-Small Cell Lung Cancer

•Drug: Ipilimumab (CTLA-4 antibody)
•Biological: Nivolumab (PD-1 inhibitor)
•Drug: Guadecitabine
(DNMT inhibitor)

2020 Not yet
recruiting

NCT04277442 •Acute Myeloid Leukemia
•Drug: Decitabine (DNMT inhibitor)
•Biological: Nivolumab (PD-1 inhibitor)
•Drug: Venetoclax (Bcl-2 inhibitor)

2020 Suspended
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Table 1. Cont.

NCT Identifier Malignant Conditions Therapeutics (Single or Combined) Start Year Status

NCT03812796 •Cancer
•GI Cancer

•Drug: Domatinostat (HDAC inhibitor)
•Drug: Avelumab (PD-1 inhibitor) 2019 Unknown

status

NCT03765229 •Melanoma •Drug: Entinostat (HDAC inhibitor)
•Drug: Pembrolizumab (PD-1 inhibitor) 2019 Recruiting

NCT03854474

•Locally Advanced
Urothelial Carcinoma
•Metastatic Urothelial
Carcinoma
•Stage III Bladder Cancer
AJCC v8
•Stage IIIA Bladder Cancer
AJCC v8
•Stage IIIB Bladder Cancer
AJCC v8
•Stage IV Bladder Cancer
AJCC v8
•Stage IVA Bladder Cancer
AJCC v8
•Stage IVB Bladder Cancer
AJCC v8

•Biological: Pembrolizumab
(PD-1 inhibitor)
•Drug: Tazemetostat (EZH2 inhibitor)

2019 Recruiting

NCT03233724

•Non-Small-Cell
Lung Carcinoma
•Lung Cancer
•Non-Small Cell Lung Cancer
•Esophageal Carcinoma
•Malignant Pleural
Mesotheliomas

•Drug: Decitabine (DNMT inhibitor)
•Drug: Tetrahydrouridine (inhibitor of
cytidine deaminase)
•Drug: Pembrolizumab
(PD-1 inhibitor)

2018 Recruiting

NCT03445858

•Childhood Solid Tumor
•Childhood Lymphoma
•Relapsed Cancer
•Refractory Cancer
•Adult Solid Tumor
•Adult Lymphoma

•Drug: Pembrolizumab (PD-1 inhibitor)
•Drug: Decitabine (DNMT inhibitor) 2018 Active, not

recruiting

NCT03161223 •T-Cell Lymphoma

•Drug: Durvalumab (PD-L1 inhibitor)
•Drug: Pralatrexate (dihydrofolate
reductase inhibitor)
•Drug: Romidepsin (HDAC inhibitor)
•Drug: 5-Azacitidine
(Methyltransferase inhibitor)

2018 Recruiting

NCT02664181 •Lung Cancer
•Non-Small Cell Lung Cancer

•Drug: Nivolumab (PD-1 inhibitor)
•Drug: Oral decitabine
(DNMT inhibitor)
•Drug: Tetrahydrouridine (inhibitor of
cytidine deaminase)

2017 Active, not
recruiting

NCT03206047

•Platinum-Resistant Fallopian
Tube Carcinoma
•Platinum-Resistant
Ovarian Carcinoma
•Platinum-Resistant Primary
Peritoneal Carcinoma
•Recurrent Fallopian
Tube Carcinoma
•Recurrent Ovarian
Carcinoma
•Recurrent Primary
Peritoneal Carcinoma

•Drug: Atezolizumab (PD-L1 inhibitor)
•Biological: DEC-205/NYESO-1 Fusion
Protein CDX-1401 (vaccine that may
help the immune system specifically
target and kill cancer cells)
•Drug: Guadecitabine (DNMT inhibitor)
•Drug: Poly ICLC (induces
immunohematopoietic cells)

2017 Active, not
recruiting
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Table 1. Cont.

NCT Identifier Malignant Conditions Therapeutics (Single or Combined) Start Year Status

NCT03250273

•Metastatic
Cholangiocarcinoma
•Cholangiocarcinoma
•Pancreatic Cancer
•Metastatic Pancreatic Cancer
•Unresectable Pancreatic
Cancer
•Unresectable
Cholangiocarcinoma

•Drug: Entinostat (HDAC inhibitor)
•Drug: Nivolumab (PD-1 inhibitor) 2017 Completed

NCT02915523
•Epithelial Ovarian Cancer
•Peritoneal Cancer
•Fallopian Tube Cancer

•Drug: Entinostat (HDAC inhibitor)
•Drug: Avelumab (PD-1 inhibitor) 2017 Unknown

status

NCT03024437 •Metastatic Cancer
•Renal Cancer

•Drug: Atezolizumab (PD-L1 inhibitor)
•Drug: Bevacizumab (VEGF inhibitor)
•Drug: Entinostat (HDAC inhibitor)

2017 Suspended

NCT02437136

Non-Small Cell Lung Cancer
•Melanoma
•Mismatch Repair-Proficient
Colorectal Cancer

•Drug: Entinostat (HDAC inhibitor)
•Drug: Pembrolizumab (PD-1 inhibitor) 2017 Active, not

recruiting

NCT02959437
•Solid Tumors
•Advanced Malignancies
•Metastatic Cancer

•Drug: Azacitidine (DNMT inhibitor)
•Drug: Pembrolizumab (PD-1 inhibitor)
•Drug: Epacadostat
(indoleamine2,3-dioxygenase inhibitor)
•Drug: INCB057643 (BET inhibitor)
•Drug: INCB059872 (LSD1 inhibitor)

2017 Terminated

NCT02816021
•Melanoma and Other
Malignant Neoplasms of Skin
•Metastatic Melanoma

•Drug: Azacitidine (DNMT inhibitor)
•Drug: Pembrolizumab (PD-1 inhibitor) 2017 Active, not

recruiting

NCT02890329

•Previously Treated
Myelodysplastic Syndrome
•Recurrent Acute Myeloid
Leukemia
•Recurrent Acute Myeloid
Leukemia with
Myelodysplasia
Related Changes
•Recurrent Myelodysplastic
Syndrome
•Refractory Acute
Myeloid Leukemia
•Refractory Myelodysplastic
Syndrome
•Secondary Acute
Myeloid Leukemia
•Secondary Myelodysplastic
Syndrome

•Drug: Decitabine (DNMT inhibitor)
•Biological: Ipilimumab
(CTLA-4 antibody)

2017 Active, not
recruiting

NCT03019003 •Head and Neck Cancer
•Drug: Oral Decitabine
(DNMT inhibitor)
•Drug: Durvalumab (PD-L1 inhibitor)

2017 Active, not
recruiting

NCT03066648

•Leukemia
•Myeloid Leukemia
•Acute Myeloid Leukemia
•Myelodysplastic Syndromes
•Preleukemia
•Bone Marrow Diseases
•Hematologic Diseases
•Chronic Myelomonocytic
Leukemia

•Drug: Decitabine (DNMT inhibitor)
•Drug: PDR001 (PD-1 antibody)
•Drug: MBG453 (Tim3 antibody)
•Drug: Azacitidine (DNMT inhibitor)

2017 Active, not
recruiting
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Table 1. Cont.

NCT Identifier Malignant Conditions Therapeutics (Single or Combined) Start Year Status

NCT02951156 •Diffuse Large
B-cell Lymphoma

•Biological: Avelumab
(PD-1 inhibitor)
•Biological: Utomilumab (binds to
CD-137 protein receptor and
stimulates/increases the number of
immune cells)
•Biological: Rituximab (chimeric
monoclonal antibody against the
protein CD20)
•Other: Azacitidine (DNMT inhibitor)
•Drug: Bendamustine
(chemotherapy medication)
•Drug: Gemcitabine (induces
interferon signaling)
•Drug: Oxaliplatin (inhibits the
synthesis of deoxyribonucleic
acid (DNA))

2016 Terminated

NCT02900560 •Epithelial Ovarian Cancer

•Drug: CC-486 (hypomethylation
of DNA)
•Biological: Pembrolizumab
(PD-1 inhibitor)

2016 Terminated

NCT02512172 •Colorectal Cancer

•Drug: Oral CC-486
(hypomethylation of DNA)
•Drug: Romidepsin (HDAC inhibitor)
•Drug: MK-3475
(PD-1 inhibitor)

2016 Completed

NCT02395627 Breast Neoplasms

•Drug: Tamoxifen (antiestrogens)
•Drug: Vorinostat (HDAC inhibitor)
•Drug: Pembrolizumab
(PD-1 inhibitor)

2015 Terminated

NCT02608437 •Metastatic Melanoma

•Drug: SGI-110 (DNA
methylation inhibitor)
•Drug: Ipilimumab
(CTLA-4 antibody)

2015 Unknown
status

NCT02453620

•Breast Adenocarcinoma
•Invasive Breast Carcinoma
•Metastatic Breast
Carcinoma
•Metastatic Malignant
Solid Neoplasm
•Stage III Breast Cancer
AJCC v7
•Stage IIIA Breast Cancer
AJCC v7
•Stage IIIB Breast Cancer
AJCC v7
•Stage IIIC Breast Cancer
AJCC v7
•Stage IV Breast Cancer
AJCC v6 and v7
•Unresectable Solid
Neoplasm

•Drug: Entinostat (HDAC inhibitor)
•Biological: Ipilimumab
(CTLA-4 antibody)
•Biological: Nivolumab
(PD-1 inhibitor)

2015 Active, not
recruiting

NCT02546986 •Non-Small-Cell
Lung Carcinoma

•Drug: CC-486 (hypomethylation
of DNA)
•Drug: Pembrolizumab
(PD-1 inhibitor)

2015 Active, not
recruiting
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Table 1. Cont.

NCT Identifier Malignant Conditions Therapeutics (Single or Combined) Start Year Status

NCT02397720

•Acute Bilineal Leukemia
•Acute Biphenotypic
Leukemia
•Acute Myeloid Leukemia
Arising from Previous
Myelodysplastic Syndrome
•Chronic Myelomonocytic
Leukemia
•Myelodysplastic Syndrome
•Recurrent Acute
Myeloid Leukemia
•Refractory Acute
Myeloid Leukemia
•Secondary Acute
Myeloid Leukemia
•Therapy-Related Acute
Myeloid Leukemia

•Drug: Azacitidine (DNMT inhibitor)
•Biological: Ipilimumab
(CTLA-4 antibody)
•Biological: Nivolumab
(PD-1 inhibitor)

2015 Recruiting

NCT02608268 •Advanced Malignancies
•Drug: MBG453 (Tim3 antibody)
•Drug: PDR001 (PD-1 antibody)
•Drug: Decitabine (DNMT inhibitor)

2015 Active, not
recruiting

NCT01834248

•Acute Myeloid Leukemia
•Alkylating Agent-Related
Acute Myeloid Leukemia
•Chronic Myelomonocytic
Leukemia
•Myelodysplastic Syndrome
•Refractory Anemia with
Excess Blasts

•Biological: DEC-205/NYESO-1
Fusion Protein CDX-1401 (vaccine that
may help the immune system
specifically target and kill cancer cells)
•Drug: Decitabine (DNMT inhibitor)
•Drug: Poly ICLC (induces
immunohematopoietic cells)

2013 Completed

NCT01928576
•Non-Small Cell
Lung Cancer
•Epigenetic Therapy

•Drug: Azacitidine (DNMT inhibitor)
•Drug: Entinostat (HDAC inhibitor)
•Drug: Nivolumab (PD-1 inhibitor)

2013 Recruiting

3. Epigenetic Modifiers in T Cells

The functional differentiation of T cells, like short-lived effectors, long-term memory T
cells, Treg, and other T-cell populations, is majorly influenced by epigenetic modifications.
An increasing number of investigations support the crucial role of HATis, HDACis and
HMTs in regulating the fate and function of T cells. The inhibition of HDAC1 and HDAC2
promote the differentiation of CD4+ T cells into cytotoxic CD4+ T cells [50,51]. HDAC3 is
critical for the maturation of both CD4+ and CD8+T cells and the production of TNF upon
TCR/CD28 stimulation [52]. Enrichment in the central memory and stem cell memory
phenotypes of T cells is regulated by H3K4me3 modification at specific gene promoters
such as TCF7, LEF1, and KLF2. Interestingly, the upregulation of H3K4me3 and the
downregulation of H3K27me3 at the Gcnt1 locus were found to enhance the trafficking of
memory T cells to tumor sites in an interleukin (IL)-15-dependent manner [53].

Scheer et al. reported that lysine methyltransferase Dot1l-dependent H3K79me2 is
crucial for CD4+ T helper (Th) cell differentiation, as the loss of it was found to lead to
the increased expression of Th-1-specific genes and the overproduction of IFN-γ at the
expense of Th-2 cell development, advocating a central role for Dot1l in Th-2 cell lineage
commitment and stability [54]. Another study investigated the role of menin, a major
component of the trithorax group (TrxG) using Cd4-cre-driven conditional knockout (KO)
mice; a deficiency in menin was shown to lead to the downregulation of Gata3 expression
due to reduced levels of H3K9ac and H3K4me3 at the upstream regions of the Gata3
proximal promoter [55]. Interestingly, the suppression of histone H3K27 demethylases
KDM6A (UTX) in mature Th-17 cells was found to reduce mitochondrial biogenesis, causing
metabolic reprogramming and reducing the expression of key metabolic TFs, such as
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PPRC1, which ultimately showed anti-inflammatory effects [56]. The results of these
studies reinforce the role of epigenomic events in T-cell biology.

3.1. Epigenetic Modifiers in Immune Checkpoint Therapy

A critical balance between immune co-inhibitory and co-stimulatory signals in the
TIME is maintained to restrict tumor development and progression (Figure 1) [57,58].
The epigenetically regulated aberrant expression of immune checkpoints (ICs), including
PD-1, CTLA-4, TIM-3 (T-cell immunoglobulin and mucin-domain containing-3), LAG-
3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and ITIM do-
mains), VISTA (V-domain Ig suppressor of T-cell activation), CD276 (B7-H3), B7-H4
(VTCN1/B7x/B7S1/B7 homolog 40), IDO-1 (indoleamine 2,3-dioxygenase 1), CD161, CD38,
CD93, and CD47 may result in the induction of an immune-suppressive environment, which
helps tumor cells to evade immune destruction [12,59,60]. Targeting altered epigenetic
modifications can significantly contribute to the reversal of the transcriptomic regulation of
ICs and their ligands, which could help to re-establish potent host immunosurveillance
mechanisms [61].
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immune response.

DNMTis and HDACis have been shown to cause the upregulation of immune-signaling
components and antigen presentation through the expression of ERVs (endogenous retro-
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viral sequences), thereby improving tumor cell recognition [62]. Decitabine (DNMTi)
upregulates the cancer testis antigen member MAGE-1 via hypomethylation, thus increas-
ing chances of its presentation through MHC molecules to effector immune cells [63].
Panobinostat (pan HDACi) has been found to significantly increase CD38 expression in
multiple myeloma, so it has been utilized in the development of an effective combinatorial
treatment with daratumumab [64]. Panobinostat also affects the PD-L1/PD1 axis via the
upregulation of PD-L1 in melanoma cells, which can be then targeted with anti PD-L1
antibodies [65].

H3K9 lysine methyltransferase, SETDB1, has a critical role in the carcinogenesis of
multiple tissue types through the transcriptional silencing of multiple genes at specific
loci. The amplification and increased expression of SETDB1 in advanced clear renal cell
carcinoma has been found to be associated with a poor response to anti-PD1 therapy [66].
Further exploring this information, the Bernstein lab identified that the reversal of the epi-
genetic silencing of SETDB1 activates tumor immunogenicity through the hypomethylation
of H3K9 in the transposable elements that reside in the MHC peptidome [67,68]. The results
of these studies indicate the high potential of SETDB1 inhibitors such as mithramycin in
combination with immune checkpoint blockade therapy (ICT) [69].

The H3K27Ac reader bromodomain and extra-terminal motif (BET) protein is overex-
pressed in various cancers and involved in the regulation of the (PD-1/PD-L1) immune
checkpoint axis [36]. Accordingly, targeting BET with JQ1 inhibitors in combination with
anti-PD1 therapy has been proven to be effective in ovarian and triple-negative breast can-
cer [36,70]. In another study, Adeegbe et al. showed that JQ1 treatment significantly lowered
PD-L1 expression in tumor cells, which led to an increased tumor infiltration of cytotoxic T
cells in a non-small cell lung cancer NSCLC xenograft, and a combination treatment of JQ1
with anti-PD-1 reduced tumor burden and resulted in an improved survival rate [71].

The promoter hypomethylation of LAG3 has been a major epigenetic regulator of mRNA
expression in clear cell renal cell carcinoma (KIRC), which has a proven association with
increased immune cell infiltration and an interferon-γ signature [72]. Beyond cancer, patients’
aberrant histone methylation in chronic osteomyelitis is related to the higher expression of
LAG3 in the T cells of peripheral blood [73]. Another negative stimulatory molecule, Tim-3, has
been shown to be epigenetically regulated, so its increased expression inhibits the expansion of
Th1 and Th17 responses via its binding to galectin-9, ultimately leading to immune exhaustion
in the tumor microenvironment [74–76]. EZH2-H3K27me3/DNMT3A-DNA methylation
regulates the expression of Tim-3 and galectin-9 in HPV18-associated cervical cancer [77].
Tim-3 and galectin-9 are overexpressed in cervical cancer cases, which is mediated through the
hypomethylation of HAVCR2 and LGALS9 because of the lesser expression and recruitment of
DNMT3A to their promoter regions. SUV39H1, a H3K9me3-specific histone methyltransferase,
contributes to Tim-3 and galectin-9 regulation by upregulating the H3K9me3 level at the
DNMT3A promoter region, hence downregulating its expression. Therefore, SUV39H1 can
be utilized as a potential therapeutic target that can downregulate the immune checkpoint
inhibitors Tim-3 and galectin-9 [78].

Another immune checkpoint, TIGIT, was found to be upregulated during T-cell
and NK-cell exhaustion [9]. Moreover, TIGIT was reported to be regulated by promoter
demethylation in melanoma, thus making it sensitive to anti PD-1 therapy [79].

3.2. Epigenetic Modifiers in Antigen Processing and Presentation

In a proper functioning immune system, T cells recognize tumor antigens based on
the binding of a T-cell receptor (TCR) and a matching antigen packaged into major histo-
compatibility complex (MHC) proteins on APCs. Tumor cells escape immune recognition
through multiple mechanisms such as alterations in antigen presentation and processing
machinery (APM) or alterations in MHC class I molecules, which further impair their
identification by CTLs (Figure 2).



Cells 2023, 12, 365 10 of 20
Cells 2023, 12, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 2. Role of various epigenetic modifiers in the tumor immune microenvironment. DNA 

methyltransferase inhibitors (DNMTis), histone deacetylase inhibitors (HDACis), an inhibitor of 

histone methylation on histone H3 at lysine 27 (EZH2i), and inhibitor of bromodomain and extra-

terminal motif (BETi) shape the tumor-immune microenvironment by (i) increasing the number of 

CD8 and CD4 T cells; (ii) activating antigen processing and presentation machinery; (iii) decreasing 

the abundance of MDSCs and tumor-associated macrophages (TAMs); (iv) downregulating the im-

mune checkpoint inhibitors Tim-3, Lag-3 and TIGIT; (v) upregulating immune checkpoint PD-L1 

(by DNMTis, HDACis and EZH2i) and downregulating PD-L1 (by BETi); vi) enhancing NK-medi-

ated lysis (by HDACis) or decreasing NK cytotoxicity (by EZH2i); and (vii) upregulating inflamma-

tory genes and pathways that control the secretion of interferons (IFNs), cytokines, and chemokines 

from tumor cells. (Regulatory T cells (Tregs) are a specialized subpopulation of T cells that act to 

suppress the immune response, thereby maintaining homeostasis and self-tolerance. It has been 

shown that Tregs are able to inhibit T-cell proliferation and cytokine production, as well as play a 

Figure 2. Role of various epigenetic modifiers in the tumor immune microenvironment. DNA
methyltransferase inhibitors (DNMTis), histone deacetylase inhibitors (HDACis), an inhibitor of
histone methylation on histone H3 at lysine 27 (EZH2i), and inhibitor of bromodomain and extra-
terminal motif (BETi) shape the tumor-immune microenvironment by (i) increasing the number of
CD8 and CD4 T cells; (ii) activating antigen processing and presentation machinery; (iii) decreasing
the abundance of MDSCs and tumor-associated macrophages (TAMs); (iv) downregulating the
immune checkpoint inhibitors Tim-3, Lag-3 and TIGIT; (v) upregulating immune checkpoint PD-L1
(by DNMTis, HDACis and EZH2i) and downregulating PD-L1 (by BETi); (vi) enhancing NK-mediated
lysis (by HDACis) or decreasing NK cytotoxicity (by EZH2i); and (vii) upregulating inflammatory
genes and pathways that control the secretion of interferons (IFNs), cytokines, and chemokines
from tumor cells. (Regulatory T cells (Tregs) are a specialized subpopulation of T cells that act to
suppress the immune response, thereby maintaining homeostasis and self-tolerance. It has been
shown that Tregs are able to inhibit T-cell proliferation and cytokine production, as well as play a
critical role in preventing autoimmunity. Tumor-associated macrophages (TAMs) are the key cells that
create an immunosuppressive tumor microenvironment (TME) by producing cytokines, chemokines,
and growth factors and by triggering the inhibitory immune checkpoint proteins release in T cells.
Natural killer (NK) cells are effector lymphocytes of the innate immune system that control several
types of tumors and microbial infections by limiting their spread and subsequent tissue damage.
Cancer-associated fibroblasts (CAFs) are one of the most abundant and critical components of the
tumor mesenchyme; they not only provide physical support for tumor cells but also play a key role in
promoting and retarding tumorigenesis in a context-dependent manner. Recent studies have revealed
their roles in immune evasion and poor responses to cancer immunotherapy).
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An efficient cancer immunotherapy depends on the recognition of antigens loaded
onto the MHC molecules of antigen-presenting cells by T cells in the TIME. The epigenomic
regulatory factors that can influence the T-cell recognition of tumor antigens include: (1) the
aberrant expression of genes involved in the processing or presentation of tumor antigens
and (2) the aberrant expression of antigens. There is a subclass of cancer testis antigens
(CTAs), including MAGE (melanoma-associated antigen), PRAME (preferentially expressed
antigen of melanoma) and NY-ESO-1 (New York esophageal squamous cell carcinoma-
1), which are controlled by DNA methylation and remain silenced in mature somatic
cells but are demethylated and overexpressed in various cancers [80,81]. Guadecitabine
(SGI-110) and decitabine, which are hypomethylating drugs, have been shown to upregu-
late/overexpress CTAs such as NY-ESO-1 in epithelial ovarian cancer cells and xenografts
when used in combination with NY-ESO-1 vaccine and doxorubicin chemotherapy; T-cell
responses to NY-ESO-1 have been observed in most studied patients [82,83].

Studies have evidenced that DNMTis and/or HDACis could alter the expression
of MHC class I molecules in cancer cells such as neuroblastoma, cervical, and prostate
cancer [84]. Furthermore, the expression of different components of the APM pathway
such as TAP-1, TAP-2, LMP2, LMP7 and tapasin can be manipulated by both DNMTis
and HDACis in different tumor types [85–87]. DNMTis and HDACis can regulate the
expression of the costimulatory molecules ICAM-1, CD40, CD80, and CD86 [86,88,89].

Histone methyltransferase SETDB1, which maintains heterochromatin (H3K9me3),
plays crucial roles in the carcinogenesis of multiple tissue types through the transcriptional
silencing of multiple genes [90]. Accordingly, the inhibition of SETDB1 was found to
enhance specific cytotoxic T-cell responses against tumors via the activation of immunos-
timulatory genes, the encoding of retroviral antigens, and the generation of neoantigen
MHC-I peptides, thus suggesting that SETDB1 has high potential to synergize with ICT [91].
The HDAC-1/3 inhibitor entinostat, upon combination with a PD-1 axis blockade, was
found to lead to the complete remission of tumors, the expansion of neoantigen-specific T
cells, and the induction of long-term immunologic memory in immune-competent bladder
cancer mouse models [92].

3.3. Epigenetic Modifiers in Tumor-Infiltrating Immunosuppressive Cells

Tumor-infiltrating immunosuppressive cells such as myeloid-derived suppressor cells
(MDSCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs), and cancer-
associated fibroblasts (CAFs) inhibit T cells’ effector functionality and anti-tumor responses,
which lead to the immune escape of tumors. The presence of an immunosuppressive
cell population in the TIME could be a major contributory factor in ineffective ICTs [93].
HDACis have antitumor effects in that they reduce the number of MDSCs through various
mechanisms of action such as CG-745, a class I–IIb HDACi that induces the infiltration of
lymphocytes by increased antigen presentation and that decreases the amount of MDSCs
by decreasing the polarization of M2 macrophages in tumors [35]. Valproic acid (VPA), a
class-I HDACi, attenuates the immunosuppressive function of MDSCs by downregulating
the expression of retinoblastoma 1 (Rb1), toll-like receptor 4 (TLR4), programmed cell death
1 ligand (PD-L1), and interleukin-4 receptor-alpha (IL-4Ra)/arginase [94]. Moreover, the
combinatorial treatment of VPA and anti-PD-1 antibodies was found to repress the growth
of B16F10 and EL4 tumor models by impairing tumor-infiltrating M2-MDSC accumulation
in the tumor microenvironment compared with their individual therapies [95]. Thus,
treatment with epigenetic modifiers inhibits MDSC accumulation, thereby augmenting
immune checkpoint inhibitors for successful cancer treatment. Vorinostat (suberoylanilide
hydroxamic acid, SAHA), a class I–II–IV HDACi, was shown to have anti-tumor potential
for a 4T1 mammary mice model in which it decreased MDSC accumulation in the spleen,
blood, and tumor while promoting the activation and function of CD8+ T cells [96].

Tregs play significant roles in inducing variety of immune responses, as determined by
the expression of Foxp3, a transcription factor in natural Tregs (nTregs) in the
thymus [97,98]. Extrinsic molecular signals including IL-2 and TCR, along with a network
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of transcription factors, are critical for regulating the expression of Foxp3 through epige-
nomic modulation, which ultimately determines a Treg’s phenotypic plasticity [99,100].
Epigenetic modifiers such as DNMT1 and DNMT3b are differentially bound to Foxp3
promoter and enhancer sites in nTregs compared with extrinsically induced Tregs. Im-
portantly, DNMTis demethylate and activate the Foxp3 promoter and enhancer elements
to induce Foxp3 expression and subsequently enable the induction of Foxp3-dependent,
Treg-restricted sets of genes [101]. Demethylation in synergy with TGF-β transforms naive
T cells into Tregs with high Foxp3 expression and potent, stable suppressive function [102].

Foxp3 expression in Treg cells was found to be significantly upregulated upon treat-
ment with trichostatin-A (TSA), a HDACi [103]. Moreover, the CTLA4, PD-1, GITR and
IL-10 genes are reportedly upregulated by TSA [104]. Ohkura et al. reported that Treg
maturation, Treg-specific gene expression, and Treg-specific immunosuppressive activity
involve epigenetic regulation through genome-wide CpG DNA hypomethylation pat-
tern [105]. In other study, Wang et al. showed that the inhibition of EZH2, a histone-lysine
N-methyltransferase enzyme, resulted in Treg-mediated pro-inflammatory activities in
the TME, supporting the idea of the generation of an effector T-cell-mediated anti-tumor
immune response [106].

3.4. Epigenetic Modifiers in Inflammatory Cytokines and Chemokines

The pro-/anti-tumorigenic effect of inflammatory cytokines and chemokines, such as
TNF-α, IL-1, IL-6, and IFN-γ, has been well-established in tumor malignancies; however
there is little evidence that their aberrant expression is regulated through various epigenetic
mechanisms in cancer development [107,108]. IFN-γ is a pleiotropic cytokine associated
with the induction of reactions in T lymphocytes, which contributes to the enhancement of
an immune response against malignant cells. The downregulation of IFN-γ mediated by
hypermethylation has been observed in lung and cervical cancer [109,110]. Interestingly,
IFN-γ is suppressed in the presence of E6 (a human papillomavirus (HPV) protein), sug-
gesting the involvement of E6 in IFN-γ de novo methylation followed by transcriptional
silencing [111]. One of the earliest studies in humans showed that epigenetic modifications
occurring in the IFN-γ, IL-4, and IL-13 genes regulate the differentiation of CD4 T cells into
Th1 and Th2 cell lineages. The IFN-γ promoter is demethylated during differentiation into
Th1 cells [112], and the demethylation of several specific CpG dinucleotides occurs in the
IL-4 and IL-13 genes during Th2 differentiation [113]. Most importantly, epigenetic histone
marks are major determinants of Th1/Th2 cell fate.

In addition to their role in development and inflammatory responses, chemokines and
their receptors also play critical roles in neoplastic transformations, cancer progression, and
angiogenesis. CXCL14 (also known as BRAK), a member of the chemokine family, acts as a
chemoattractant and stimulates the trafficking of natural killer cells to sites of inflammation
or malignancy [114]. The aberrant methylation of CpG islands in the promoter region
and the first exon of the CXCL14 gene is associated with its downregulation in gastric
cancer [115]. Moreover, CXCL14 was found to be transcriptionally inactivated by promoter
CpG hypermethylation in human prostate cancer [116]. CXCL12 and its receptor CXCR4
belong to same family of CXCL14 and are also associated with tumorigenesis. Interestingly,
the demethylation of CXCR4 and the hypermethylation of CXCL12 and ESR1 are predictive
marker of tumor stage, size, metastasis, and poor overall survival in breast cancer [117].

Multiple proinflammatory cytokines including interleukins are often stated to be
epigenetically regulated in various forms of cancer, especially lung cancer. The expression
of the IL-1B, IL-6, and IL-8 genes are regulated through promoter DNA methylation which
have been reported to play crucial roles in lung cancer [118]. Interleukin-23, a member of
the IL-6 superfamily, is stated to be epigenetically regulated in non-small-cell lung cancer
(NSCLC) via both histone acetylation and DNA methylation [119]. The epigenetic silencing
of IL12RB2, a subunit of the IL-12 receptor, is a recurrent event in human lung cancers [120].
Furthermore, IL12RB2 methylation has been found to be frequent in patients suffering



Cells 2023, 12, 365 13 of 20

from both chronic obstructive pulmonary diseases (COPD) and non-small-cell lung cancer
(NSCLC) [121].

3.5. Epigenetic Modifiers in Natural Killer Cells

NK cells are key mediators of the innate immune response, and they exert cytotoxic ef-
fects after the recognition of cancer cells and virus-infected cells [122]. Upon the recognition
of tumor cells, NK-cell activation occurs through the interaction of NKG2D receptors on the
surface of NK cells with ULBP ligands and the MHC class I chain-associated proteins MICA
and MICB on the surface of tumor cells [123]. One study reported that VPA (a HDACi)
upregulates NKG2D, the immunoreceptor that binds with MICA and MICB, thus leading
to the enhancement of the NK-mediated lysis of cancer cells in AML [122,124]. EZH2, an
HMT, was found to inhibit the differentiation and function of NK cells by downregulating
NKG2D receptor expression. Moreover, EZH2-mediated H3K27me3 induces the silencing
of the IL-15R, CD122, and NKG2D receptor proteins, hence suppressing NK-cell expansion
and decreasing the cytotoxic targeting of tumor cells.

3.6. Epigenetic Modifiers in CAR-T Therapy

Cell-based therapies, such as chimeric antigen receptor (CAR) T-cell therapies, have
led to enormous successes against several hematological malignancies. However, their
success has been limited due to tumor antigen heterogeneity, tumor infiltration, and
persistence. Nevertheless, the manipulation and modification of epigenetic and genetic
cascades have been observed to trigger specific T-cell-signaling pathways, which can
help to promote the expansion and persistence of CAR-T cells. In support of this idea, a
hypomorphic mutation in the epigenetic modifier TET2 (a chromatin modifier that encodes
the methyl cytosine dioxygenase enzyme that facilitates DNA demethylation to activate
gene expression) has been shown to support the central memory phenotype in anti-CD19
CAR-T cells in chronic lymphocytic leukemia [125]. The inhibition of TET2 through S-2-
hydroxyglutarate (S-2HG) was found to result in the formation of CD8+ central memory
CAR T cells, which helps to overcome the issue of the persistence of CAR-T cells in patients
with B-cell malignancies [126]. The pretreatment of lymphoma cells with decitabine, a
DNMTi, was shown to lead to the increased expression of the surface antigen CD19 on
lymphoma cells, making them more susceptible to CD19 CAR T cells; this was observed
in two lymphoma patients who were treated with decitabine before CAR T-cell therapy
and achieved complete remission [127]. The triple knockdown of the T-cell exhaustion
signature genes PD-1, Tim-3, and Lag-3 dramatically increases the chromatin accessibility
of the CD56 gene, leading to the increased expression of CD56 in CAR-T cells and making
them more effective at infiltrating ovarian cancer [128]. Antigen heterogeneity and antigen
loss are key obstacles for developing effective CAR T-cell therapy. EZH2 is associated with
a low antigen presentation and poor immunogenicity, and targeting EZH2 with a selective
inhibitor and CAR T-cell therapy was found to lead to the significant enhancement of the
antitumor activity of CAR T cells [129].

4. Transcription Factor Circuitry in ICT Resistance

ICT resistance can be attributed to T-cell exhaustion and a lack of central and effector
memory T-cell formation. Numerous transcription factors are associated with these T-cell
fates, and a few of them have been reported to be epigenetically regulated including NR4A1,
NR4A2, NR4A3, TBET, EOMES, TCF1 (TCF7), LEF1, BATF, NFAT and EGR2 [130,131]. The
high expression of NR4A1, NR4A2, and NR4A3 has been related to the poor prognosis of
many cancers, and there are reports that suggest that their binding to the target LEF1 promot-
ers can be regulated through DNA methylation and histone acetylation levels [132]. T-bet
has the ability to recruit a H3K27-demethylase-Jmjd3 and a H3K4-methyltransferase-Set7/9
complex to its target genes that empower T-bet to effectively modulate the epigenomic state of
its target genes and T-cell fate [133]. EOMES has been reported to be a member of chromatin-
modulating complexes containing BRG1, which has been observed in in RUNX3 enhancers in
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T-cell innate memory formations [134]. BATF epigenetically regulates activation-associated
gene expression in tumor-infiltrated Treg cells [135]. Networks of TFs also determine the
differentiation and phenotypes of the T-cell-like T-bet, which displaces Sin3A-histone deacety-
lase (HDAC1 and HDAC2) complexes to facilitate the differentiation of Th1 cells [136]. In
response to IL-12 signals, the activation of STAT4 (required for the development of Th1 cells),
facilitates chromatin remodeling at the enhancer regions of Th1 genes. EZH2 facilitates the
correct expression of Tbx21 and GATA-3 for differentiating Th1 and Th2 cells through H3K27
trimethylation (H3K27me3) [137]. BATF regulates Th1 gene expression via the acetylation of
T-bet and IFN-γ, considered an important checkpoint in T-cell differentiation [138].

5. Conclusions

Immunotherapy is a major breakthrough in cancer treatment, though it still has
challenges. If we can better understand immunotherapy at the cellular and molecular levels,
then we can deal with its underlying issues. This review is a step towards understanding
the epigenetic mechanism involved in the significant components of immunotherapy. This
understanding can enable us to develop new ideas and hypotheses in the study of novel
combinatorial treatment/biomarkers for correct treatment plans, including epigenetic
features that have the intrinsic advantage of “reversibility”. This will increase the chances
of success in future cancer immunotherapies.
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