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The authors would like to add a new reference to the section “3.1. Multipotent Cell
Origins”, which was missing in the original version [1].

In the original publication, Ref. [111] was not cited correctly, it should change as follows:
New Ref. 111: Sanabria-de la Torre, R.; Quiñones-Vico, M.I.; Fernández-González,

A.; Sánchez-Díaz, M.; Montero-Vílchez, T.; Sierra-Sánchez, Á.; Arias-Santiago, S. Alloreac-
tive Immune Response Associated to Human Mesenchymal Stromal Cells Treatment: A
Systematic Review. J. Clin. Med. 2021, 10, 2991.

The citation has now been inserted in Subsection 3.1. “Multipotent Cell origins”, Para-
graph number 5 and should read:

“However, recent evidence demonstrated the development of donor-specific antibod-
ies, and MSC rejection has been documented [111].”

In the original publication, many citations and reference numbers were shifted. Several
reference citations did not correspond to the reference numbers next to them. Corrections
were made in Tables 1 and 3 as well as in several Sections and Subsections.

In Table 1, we would like to update the references in Column number 4. Thus, Table 1
will be updated from:
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Table 1. Models for anal sphincter incontinence; NHP: non-human primate.

Designation of Model

Time Lapse
between

Injury and
Intervention

Publication Reporting the Model Species Procedure Sphincter

Sphincterotomy and repair 0 Mazzanti et al., 2016 [27],
Lorenzi et al., 2008 [26] Rat Sphincterotomy and primary repair of sphincters IAS and EAS

Repaired sphincterotomy 0 Fitzwater et al., 2015 [28], White et al., 2010
[29], Pathi et al., 2012 [30] Rat Full thickness 7 mm incision of sphincters

followed by repair IAS and EAS

Anal sphincter injury 0 Kuismanen et al., 2018 [31] Rat Incision of full thickness sphincter with mucosa
followed by mucosa and IAS repair IAS and EAS

Proctoepisiotomy 0 Lane et al., 2013 [32],
Jacobs et al., 2013 [33] Rat Proctoepisiotomy with repair EAS

Sphincterotomy 0 Inoue et al., 2018 [34] Rat Removal of a left semicircle of sphincter IAS and EAS
Extra-mucosal myotomy 0 Trébol et al., 2018 [35] Rat 1 cm long incision preserving the mucosa IAS and EAS

Anal sphincter cryoinjury 0 Bisson et al., 2013 [36] Rat Two cryoinjuries of sphincters at 24 h interval
with liquid nitrogen on a 90◦ sector IAS and EAS

Anal sphincter cryoinjury 0 Kang et al., 2008 [37] Rat Cryoinjury of right hemi-sphincters IAS and EAS
Sphincterotomy 0 Sarveazad et al., 2019 [38] Rabbit Left lateral sphincterotomy IAS and EAS
Sphincterotomy 24 h Salcedo et al., 2013 [15] Rat 2–3-mm thick transection of sphincters IAS and EAS

Acute Anal
Sphincter

Injury

Pudendal nerve crush 24 h Salcedo et al., 2013 [15] Rat Posterior incision of sacro-coccygeal area and 30
s crushing of the nerves on both sides na

Partial anal sphincter
excision

24 h and
3 weeks Salcedo et al., 2014 [39], Li et al., 2020 [40] Rat Excision of 1/3 of ventral anal sphincters IAS and EAS

Anal sphincter injury 2 weeks Ding et al.,2016 [41] Rat 0.2 cm long sphincters incision IAS and EAS
Unrepaired sphincterotomy 2 weeks Montoya et al., 2015 [42] Rat Full thickness 7 mm incision of sphincters IAS and EAS

Chronic large anal
sphincter defect 3 weeks Sun et al., 2017 [43], Sun et al., 2017 [44],

Sun et al., 2016 [45] Rat 50% excision of ventral portion of anal sphincters IAS and EAS

Anal sphincter damage nd Li et al., 2018 [46] Rat 3 mm long incision in the right
posterolateral sphincter IAS and EAS

Intersphincteric
resection model na Yamaguchi et al., 2013 [47] Rat 50% excision of IAS and a part of EAS IAS and EAS

Sphincterotomy 2 weeks Aghaee-Afshar et al., 2009 [48] Rabbit Right lateral sphincterotomy EAS
Excision of external

anal sphincter 3 to 24 weeks Kajbafzadeh et al., 2016 [49], Elmi et al.,
2014 [50], Kajbafzadeh et al., 2010 [51] Rabbit Subtotal to total excision of posterior sphincter EAS

Sphincter injury 4 weeks Oh et al., 2015 [52], Oh et al., 2015 [53],
Kang et al., 2013 [54] Dog Resection of 25% of posterior anal sphincters IAS and EAS

Unrepaired
Anal

Sphincter
Injury

Internal sphincter
hemi-sphincterectomy 6–8 weeks Bohl et al., 2017 [55],

Dadhich et al., 2019 [56]
Rabbit,
NHP 50% excision of ventral portion of anal sphincter IAS
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To:
Table 1. Models for anal sphincter incontinence. NHP: non-human primate.

Designation of Model

Time Lapse
between

Injury and
Intervention

Publication Reporting the Model Species Procedure Sphincter

Sphincterotomy and repair 0 Mazzanti et al., 2016 [18],
Lorenzi et al., 2008 [19] Rat Sphincterotomy and primary repair of sphincters IAS and EAS

Repaired sphincterotomy 0 Fitzwater et al., 2015 [20], White et al 2010
[21], Pathi et al., 2012 [22] Rat Full thickness 7 mm incision of sphincters

followed by repair IAS and EAS

Anal sphincter injury 0 Kuismanen et al., 2018 [23] Rat Incision of full thickness sphincter with mucosa
followed by mucosa and IAS repair IAS and EAS

Proctoepisiotomy 0 Lane et al., 2013 [24], Jacobs et al., 2013 [25] Rat Proctoepisiotomy with repair EAS
Sphincterotomy 0 Inoue et al., 2018 [26] Rat Removal of a left semicircle of sphincter IAS and EAS

Extra-mucosal myotomy 0 Trébol et al., 2018 [27] Rat 1 cm-long incision preserving the mucosa IAS and EAS

Anal sphincter cryoinjury 0 Bisson et al., 2013 [28] Rat Two cryoinjuries of sphincters at 24 h interval
with liquid nitrogen on a 90◦ sector IAS and EAS

Anal sphincter cryoinjury 0 Kang et al., 2008 [29] Rat Cryoinjury of right hemi-sphincters IAS and EAS
Sphincterotomy 0 Sarveazad et al., 2019 [30] Rabbit Left lateral sphincterotomy IAS and EAS
Sphincterotomy 24 h Salcedo et al., 2013 [15] Rat 2–3 mm-thick transection of sphincters IAS and EAS

Acute Anal
Sphincter

Injury

Pudendal nerve crush 24 h Salcedo et al., 2013 [15] Rat Posterior incision of sacro-coccygeal area and 30
s crushing of the nerves on both sides na

Partial anal
sphincter excision

24 h and
3 weeks Salcedo et al., 2014 [31], Li et al., 2020 [32] Rat Excision of 1/3 of ventral anal sphincters IAS and EAS

Anal sphincter injury 2 weeks Ding et al.,2016 [33] Rat 0.2 cm-long sphincters incision IAS and EAS
Unrepairedsphincterotomy 2 weeks Montoya et al., 2015 [34] Rat Full thickness 7 mm incision of sphincters IAS and EAS

Chronic large anal
sphincter defect 3 weeks Sun et al., 2017 [35], Sun et al., 2017 [36],

Sun et al., 2016 [37] Rat 50% excision of ventral portion of anal sphincters IAS and EAS

Anal sphincter damage nd Li et al., 2018 [38] Rat 3 mm-long incision in the right
posterolateral sphincter IAS and EAS

Intersphincteric
resection model na Yamaguchi et al., 2013 [39] Rat 50% excision of IAS and a part of EAS IAS and EAS

Sphincterotomy 2 weeks Aghaee-Afshar et al., 2009 [40] Rabbit Right lateral sphincterotomy EAS
Excision of external

anal sphincter 3 to 24 weeks Kajbafzadeh et al., 2016 [41], Elmi et al.,
2014 [42], Kajbafzadeh et al., 2010 [43] Rabbit Subtotal to total excision of posterior sphincter EAS

Sphincter injury 4 weeks Oh et al., 2015 [44], Oh et al., 2015 [45],
Kang et al., 2013 [46] Dog Resection of 25% of posterior anal sphincters IAS and EAS

Unrepaired
Anal

Sphincter
Injury

Internal sphincter
hemi-sphincterectomy 6–8 weeks Bohl et al., 2017 [47],

Dadhich et al., 2019 [48]
Rabbit,
NHP 50% excision of ventral portion of anal sphincter IAS
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In Table 3, we would like to update the references in Column number 2. Thus, Table 3 will be updated from:

Table 3. Characteristics of primary cells proposed for cell therapy of anal sphincter incontinence. MHC: Myosin heavy chain, Sma: α-Smooth-muscle-actin,
MyoG: Moygenin.

Publication Cells Origin Species
Surface

Antigens
Expressed

Surface
Antigens Not

Expressed

GENE
Expression

Intracellular
Protein

Expressed

Intracellular
Protein Not
Expressed

Differentiation
Test

Bisson et al., 2015 [36] Skeletal muscle Rat CD56 - DES, MYOD1,
MYF5, - - -

Lane et al. 2013 [32], Jacobs et al.,
2013 [33], Craig et al., 2010 [92] Skeletal muscle Rat - - - - - -

Saihara et al., 2009 [91] Skeletal muscle Rat - - - - - Myotubes
Kang et al., 2008 [37] Skeletal muscle Rat CD34 CD45 - Desmin - -

Kajbafzadeh et al., 2016 [49] Skeletal muscle Rabbit - - - Pax7, Desmin - Myotubes
Elmi et al., 2014 [50] Skeletal muscle Rabbit - - - Desmin, MyoD -
Oh et al., 2015 [52],
Oh et al., 2015 [53] Skeletal muscle Dog - - - Pax7, Sma MHC, MyoG Myotubes

Kang et al., 2013 [54] Skeletal muscle Dog - - - Pax7 MHC α-SMA

Boyer et al., 2018 [69] Skeletal muscle Human CD90, HLA-I CD34, CD45,
CD133

DES, MYOD1,
MYF5, PAX7 - - -

Frudinger et al., 2015 [66],
Frudinger et al., 2018 [68] Skeletal muscle Human SSEA3, SSEA4,

CD56, CD90 -

NANOG1,
NACAM1,

MYOD1, PAX7,
PAX3, MYF5,
DES, MYOG

Desmin, UTF1,
Pax7, Myf5 - Myotubes

Romaniszyn et al., 2015 [67] Skeletal muscle Human CD56 - DES, MYOD1,
MYOG - - Myocyte

Romaniszyn et al., 2013 [74] Skeletal muscle Human - - - - - -
Son et al., 2019 [93] EAS Human CD34, NG2 - - Pax7 - MyoG, MyHC

Bohl et al., 2017 [102],
Rego et al., 2017 [98] Smooth muscle Rabbit

Raghavan et al., 2010 [99],
Hashish et al., 2010 [100],

Miyasaka et al., 2011 [101]
IAS Mouse - - - - - -

Zakhem et al., 2015 [97],
Rego et al., 2017 [98] IAS Rabbit - - - - - -

Dadhich et al., 2019 [56] IAS NHP - - SMTN - Sma, and
smoothelin -

Gilmont et al., 2014 [95] IAS Human - - - - - -
Singh and Rattan 2012 [94] IAS Human - - - - - -

Muscle-Derived
Cells

Raghavan et al., 2014 [96],
Somara et al., 2009 [79] IAS Human - - - - - -
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Table 3. Cont.

Publication Cells Origin Species
Surface

Antigens
Expressed

Surface
Antigens Not

Expressed

GENE
Expression

Intracellular
Protein

Expressed

Intracellular
Protein Not
Expressed

Differentiation
Test

Li et al., 2018 [46] Bone marrow Rat - CD34, CD45 - - - -

Ding et al., 2016 [41]
Bone marrow,

transfected with
galectin-1

Rat CD90 CD45 - - - -

Sun et al., 2017 [44] Bone marrow Rat - - - - - -

Mazzanti et al., 2016 [27],
Lorenzi et al., 2008 [26] Bone marrow Rat

CD44, CD54,
CD73, CD90,

CD106

CD11b, CD11c,
CD45 - - - Osteogenic and

adipogenic

Salcedo et al., 2014 [39],
Salcedo et al., 2013 [15] Bone marrow Rat - CD34, CD45 - - - -

Pathi et al., 2012 [30] Bone marrow Rat - - - - - -

Bone
Marrow-Derived

Cells

Aghaee-Afshar et al., 2009 [48] Bone marrow Rabbit - - - - - -
Trébol et al., 2018 [35] Adipose tissue Rat CD29, CD90 CD11n, CD45 - - - -

Inoue et al., 2018 [34] Adipose tissue Rat CD90 CD31, CD45 - - - Adipogenic and
myogenic

Sarveazad et al., 2019 [38] Adipose tissue Human CD29, CD73,
CD105 CD34, CD45

Sarveazad et al., 2017 [71] Adipose tissue Human CD44, CD73,
CD90 CD31, CD45 - - - -

Adipose
Tissue-Derived

Cells

Kuismanen et al., 2018 [31] Adipose tissue Human CD73, CD90,
CD105

CD14, CD19,
CD34, CD45RO,
CD54, HLA-DR

- - - -

Bohl et al., 2017 [102] Enteric Neural
System Rabbit - - - - - -

Zakhem et al., 2015 [97] Appendix
neuronal system Rabbit P75(NTR) - - Sox2, Nestin Neurospheres

Rego et al., 2017 [97] Enteric neuronal
system Rabbit - - - - - Neurospheres

Dadhich et al., 2019 [56] Enteric neuronal
system NHP P75(NTR) smoothelin, oct4

Gilmont et al., 2014 [95] Enteric neuronal
system Human P75(NTR) - - - - Neurospheres

Neural
Tissue-Derived

Cells

Raghavan et al., 2014 [96],
Raghavan et al., 2011 [103]

Enteric neuronal
system Human - - - - - -

Miscellaneous Aghaee-Afshar et al., 2009 [48] Umbilical cord
matrix Human - - - - - -

To:
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Table 3. Characteristics of primary cells proposed for cell therapy of anal sphincter incontinence. MHC: myosin heavy chain, Sma: α-smooth-muscle-actin, and
MyoG: moygenin.

Publication Cells Origin Species
Surface

Antigens
Expressed

Surface
Antigens Not

Expressed

GENE
Expression

Intracellular
Protein

Expressed

Intracellular
Protein Not
Expressed

Differentiation
Test

Bisson et al., 2015 [28] Skeletal muscle Rat CD56 - DES, MYOD1,
MYF5, - - -

Lane et al., 2013 [24], Jacobs et al.,
2013 [25], Craig et al., 2010 [92] Skeletal muscle Rat - - - - - -

Saihara et al., 2009 [91] Skeletal muscle Rat - - - - - Myotubes
Kang et al., 2008 [29] Skeletal muscle Rat CD34 CD45 - Desmin - -

Kajbafzadeh et al., 2016 [41] Skeletal muscle Rabbit - - - Pax7, Desmin - Myotubes
Elmi et al., 2014 [42] Skeletal muscle Rabbit - - - Desmin, MyoD -
Oh et al., 2015 [44],
Oh et al., 2015 [45] Skeletal muscle Dog - - - Pax7, Sma MHC, MyoG Myotubes

Kang et al., 2013 [46] Skeletal muscle Dog - - - Pax7 MHC α-SMA

Boyer et al., 2018 [69] Skeletal muscle Human CD90, HLA-I CD34, CD45,
CD133

DES, MYOD1,
MYF5, PAX7 - - -

Frudinger et al., 2015 [66],
Frudinger et al., 2018 [68] Skeletal muscle Human SSEA3, SSEA4,

CD56, CD90 -

NANOG1,
NACAM1,

MYOD1, PAX7,
PAX3, MYF5,
DES, MYOG

Desmin, UTF1,
Pax7, Myf5 - Myotubes

Romaniszyn et al., 2015 [67] Skeletal muscle Human CD56 - DES, MYOD1,
MYOG - - Myocyte

Romaniszyn et al., 2013 [74] Skeletal muscle Human - - - - - -
Son et al., 2019 [93] EAS Human CD34, NG2 - - Pax7 - MyoG, MyHC

Bohl et al., 2017 [102],
Rego et al., 2017 [98] Smooth muscle Rabbit

Raghavan et al., 2010 [99],
Hashish et al., 2010 [100],

Miyasaka et al., 2011 [101]
IAS Mouse - - - - - -

Zakhem et al., 2015 [97],
Rego et al. 2017 [98] IAS Rabbit - - - - - -

Dadhich et al., 2019 [48] IAS NHP - - SMTN - Sma, and
smoothelin -

Gilmont et al., 2014 [95] IAS Human - - - - - -
Singh and Rattan 2012 [94] IAS Human - - - - - -

Muscle-Derived
Cells

Raghavan et al., 2014 [96],
Somara et al., 2009 [79] IAS Human - - - - - -
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Table 3. Cont.

Publication Cells Origin Species
Surface

Antigens
Expressed

Surface
Antigens Not

Expressed

GENE
Expression

Intracellular
Protein

Expressed

Intracellular
Protein Not
Expressed

Differentiation
Test

Li et al., 2018 [38] Bone marrow Rat - CD34, CD45 - - - -

Ding et al., 2016 [33]
Bone marrow,

transfected with
galectin-1

Rat CD90 CD45 - - - -

Sun et al., 2017 [36] Bone marrow Rat - - - - - -

Mazzanti et al., 2016 [18],
Lorenzi et al., 2008 [19] Bone marrow Rat

CD44, CD54,
CD73, CD90,

CD106

CD11b, CD11c,
CD45 - - - Osteogenic and

adipogenic

Salcedo et al., 2014 [31],
Salcedo et al., 2013 [15] Bone marrow Rat - CD34, CD45 - - - -

Pathi et al., 2012 [22] Bone marrow Rat - - - - - -

Bone
Marrow-Derived

Cells

Aghaee-Afshar et al., 2009 [40] Bone marrow Rabbit - - - - - -
Trébol et al., 2018 [27] Adipose tissue Rat CD29, CD90 CD11n, CD45 - - - -

Inoue et al., 2018 [26] Adipose tissue Rat CD90 CD31, CD45 - - - Adipogenic and
myogenic

Sarveazad et al., 2019 [30] Adipose tissue Human CD29, CD73,
CD105 CD34, CD45

Sarveazad et al., 2017 [71] Adipose tissue Human CD44, CD73,
CD90 CD31, CD45 - - - -

Adipose
Tissue-Derived

Cells

Kuismanen et al., 2018 [23] Adipose tissue Human CD73, CD90,
CD105

CD14, CD19,
CD34, CD45RO,
CD54, HLA-DR

- - - -

Bohl et al., 2017 [102] Enteric Neural
System Rabbit - - - - - -

Zakhem et al., 2015 [97] Appendix
neuronal system Rabbit P75(NTR) - - Sox2, Nestin Neurospheres

Rego et al., 2017 [98] Enteric neuronal
system Rabbit - - - - - Neurospheres

Dadhich et al., 2019 [48] Enteric neuronal
system NHP P75(NTR) smoothelin, oct4

Gilmont et al., 2014 [95] Enteric neuronal
system Human P75(NTR) - - - - Neurospheres

Neural
Tissue-Derived

Cells

Raghavan et al., 2014 [96],
Raghavan et al., 2011 [103]

Enteric neuronal
system Human - - - - - -

Miscellaneous Aghaee-Afshar et al., 2009 [40] Umbilical cord
matrix Human - - - - - -
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References were updated in the following sections and subsections:

In Subsection 2.2. Acute Anal Sphincter Injury and Healing, all the references were updated from:

The classical clinical situation of acute anal sphincter injury is well illustrated by
childbirth trauma, which still occurs in 11% of vaginal deliveries and can extend up to the
IAS and sometimes the rectum (starting from posterior wall of vagina) [18] (Figure 1). In
the case of extending traumatism to the level of rectal wall, dedicated stem cells of the anal
canal transition zone, positive for cytokeratin 17, participate in the healing process of the
mucosa of the rectum and the anal canal [19]. On the other hand, the healing process of anal
sphincters has not been thoroughly studied and it is supposed to be very similar to other
muscle-healing processes [20]. Under optimal conditions, healing ultimately leads to the
generation of new myofibers/smooth muscle cells from muscle satellite cells/progenitor
smooth muscle cells or the reparation of damaged myofibers after fusion with muscle
satellite cells [21,22]. After anal sphincter injury, it is thought that inflammatory cells’
cross-talk produces cytokines and growth factors that will recruit stem cells and progenitor
cells [20,22]. These cells could be mobilized from bone marrow or the surrounding tissues
and might favor healing, be incorporated into the wound or further recruit stem cells and
progenitor cells [20,22,23]. Especially, skeletal muscle satellite cells, which are localized
in periphery of myofibers, near vascular or nerve structures, are a source of myoblasts
and, further, new myocytes after their activation [24,25]. However, Lorenzi et al., reported
in rats, after direct anal sphincter injury and repair, the persistence of fibrous tissue with
dilated blood vessels and muscle cell degeneration patterns [26].

Progenitor cells produce cytokines like stromal-derived factor 1 (SDF-1) that are both
chemoattractive for progenitor cells (including myoblasts and smooth muscle progenitor
cells) but also contribute to cell proliferation, migration and survival [20,57,58]. SDF-1
seems to be a prominent cytokine for anal sphincter healing. Salcedo et al., reported a
rapid local burst of SDF-1 and monocyte chemotactic protein-3 (MCP-3) expression in rats
one hour after sphincter injury and up to 21 days after injury [59]. Moreover, an injection
of plasmids with SDF-1 directly into EAS muscle or transplantation of SDF-1 transfected
progenitor cells both improved continence in rodents after partial sphincterectomy with
the same extend [43,44].

In theory, progenitor cells could be transplanted soon after injury and this is considered
to be the best option to maximize the effect of transplantation (Figure 2) [20]. Indeed, it is
supposed that progenitor cells might increase the natural healing process notably through
the local release of cytokines such as SDF-1 [20,59]. This strategy was evaluated in several
preclinical studies where progenitor cells were either directly injected after injury with
surgical reparation, or not, to mimic the situation of a direct repair of sphincters [26–33,40].
Of note, some authors delayed this intervention by 24 h [15,39,40,46]. To the best of
our knowledge, progenitor cells have never been injected in a patient with acute anal
sphincter injury.

To:
The classical clinical situation of acute anal sphincter injury is well illustrated by

childbirth trauma, which still occurs in 11% of vaginal deliveries and can extend up to the
IAS and sometimes the rectum (starting from posterior wall of vagina) [49] (Figure 1). In
the case of extending traumatism to the level of rectal wall, dedicated stem cells of the anal
canal transition zone, positive for cytokeratin 17, participate in the healing process of the
mucosa of the rectum and the anal canal [50]. On the other hand, the healing process of anal
sphincters has not been thoroughly studied and it is supposed to be very similar to other
muscle-healing processes [51]. Under optimal conditions, healing ultimately leads to the
generation of new myofibers/smooth muscle cells from muscle satellite cells/progenitor
smooth muscle cells or the reparation of damaged myofibers after fusion with muscle
satellite cells [52,53]. After anal sphincter injury, it is thought that inflammatory cells’
cross-talk produces cytokines and growth factors that will recruit stem cells and progenitor
cells [51,53]. These cells could be mobilized from bone marrow or the surrounding tissues
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and might favor healing, be incorporated into the wound or further recruit stem cells and
progenitor cells [51,53,54]. Especially, skeletal muscle satellite cells, which are localized in
periphery of myofibers, near vascular or nerve structures, are a source of myoblasts and,
further, new myocytes after their activation [55,56]. However, Lorenzi et al. reported in rats,
after direct anal sphincter injury and repair, the persistence of fibrous tissue with dilated
blood vessels and muscle cell degeneration patterns [19].

Progenitor cells produce cytokines like stromal-derived factor 1 (SDF-1) that are both
chemoattractive for progenitor cells (including myoblasts and smooth muscle progenitor
cells) but also contribute to cell proliferation, migration and survival [51,57,58]. SDF-1
seems to be a prominent cytokine for anal sphincter healing. Salcedo et al. reported a
rapid local burst of SDF-1 and monocyte chemotactic protein-3 (MCP-3) expression in rats
one hour after sphincter injury and up to 21 days after injury [59]. Moreover, an injection
of plasmids with SDF-1 directly into EAS muscle or transplantation of SDF-1 transfected
progenitor cells both improved continence in rodents after partial sphincterectomy with
the same extend [35,36].

In theory, progenitor cells could be transplanted soon after injury and this is considered
to be the best option to maximize the effect of transplantation (Figure 2) [51]. Indeed, it is
supposed that progenitor cells might increase the natural healing process notably through
the local release of cytokines such as SDF-1 [51,59]. This strategy was evaluated in several
preclinical studies where progenitor cells were either directly injected after injury with
surgical reparation, or not, to mimic the situation of a direct repair of sphincters [18–25,32].
Of note, some authors delayed this intervention by 24 h [15,31,32,38]. To the best of
our knowledge, progenitor cells have never been injected in a patient with acute anal
sphincter injury.

In Subsection 2.3. Unrepaired Anal Sphincter Injury, in Paragraph 1, 2 and 4, all the references
were updated from:

Most often, an anal sphincter tear is usually identified after delivery and surgically
repaired [18]. Sometimes, the diagnosis can be missed, resulting in an occult anal sphincter
injury [60]. As for an acute anal injury, little is known about the long-term healing and
remodeling of damaged muscle, and an analogy can be made with the repair processes
of skeletal and smooth muscles from other localizations (cf. Section 2.2). Probably, some
unrepaired anal sphincter lesions could spontaneously heal. There exists evidence that
a clear cut through anal sphincters in rats can heal spontaneously without inducing ASI
[39,47]. As a result, almost all models of ASI in rats imply the partial resection of anal
sphincters. In rat models where simple anal sphincters section were performed, acute and
chronic inflammation was seen at the site of injury, characterized by neutrophils, monocytes
macrophages infiltrations and fibrous tissue [28,30], disorganization of striated fibers of the
EAS [43,45], but also mucin pool inclusions with histiocytes [42]. In rabbits, Rajasekaran
investigated the effects of an EAS clear-cut section over time. The authors reported early
collagen deposits from one week after injury, but also extensive fibrosis appearing three
weeks after injury, at the site of myotomy but also beyond [61]. The presence of fibrosis
was confirmed by other authors in rabbits [48,51]. In dogs, three weeks after IAS and EAS
partial excision, Kang et al. reported focal interstitial inflammation, fibrosis and atrophy of
smooth and striated muscles [54].

Anal sphincters encircle the anal canal, and the loss of this circular shape, as a result
of injury, directly impairs the continence function [62]. However, during sphincter repair
surgery, one can observe that the retracted muscle edges are held together with fibrous tis-
sue, which bridges the defect [63]. Thus, unrepaired damage to IAS or EAS does not evolve
into a hole in the sphincter ring (EAS and/or IAS), but rather into altered tissue, which fills
the breach. In rats, this tissue contained mast cells and other inflammatory cells [27]. To the
best of our knowledge, the importance of this tissue was never investigated in humans but
could be of importance, especially if the muscle gap is the target of cell therapy.

Another strategy to treat patients with ASI is the transplantation of a biosphincter.
Bitar’s group, from the Wake Forest Institute for Regenerative Medicine, has been working
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for decades on the implantation of bioengineered anal sphincters composed of innervated
smooth muscle cells (Table S2). The results are promising and the group recently implanted
the construct in large animals, including non-human primates [55,56]. This strategy is
interesting as it provides a complete and functional IAS substitute and might be part of
a reconstruction strategy for patients in whom IAS has been totally or partially removed
such as for ultra-low rectal cancer resections. However, IAS engineering has some hurdles
to overcome. First, this approach uses IAS or digestive smooth muscle cells and intestinal
neuronal cells. For translation to the clinic, tissue might be procured from organ donors,
requiring further immunosuppression and exposing patients to its associated risks. Those
risks need to be balanced with the fact that ASI is a non-life-threatening condition. Moreover,
Araki et al., recently demonstrated the feasibility of anorectal transplantation in a dog
model, with this approach being serious concurrent to allogenic biosphincters [70]. Further,
the tissue culture of such constructs requires 6 to 8 weeks of culture, which increases the
risk of microbial contamination. Finally, the cost of the creation of an organic construct
seems to be higher than cell isolation and expansion.

To:

Most often, an anal sphincter tear is usually identified after delivery and surgically
repaired [49]. Sometimes, the diagnosis can be missed, resulting in an occult anal sphincter
injury [60]. As for an acute anal injury, little is known about the long-term healing and
remodeling of damaged muscle, and an analogy can be made with the repair processes
of skeletal and smooth muscles from other localizations (cf. Section 2.2). Probably, some
unrepaired anal sphincter lesions could spontaneously heal. There exists evidence that
a clear cut through anal sphincters in rats can heal spontaneously without inducing ASI
[31,39]. As a result, almost all models of ASI in rats imply the partial resection of anal
sphincters. In rat models where simple anal sphincters section were performed, acute and
chronic inflammation was seen at the site of injury, characterized by neutrophils, monocytes
macrophages infiltrations and fibrous tissue [20,22], disorganization of striated fibers of the
EAS [35,37], but also mucin pool inclusions with histiocytes [34]. In rabbits, Rajasekaran
investigated the effects of an EAS clear-cut section over time. The authors reported early
collagen deposits from one week after injury, but also extensive fibrosis appearing three
weeks after injury, at the site of myotomy but also beyond [61]. The presence of fibrosis
was confirmed by other authors in rabbits [40,43]. In dogs, three weeks after IAS and EAS
partial excision, Kang et al. reported focal interstitial inflammation, fibrosis and atrophy of
smooth and striated muscles [46].

Anal sphincters encircle the anal canal, and the loss of this circular shape, as a result
of injury, directly impairs the continence function [62]. However, during sphincter repair
surgery, one can observe that the retracted muscle edges are held together with fibrous tis-
sue, which bridges the defect [63]. Thus, unrepaired damage to IAS or EAS does not evolve
into a hole in the sphincter ring (EAS and/or IAS), but rather into altered tissue, which fills
the breach. In rats, this tissue contained mast cells and other inflammatory cells [18]. To the
best of our knowledge, the importance of this tissue was never investigated in humans but
could be of importance, especially if the muscle gap is the target of cell therapy.

Another strategy to treat patients with ASI is the transplantation of a biosphincter.
Bitar’s group, from the Wake Forest Institute for Regenerative Medicine, has been working
for decades on the implantation of bioengineered anal sphincters composed of innervated
smooth muscle cells (Table S2). The results are promising and the group recently implanted
the construct in large animals, including non-human primates [47,48]. This strategy is
interesting as it provides a complete and functional IAS substitute and might be part of
a reconstruction strategy for patients in whom IAS has been totally or partially removed
such as for ultra-low rectal cancer resections. However, IAS engineering has some hurdles
to overcome. First, this approach uses IAS or digestive smooth muscle cells and intestinal
neuronal cells. For translation to the clinic, tissue might be procured from organ donors,
requiring further immunosuppression and exposing patients to its associated risks. Those
risks need to be balanced with the fact that ASI is a non-life-threatening condition. Moreover,
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Araki et al. recently demonstrated the feasibility of anorectal transplantation in a dog model,
with this approach being serious concurrent to allogenic biosphincters [70]. Further, the
tissue culture of such constructs requires 6 to 8 weeks of culture, which increases the risk of
microbial contamination. Finally, the cost of the creation of an organic construct seems to
be higher than cell isolation and expansion.

References from Subsection 2.4. Secondary Repaired Anal Sphincter Injury were updated from:

Patients with visible EAS or IAS sphincter lesions are good candidates for surgical repair.
Park’s sphincteroplasty is the most common procedure where the two edges of the damaged
sphincters are brought together with an overlapping suture [5,63]. Usually, the surrounding
fibrous tissue, which also connects the retracted muscle, is not dissected as it offers a firm
support for knotting [63]. To the best of our knowledge, the healing of such a delayed repair
has never been investigated. Due to the poor long-term results of sphincteroplasty, the idea
to strengthen the reparation with multipotent cells has emerged. As mentioned above, in
preclinical studies, some authors injected multipotent cells during sphincter repair surgery but
this was never done after secondary repair in animals [28,29,32,33,41]. However, Sarveazad
et al. successfully and safely injected adipose tissue-derived multipotent cells after EAS
sphincteroplasty in five women and two men (Table 2) [71].

To:

Patients with visible EAS or IAS sphincter lesions are good candidates for surgical repair.
Park’s sphincteroplasty is the most common procedure where the two edges of the damaged
sphincters are brought together with an overlapping suture [5,63]. Usually, the surrounding
fibrous tissue, which also connects the retracted muscle, is not dissected as it offers a firm
support for knotting [63]. To the best of our knowledge, the healing of such a delayed repair
has never been investigated. Due to the poor long-term results of sphincteroplasty, the idea
to strengthen the reparation with multipotent cells has emerged. As mentioned above, in
preclinical studies, some authors injected multipotent cells during sphincter repair surgery but
this was never done after secondary repair in animals [20,21,24,25,33]. However, Sarveazad
et al. successfully and safely injected adipose tissue-derived multipotent cells after EAS
sphincteroplasty in five women and two men (Table 2) [71].

References from Section 3, Subsection 3.1. Multipotent Cell Origins, Paragraphs 1–5, were
updated from:

Multipotent cells proposed for ASI cell therapy can be derived from various tissues.
The most frequent sites were skeletal muscle, bone marrow or adipose tissue. Cell prepara-
tions were either syngeneic or autologous, and allogeneic or xenogeneic transplantation
was marginal (four preclinical studies and one clinical study). Cells from a muscular origin
were used in the majority of the identified publications: In 17 studies, they originated from
skeletal muscle or EAS [32,33,36,37,49,50,52–54,66–69,73,74,91–93] and in 11 studies, from
smooth muscle or IAS [56,79,94–102] (Table 3). Four out of six clinical trials used skeletal
muscle multipotent cells whereas the other used adipose tissue multipotent cells [66–69,74].
Two in vivo publications reported the use of commercial H9c2 rat heart myoblasts [28,42].

Cells of bone marrow origin were used in 10 studies [5,26,27,30,39–41,43,46,48] and
only six tested cells originating from adipose tissue [31,34,35,38,71,72]. Neural cells were
used for bioengineered constructs in eight publications [92–99,102,103]. Bioengineered
constructs used smooth muscle seeded with neuronal cells from different origins. Finally,
only one publication evaluated the potential of human umbilical cord matrix cells [48].

Skeletal muscle-derived cells seem to be an interesting source for ASI therapy. Different
multipotent cells can be extracted from skeletal muscle: Satellite cells and other resident
multipotent cells, the former having the ability to become new satellite cells or myoblasts,
the precursors of myocytes (Figure 1) [104]. Thurner et al. demonstrated that smooth
muscle cells can eventually be derived from myogenic progenitors [105]. The function of
other muscle resident multipotent cells is not completely understood and this category
encompasses different kinds of multipotent cells such as adult pericytes, PW1+ interstitial
cells and fibro-adipogenic progenitors [106].
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Satellite cells have the ability to reform muscle fiber [104] and have been proposed
to treat conditions such as Duchenne disease [107], coronary artery disease [108] and
also urinary incontinence [109]. It is supposed that skeletal muscle multipotent cells
differentiated into new myocyte and could resupply EAS with new fibers (Figure 1).
Indeed, the apparition of new fibers in EAS and the expression of muscle proteins have
been observed by several authors [36,50,52,53,91,92]. However, the appearance of new
muscle fibers does not necessarily indicate that anal function is improved. In this regard,
several in vivo studies [28,37,54] using myogenic cells were inconclusive concerning anal
function recovery despite cell engraftment confirmation.

Cells derived from adipose tissue constitute an interesting option, as subcutaneous
fat tissue is easily accessible. The cells used in the reported studies [31,34,35,71] had the
characteristics of MSC including the ability to differentiate into various tissues. MSC are
multipotent cells that have been evaluated over the last years to treat various conditions
including spinal cord injury, corneal or uvea injury, lung injury, cerebral injury, colitis,
alopecia, muscular degenerative disease, myocardial infarction, liver injury, multiple scle-
rosis, Parkinson disease, cancer and to improve wound healing [110]. Indeed, allogeneic
adipose tissue MSCs became popular because of their poor immunogenicity and their
availability after liposuction surgery. However, recent evidence demonstrated the devel-
opment of donor-specific antibodies, and MSC rejection has been documented. Besides
MSC’s ability to differentiate into various cells, their paracrine action have been proposed
to mediate most of their effects [110,111]. MSC produce a large amount of growth factors
and extracellular vesicles [112]. Strategies using encapsulated MSC conserve the effects of
MSC, notably on liver fibrosis, confirming the efficacy of paracrine action and treatment
[113]. Thus, MSC can be seen as in situ bioreactors delivering growth factors to neighboring
cells. MSC have the ability to induce smooth muscle regeneration from the gut and the
bladder [114,115] and also skeletal muscle regeneration [116,117]. Thus, MSC therapy may
promote the healing and regeneration of both IAS and EAS.

To:

Multipotent cells proposed for ASI cell therapy can be derived from various tissues.
The most frequent sites were skeletal muscle, bone marrow or adipose tissue. Cell prepara-
tions were either syngeneic or autologous, and allogeneic or xenogeneic transplantation
was marginal (four preclinical studies and one clinical study). Cells from a muscular origin
were used in the majority of the identified publications: In 17 studies, they originated from
skeletal muscle or EAS [24,25,28,29,41,42,44–46,66–69,74,91–93] and in 11 studies, from
smooth muscle or IAS [48,79,94–102] (Table 3). Four out of six clinical trials used skeletal
muscle multipotent cells whereas the other used adipose tissue multipotent cells [66–69,74].
Two in vivo publications reported the use of commercial H9c2 rat heart myoblasts [20,34].

Cells of bone marrow origin were used in nine studies [15,18,19,22,31,33,36,38,40]
and only six tested cells originating from adipose tissue [23,26,27,30,71,72]. Neural cells
were used for bioengineered constructs in eight publications [95–99,102]. Bioengineered
constructs used smooth muscle seeded with neuronal cells from different origins. Finally,
only one publication evaluated the potential of human umbilical cord matrix cells [40].

Skeletal muscle-derived cells seem to be an interesting source for ASI therapy. Different
multipotent cells can be extracted from skeletal muscle: Satellite cells and other resident
multipotent cells, the former having the ability to become new satellite cells or myoblasts,
the precursors of myocytes (Figure 1) [104]. Thurner et al. demonstrated that smooth
muscle cells can eventually be derived from myogenic progenitors [105]. The function of
other muscle resident multipotent cells is not completely understood and this category
encompasses different kinds of multipotent cells such as adult pericytes, PW1+ interstitial
cells and fibro-adipogenic progenitors [106].

Satellite cells have the ability to reform muscle fiber [104] and have been proposed
to treat conditions such as Duchenne disease [107], coronary artery disease [108] and
also urinary incontinence [109]. It is supposed that skeletal muscle multipotent cells
differentiated into new myocyte and could resupply EAS with new fibers (Figure 1).
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Indeed, the apparition of new fibers in EAS and the expression of muscle proteins have
been observed by several authors [28,42,44,45,91,92]. However, the appearance of new
muscle fibers does not necessarily indicate that anal function is improved. In this regard,
several in vivo studies [20,29,46] using myogenic cells were inconclusive concerning anal
function recovery despite cell engraftment confirmation.

Cells derived from adipose tissue constitute an interesting option, as subcutaneous
fat tissue is easily accessible. The cells used in the reported studies [23,26,27,71] had the
characteristics of MSC including the ability to differentiate into various tissues. MSC are
multipotent cells that have been evaluated over the last years to treat various conditions
including spinal cord injury, corneal or uvea injury, lung injury, cerebral injury, colitis, alope-
cia, muscular degenerative disease, myocardial infarction, liver injury, multiple sclerosis,
Parkinson disease, cancer and to improve wound healing [110]. Indeed, allogeneic adipose
tissue MSCs became popular because of their poor immunogenicity and their availability
after liposuction surgery. However, recent evidence demonstrated the development of
donor-specific antibodies, and MSC rejection has been documented [111]. Besides MSC’s
ability to differentiate into various cells, their paracrine action have been proposed to
mediate most of their effects [110,112]. MSC produce a large amount of growth factors and
extracellular vesicles [113]. Strategies using encapsulated MSC conserve the effects of MSC,
notably on liver fibrosis, con-firming the efficacy of paracrine action and treatment [114].
Thus, MSC can be seen as in situ bioreactors delivering growth factors to neighboring cells.
MSC have the ability to induce smooth muscle regeneration from the gut and the bladder
[115,116] and also skeletal muscle regeneration [117,118]. Thus, MSC therapy may promote
the healing and regeneration of both IAS and EAS.

References from Subsection 3.2. and Subsection 3.3., were updated from:

3.2. Methods for Multipotent Cell Isolation and Processing

Stem cell and progenitor cells were retrieved from rats, mice, rabbits, non-human
primate or humans (Table S1). Different harvest methods were used according to the
origin of the collected tissue, but protocols were similar to existing standard, with the first
step of washing and decontamination followed by the digestion of tissue and, finally, the
purification of the cell suspension before plating. In the majority of studies, isolation proce-
dures were sufficiently detailed, but some studies lack essential information concerning the
isolation procedures. Skeletal muscle was digested with collagenase I [49,50,98], collage-
nase type II [93], collagenase type IV [92] collagenase type XI [37,54,91], collagenase NB6
[69], trypsin [91] and and/or dispase II [52,53,91]. Intestinal smooth muscle was digested
using collagenase I [94] or collagenase II [79,93,95,97,99–103,119]. Enteric neurons were
isolated after the digestion of tissue with collagenase II and dispase II [15,95,97,102,103]. For
bone-marrow MSC, bones were flushed, and bone marrow collected, washed, sometimes
fractionated with density gradient and plated [27,39,40,43–46]. For fat multipotent cells,
adipose tissue was digested with collagenase I [31,34,35,71].

3.3. Methods for Multipotent Cell Characterization

The characterization of isolated multipotent cells is mandatory for reproducibility
but also for quality purpose, especially when a clinical application for ASI treatment is
foreseen. Among publications using muscle multipotent cells, only 13 studies reported
or referred to a proper characterization of the cells and were heterogeneous for markers
(Table 3) [36,37,49,50,52–54,56,66–69,93]. Indeed, international criteria for MSC definition
were not always applied/fulfilled/verified [120].

Cells of bone marrow origin were used in nine publications [15,26,27,30,39,41,43,46,48]
and were well characterized only in seven [15,26,27,39,41,43,46]. Cells originating from
adipose tissue were more often precisely characterized and were at least CD90+ and
CD45− [31,34,35,38,71]. Satellite cells have typical features such as the expression of the
transcription factor PAX7 (Figure 1) [104] but there is currently a lack of standardization in
the nomenclature and characterization of other myogenic cells [121]. Thus, multipotent cells
from a skeletal origin were widely used to treat in vivo models of ASI, but their efficacy,
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as well as their identification, remained elusive. As the cell types used were insufficiently
characterized, it cannot be excluded that the beneficial effect on ASI was partially mediated
by co-isolated contaminant multipotent cells from connective tissue. Moreover, if we
assume that satellite cells were responsible for the positive effects of skeletal muscle cell
preparation on ASI, this effect was thus induced by their action on the skeletal muscle of
EAS and not on the smooth muscle of IAS.

To:

3.2. Methods for Multipotent Cell Isolation and Processing

Stem cell and progenitor cells were retrieved from rats, mice, rabbits, non-human
primate or humans (Table S1). Different harvest methods were used according to the origin
of the collected tissue, but protocols were similar to existing standard, with the first step of
washing and decontamination followed by the digestion of tissue and, finally, the purifica-
tion of the cell suspension before plating. In the majority of studies, isolation procedures
were sufficiently detailed, but some studies lack essential information concerning the isola-
tion procedures. Skeletal muscle was digested with collagenase I [41,42,98], collagenase
type II [93], collagenase type IV [92] collagenase type XI [29,46,91], collagenase NB6 [69],
trypsin [91] and and/or dispase II [44,45,91]. Intestinal smooth muscle was digested using
collagenase I [94] or collagenase II [79,93,95,97,99–103,119]. Enteric neurons were iso-
lated after the digestion of tissue with collagenase II and dispase II [15,95,97,102,103]. For
bone-marrow MSC, bones were flushed, and bone marrow collected, washed, sometimes
fractionated with density gradient and plated [18,31,32,35–38]. For fat multipotent cells,
adipose tissue was digested with collagenase I [23,26,27,71].

3.3. Methods for Multipotent Cell Characterization

The characterization of isolated multipotent cells is mandatory for reproducibility
but also for quality purpose, especially when a clinical application for ASI treatment is
foreseen. Among publications using muscle multipotent cells, only 13 studies reported
or referred to a proper characterization of the cells and were heterogeneous for markers
(Table 3) [28,29,41,42,44–46,48,66–69,93]. Indeed, international criteria for MSC definition
were not always applied/fulfilled/verified [120].

Cells of bone marrow origin were used in nine publications [15,18,19,22,31,33,36,40,118]
and were well characterized only in seven [15,18,19,31,33,35,38]. Cells originating from
adipose tissue were more often precisely characterized and were at least CD90+ and CD45−

[23,26,27,30,71]. Satellite cells have typical features such as the expression of the transcrip-
tion factor PAX7 (Figure 1) [104] but there is currently a lack of standardization in the
nomenclature and characterization of other myogenic cells [121]. Thus, multipotent cells
from a skeletal origin were widely used to treat in vivo models of ASI, but their efficacy,
as well as their identification, remained elusive. As the cell types used were insufficiently
characterized, it cannot be excluded that the beneficial effect on ASI was partially medi-
ated by co-isolated contaminant multipotent cells from connective tissue. Moreover, if we
assume that satellite cells were responsible for the positive effects of skeletal muscle cell
preparation on ASI, this effect was thus induced by their action on the skeletal muscle of
EAS and not on the smooth muscle of IAS.

References from Section 4, Subsections 4.1–4.4. were updated from:

4.1. Practical Considerations

Before transplantation, cells were cultivated on plastic dishes and the number of
passages before injection in the identified clinical trials ranged from three to ten. The
number of injected cells, clearly reported by identified in vivo reports, ranged from 10,000
up to 90 million. In clinical trials, this number ranged from 200,000 up to 2 billion. However,
the minimum number of cells required to obtain a beneficial effect on ASI remains elusive
and only a few authors performed a real titration [36,92]. Thus, an excess of cells was used to
compensate stem cell and progenitor cell death. Transplanted cell survival is a main concern
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in the field of cell therapy and it can be impaired by several factors related to the mechanical
force applied during cell application, detachment from cell substrate and receiving site
with inflammation and/or local hypoxia [122]. Indeed, forces generated during injection
with a syringe needle are sufficient to induce up to 40% of cell death [122]. Thus, strategies
have been developed to improve cell engraftment and transplantation success.

4.2. Adjuvant Therapy

As a strategy to limit cellular stress due to transplantation, some authors proposed
to protect cells with biomaterials [52–54,110]. Indeed, it is known that preserving cell-
extracellular substrate interactions can limit stem cell apoptosis [122]. Biomaterials were
typically scaffolds of decellularized matrices or hydrogel polymers [31,41–43,51]. Deserving
the same purpose, multipotent cells were also transplanted as sheets of cells instead of
individual cells [34]. Alternatively, Trébol et al. seeded suture thread with MSC to be used
for sphincter reconstruction [35] whereas Ding et al. reinforced reconstruction with a patch
of an acellular dermal matrix also seeded with MSC [41].

As mentioned earlier, in some studies, authors performed immediate injection of cells
along with sphincter repair, confronting cells with an acute inflammatory environment
that presumably precludes cell survival [122]. On the other hand, inflammation can also
enhance cell settling and homing, and the injection of myoblasts in healthy regions of EAS
did not restore continence compared to the injection of cells into injured parts [36,122].
Other known strategies to improve cell survival implicated pre-conditioning of cells with
either thermal preconditioning, hypoxic preconditioning, acidic preconditioning or nutrient
deprivation preconditioning [122]. The goal of these strategies is to induce anti-apoptotic
protein expression [122]. Injection sites were also prepared, and electrical stimulation was
used in two in vivo studies [45,46] and two clinical studies to promote the homing of cells
into anal sphincters [66,68]. Moreover, laser beam stimulation along with cell therapy was
used in one study to promote muscle proliferation [38].

Further, growth factors (SDF-1, FGF) described to promote stem cell implantation
were delivered in situ by bioscaffolds or through osmotic pumps [44,45,99,100,103]. Two
studies transfected cells with SDF-1 plasmids before implantation [43,44]. As an alternative
to the use of growth factors, platelet rich plasma, which is known to contain numerous
growth factors, might be transplanted conjointly with stem cells [123].

4.3. Measure of Outcomes and Results

For in vitro studies, physiological functional evaluation was carried out in almost
all identified studies to assess the contractility potential of constructed sphincters. For
in vivo studies, outcomes were highly variable: The most common methods for outcome
assessment were histology, anorectal manometry, physiological functionality evaluation
and electromyography or electrophysiology. Some authors tracked cells using magnetic
resonance imaging [50] or labeled them with fluorescent proteins (GFP) [91].

The determination of the outcome in a clinical study on anal incontinence is challeng-
ing. Different definitions of ASI exists, including incontinence to gases or not [1]. Further,
in order to be comparable to the literature, authors are choosing outcomes that appear
to be a gold standard in the medical literature. In almost all published clinical studies,
one incontinence score was used as the primary outcome. However, a recent analysis of
different incontinence scores pointed out that no single score reaches relevant psychometric
soundness and recommended the use of at least two scores to evaluate ASI [123]. However,
the utilization of objective outcomes may be more reliable such as high-resolution anal
manometry or contact EMG (For e.g., MAPLe® device, Medtronic, Dublin, Ireland [124]).

4.4. Results

A review of the literature identified a total of 52 original publications. Seven pub-
lications reported in vitro results (Table S2) [79,93–95,97,98], with six on bioengineered
constructs among them [79,94,95,97,98]. One publication reported the isolation of cells from
human IAS and EAS and assessed their viability [93]. In vivo experiments were reported
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in 38 publications (Table S1) [15,26,27,29–43,45,46,48–54,56,91,92,96,99–103], including five
articles on heterotopic sphincter bioconstruct implantation [96,99–101,103]. Seven human
studies were identified (Table 2) [66,68,69,71,72,74], including three randomized controlled
trials [69,71,72] and one case report [74]. A total of 83 patients received cell therapy for
ASI treatment.

Almost all patients included in clinical trials exhibited EAS injury. Four out of seven
studies used the Wexner score as the primary outcome. The FIQL score was used in two
studies. Other variables measured were anorectal manometry (5/7), endoanal ultrasonog-
raphy (3/7) and electromyography (EMG) (3/7). The longest follow-up was reported by
the group of Frudinger et al. who injected autologous myoblasts into EAS in 10 voluntary
women with EAS defect or atrophy [66]. After a follow-up of 5 years, the mean Wexner
score decreased from 15.3 (SD-2.4) before intervention to 0.7 (SD 1.3) (p > 0.001). In addition,
anal manometry demonstrated an improvement of median resting and squeeze pressures
(20 (IQR 17–28) to 32 (25–43) and 23 (IQR 20–34) to 33 (IQR 31–66), respectively). The same
group started a second trial including 34 females and 5 males and found a reduction of
Wexner score of −16.2 (SD-3.66) for women and −18.8 (SD-1.30) for male at one year. These
results were better than sphincteroplasty, which typically induces a long-term reduction
of −1 to −5.2 of median/mean Wexner score (mean follow-up between seven and eight
years) [125,126]. In a similar study (muscle tissue-derived multipotent cells injected into
EAS), Boyer et al. reported a reduction of median Wexner score of −6.4 (range −12 to 2)
(p = 0.006) for the intervention group and a reduction of −1 (range −8 to 6) (p = 0.35) for
the placebo [69]. However, using adipose tissue-derived multipotent cells in a randomized
triple blinded placebo-controlled trial, De la Portilla et al. failed to demonstrate any effect
on Wexner score of cell transplantation into EAS defect [72]. Globally, all seven reports
described encouraging results regarding at least one of the measured outcomes (which was
not necessary the primary outcome).

Until now, in vivo experiments have demonstrated a relative oncological safety of
such a strategy. One in vivo study described focal cell growth at the injection site but
without malignant characteristics [33]. Recent evidence confirmed that pure stem cell
cultures, particularly MSC, did not develop malignant cells [127,128]. However, MSC have
opposite effects on tumor cells and can promote or suppress tumor growth in vitro and
in vivo [129]. Published clinical trials, which used either skeletal muscle tissue or adipose
tissue multipotent cells, demonstrated that the procedures were safe.

To:

4.1. Practical Considerations

Before transplantation, cells were cultivated on plastic dishes and the number of
passages before injection in the identified clinical trials ranged from three to ten. The
number of injected cells, clearly reported by identified in vivo reports, ranged from 10,000
up to 90 million. In clinical trials, this number ranged from 200,000 up to 2 billion. However,
the minimum number of cells required to obtain a beneficial effect on ASI remains elusive
and only a few authors performed a real titration [28,92]. Thus, an excess of cells was used to
compensate stem cell and progenitor cell death. Transplanted cell survival is a main concern
in the field of cell therapy and it can be impaired by several factors related to the mechanical
force applied during cell application, detachment from cell substrate and receiving site
with inflammation and/or local hypoxia [122]. Indeed, forces generated during injection
with a syringe needle are sufficient to induce up to 40% of cell death [122]. Thus, strategies
have been developed to improve cell engraftment and transplantation success.

4.2. Adjuvant Therapy

As a strategy to limit cellular stress due to transplantation, some authors proposed
to protect cells with biomaterials [44–46,110]. Indeed, it is known that preserving cell-
extracellular substrate interactions can limit stem cell apoptosis [122]. Biomaterials were
typically scaffolds of decellularized matrices or hydrogel polymers [23,33–35,43]. Deserving
the same purpose, multipotent cells were also transplanted as sheets of cells instead of
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individual cells [26]. Alternatively, Trébol et al. seeded suture thread with MSC to be used
for sphincter reconstruction [27] whereas Ding et al. reinforced reconstruction with a patch
of an acellular dermal matrix also seeded with MSC [33].

As mentioned earlier, in some studies, authors performed immediate injection of cells
along with sphincter repair, confronting cells with an acute inflammatory environment
that presumably precludes cell survival [122]. On the other hand, inflammation can also
enhance cell settling and homing, and the injection of myoblasts in healthy regions of EAS
did not restore continence compared to the injection of cells into injured parts [28,122].
Other known strategies to improve cell survival implicated pre-conditioning of cells with
either thermal preconditioning, hypoxic preconditioning, acidic preconditioning or nutrient
deprivation preconditioning [122]. The goal of these strategies is to induce anti-apoptotic
protein expression [122]. Injection sites were also prepared, and electrical stimulation was
used in two in vivo studies [37,38] and two clinical studies to promote the homing of cells
into anal sphincters [66,68]. Moreover, laser beam stimulation along with cell therapy was
used in one study to promote muscle proliferation [30].

Further, growth factors (SDF-1, FGF) described to promote stem cell implantation
were delivered in situ by bioscaffolds or through osmotic pumps [35,37,99,100,103]. Two
studies transfected cells with SDF-1 plasmids before implantation [35,36]. As an alternative
to the use of growth factors, platelet rich plasma, which is known to contain numerous
growth factors, might be transplanted conjointly with stem cells [123].

4.3. Measure of Outcomes and Results

For in vitro studies, physiological functional evaluation was carried out in almost
all identified studies to assess the contractility potential of constructed sphincters. For
in vivo studies, outcomes were highly variable: The most common methods for outcome
assessment were histology, anorectal manometry, physiological functionality evaluation
and electromyography or electrophysiology. Some authors tracked cells using magnetic
resonance imaging [42] or labeled them with fluorescent proteins (GFP) [91].

The determination of the outcome in a clinical study on anal incontinence is challeng-
ing. Different definitions of ASI exists, including incontinence to gases or not [1]. Further,
in order to be comparable to the literature, authors are choosing outcomes that appear
to be a gold standard in the medical literature. In almost all published clinical studies,
one incontinence score was used as the primary outcome. However, a recent analysis of
different incontinence scores pointed out that no single score reaches relevant psychometric
soundness and recommended the use of at least two scores to evaluate ASI [124]. However,
the utilization of objective outcomes may be more reliable such as high-resolution anal
manometry or contact EMG (For e.g., MAPLe® device, Medtronic, Dublin, Ireland [125]).

4.4. Results

A review of the literature identified a total of 52 original publications. Seven publi-
cations reported in vitro results (Table S2) [79,93–95,97,98,119], with six on bioengineered
constructs among them [79,93–95,97,98]. One publication reported the isolation of cells from
human IAS and EAS and assessed their viability [93]. In vivo experiments were reported
in 38 publications (Table S1) [15,18,19,21–35,37,38,40–46,48,91,92,96,99–103], including five
articles on heterotopic sphincter bioconstruct implantation [96,99–101,103]. Seven human
studies were identified (Table 2) [66–69,71,72,74], including three randomized controlled
trials [69–72] and one case report [74]. A total of 83 patients received cell therapy for
ASI treatment.

Almost all patients included in clinical trials exhibited EAS injury. Four out of seven
studies used the Wexner score as the primary outcome. The FIQL score was used in two
studies. Other variables measured were anorectal manometry (5/7), endoanal ultrasonog-
raphy (3/7) and electromyography (EMG) (3/7). The longest follow-up was reported by
the group of Frudinger et al. who injected autologous myoblasts into EAS in 10 voluntary
women with EAS defect or atrophy [66]. After a follow-up of 5 years, the mean Wexner
score decreased from 15.3 (SD 2.4) before intervention to 0.7 (SD 1.3) (p > 0.001). In addition,
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anal manometry demonstrated an improvement of median resting and squeeze pressures
(20 (IQR 17–28) to 32 (25–43) and 23 (IQR 20–34) to 33 (IQR 31–66), respectively). The same
group started a second trial including 34 females and 5 males and found a reduction of
Wexner score of −16.2 (SD-3.66) for women and −18.8 (SD-1.30) for male at one year. These
results were better than sphincteroplasty, which typically induces a long-term reduction
of −1 to −5.2 of median/mean Wexner score (mean follow-up between seven and eight
years) [126,127]. In a similar study (muscle tissue-derived multipotent cells injected into
EAS), Boyer et al. reported a reduction of median Wexner score of −6.4 (range −12 to 2)
(p = 0.006) for the intervention group and a reduction of −1 (range −8 to 6) (p = 0.35) for
the placebo [69]. However, using adipose tissue-derived multipotent cells in a randomized
triple blinded placebo-controlled trial, De la Portilla et al. failed to demonstrate any effect
on Wexner score of cell transplantation into EAS defect [72]. Globally, all seven reports
described encouraging results regarding at least one of the measured outcomes (which was
not necessary the primary outcome).

Until now, in vivo experiments have demonstrated a relative oncological safety of
such a strategy. One in vivo study described focal cell growth at the injection site but
without malignant characteristics [25]. Recent evidence confirmed that pure stem cell
cultures, particularly MSC, did not develop malignant cells [128,129]. However, MSC have
opposite effects on tumor cells and can promote or suppress tumor growth in vitro and
in vivo [130]. Published clinical trials, which used either skeletal muscle tissue or adipose
tissue multipotent cells, demonstrated that the procedures were safe.

References from the Conclusions, in Paragraphs 2 and 3, were updated from:

The ideal therapy for ASI should be cost-effective with a long-lasting effect. Apart
from research and development costs, good manufacturing practices, GMP certifications
and implementation charges, routine use of cell therapy appears to be highly costly [130].
Trébol et al. estimated the maximal production costs in Spain to be 7400 USD for 40 million
autologous fat-derived cells or 8500 € for 100 million allogeneic fat-derived cells [129]. In
our hospital, the cost for a sphincteroplasty, with a typical length of stay of two days, is
5000 USD. Recently, Gräs et al. proposed a cost-effective alternative to cell transplantation
for anal sphincter regeneration. Following promising results for urinary incontinence, the
authors discussed the possibility to inject fragmented muscle fibers, instead of expanded
cells, into injured anal sphincters [121].

After transplantation, progenitor cells and stem cells might act by paracrine effects
and/or by differentiation into functional muscular cells. It should be pointed out that
the exact underlying mechanism remains poorly understood, and that basic research on
this topic is still required to understand which factors and conditions are leading to cell
engraftment, differentiation and finally tissue regeneration [131,132]. Moreover, the natural
history of sphincter lesion/repaired sphincter healing should be better understood in
order to select appropriate cell preparations and transplantation techniques. Some groups
reported a different approach, considering the use of cell therapy as an add-on to sphincter
repair, either directly after lesion, to simulate the primary repair of an acute obstetrical tear
or at distance [26–33]. Thus, it remains to be determined how stem cells and progenitor
cells should be used for ASI: As a substitution to surgery or along with surgery.

To:

The ideal therapy for ASI should be cost-effective with a long-lasting effect. Apart
from research and development costs, good manufacturing practices, GMP certifications
and implementation charges, routine use of cell therapy appears to be highly costly [131].
Trébol et al. estimated the maximal production costs in Spain to be 7400 USD for 40 million
autologous fat-derived cells or 8500 € for 100 million allogeneic fat-derived cells [130]. In
our hospital, the cost for a sphincteroplasty, with a typical length of stay of two days, is
5000 USD. Recently, Gräs et al. proposed a cost-effective alternative to cell transplantation
for anal sphincter regeneration. Following promising results for urinary incontinence, the
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authors discussed the possibility to inject fragmented muscle fibers, instead of expanded
cells, into injured anal sphincters [121].

After transplantation, progenitor cells and stem cells might act by paracrine effects
and/or by differentiation into functional muscular cells. It should be pointed out that
the exact underlying mechanism remains poorly understood, and that basic research on
this topic is still required to understand which factors and conditions are leading to cell
engraftment, differentiation and finally tissue regeneration [123,132]. Moreover, the natural
history of sphincter lesion/repaired sphincter healing should be better understood in
order to select appropriate cell preparations and transplantation techniques. Some groups
reported a different approach, considering the use of cell therapy as an add-on to sphincter
repair, either directly after lesion, to simulate the primary repair of an acute obstetrical tear
or at distance [18–25]. Thus, it remains to be determined how stem cells and progenitor
cells should be used for ASI: As a substitution to surgery or along with surgery.

The references from the first phrase of Figure 1 caption were corrected from:

Schematic representation of events occurring after delivery-related acute anal sphinc-
ters injury [20,22].

To:

Schematic representation of events occurring after delivery-related acute anal sphinc-
ters injury [51,53].
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