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Abstract: For the first time, based on the expression analysis of a wide range of pro- and anti-fibrotic,
pro- and anti-inflammatory, and pro- and anti-apoptotic genes, key markers of endoplasmic reticulum
stress (ER-stress), molecular mechanisms for the regulation of fibrosis, and accompanying negative
processes caused by thioacetamide (TAA) injections and subsequent injections of selenium-containing
nanoparticles and sorafenib have been proposed. We found that selenium nanoparticles of two
types (doped with and without sorafenib) led to a significant decrease in almost all pro-fibrotic
and pro-inflammatory genes. Sorafenib injections also reduced mRNA expression of pro-fibrotic
and pro-inflammatory genes but less effectively than both types of nanoparticles. In addition, it
was shown for the first time that TAA can be an inducer of ER-stress, most likely activating the
IRE1α and PERK signaling pathways of the UPR, an inducer of apoptosis and pyroptosis. Sorafenib,
despite a pronounced anti-apoptotic effect, still did not reduce the expression of caspase-3 and 12 or
mitogen-activated kinase JNK1 to control values, which increases the risk of persistent apoptosis in
liver cells. After injections of selenium-containing nanoparticles, the negative effects caused by TAA
were leveled, causing an adaptive UPR signaling response through activation of the PERK signaling
pathway. The advantages of selenium-containing nanoparticles over sorafenib, established in this
work, once again emphasize the unique properties of this microelement and serve as an important
factor for the further introduction of drugs based on it into clinical practice.

Keywords: selenium; sorafenib; selenium nanoparticles; liver fibrosis; apoptosis

1. Introduction

Liver fibrosis is a dynamic process and the result of a sustained wound-healing re-
sponse to chronic injury to the organ and involves interactions between hepatocytes, hepatic
stellate cells, sinusoidal endothelial cells, and immune cells. Morphologically, liver fibrosis
is characterized by the accumulation of extracellular matrix and the formation of a fibrous
scar, which destroys the physiological architecture of the liver [1]. This is accompanied by
the loss of hepatocytes and dysregulation of normal liver function, ultimately leading to
liver failure [2]. Liver fibrosis is a reversible process—that is, when the agent causing the
fibrotic reaction is removed, regression of fibrosis is possible [3,4]. However, if not treated
promptly, it can lead to progressive liver cirrhosis and hepatocellular carcinoma (HCC).
Fibrogenesis is activated by the proliferation of myofibroblasts, the main source of which is
liver stellate cells, as well as endogenous portal fibroblasts, fibrocytes, bone marrow cells,
and liver parenchymal cells [5].
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One of the most studied drugs used to treat fibrosis of various organs is the multikinase
inhibitor sorafenib, which is approved by the FDA for the treatment of hepatocellular and
renal cell carcinoma [6–8]. However, the small-molecule drug sorafenib leads to serious side
effects, the main reason for which is the nonspecific uptake of the drug into normal tissues.
This results in hypertension, diarrhea, hand–foot syndrome, and other side effects [9,10].
In addition, sorafenib is characterized by poor solubility and absorption efficiency in the
gastrointestinal tract. This is a good reason for the development of drugs for targeted
delivery to the liver, which have high bioactivity and low toxicity for normal tissues
and organs.

In recent decades, selenium nanoparticles and their various modifications have become
increasingly popular as an effective drug carrier [11–19]. Very often, selenium nanoparticles
(SeNPs) are used in combination therapy, which increases the effectiveness of treatment,
and also as carriers of chemotherapeutic agents such as cisplatin [20,21], 5-fluorouracil [22],
doxorubicin [23], and irinotecan [24], which demonstrates the presence of a synergistic effect
between anticancer drugs and Se. When studying the effect of SeNPs in combination with
radiation therapy using the example of non-small cell lung cancer, one of the most common
cancers in the world, a decrease in cell proliferation, migration, invasion, and apoptosis
was shown [25]. In particular, there are works in which SeNPs were used for the treatment
of hepatocellular carcinoma. Therefore, when a sorafenib nanocomplex and selenium
nanoparticles loaded in poly (D, L-lactic acid-co-glycolic acid)-b-poly (ethylene glycol)
-b-poly (D, L-lactic acid-co-glycolic acid) were used, controlled, sustained drug release into
HepG2 hepatocellular carcinoma cells was observed [26]. Using this cell line as an example,
we also tested the effect of the sorafenib nanocomplex and selenium nanoparticles and
carried out a comparative analysis of the cytotoxic effect of this nanocomplex separately
with the effect of sorafenib and selenium nanoparticles on cells. The work established that
doping SeNPs with the active compound sorafenib leads to an increase in its anticancer
properties and induction of the early stages of apoptosis, which was not observed when
HepG2 cells were treated separately with sorafenib or bare selenium nanoparticles [27].
However, there are practically no studies devoted to the study of selenium nanoparticles
or selenium-based nanocomplexes for the treatment of liver fibrosis, which is extremely
important, since it is chronic fibrosis that leads to hepatocellular carcinoma.

This work is the first to conduct a comprehensive study of the antifibrotic properties of
SeNPs in comparison with sorafenib (So) and selenium and sorafenib nanocomplex (SeSo)
in an animal model. We developed a protocol for the treatment of C57BL/6J mice with liver
fibrosis caused by intraperitoneal injections of thioacetamide (TAA), various concentrations
of selenium nanoparticles, and in combination with sorafenib.

2. Materials and Methods
2.1. Materials

Thioacetamide 98%, (Sigma-Aldrich, Burlington, MA, USA, #172502), qPCRmix-HS
SYBR (Evrogen Moscow, Russia #PK147S), an MMLV RT kit (Evrogen, Moscow, Russia
#SK021), ExtractRNA (Evrogen, Moscow, Russia #BC032), DNaseI (Invitrogen, Carlsbad,
California, #18047019), Picro sirius red (Abcam, Cambridge, UK #ab246832), hematoxylin–
eosin (HistoPoint, Saint Petersburg, Russia), and sorafenib (Bayer HealthCare AG, Lev-
erkusen, Germany) were procured. The following reagents from Evrogen, Moscow, Russia,
were used in this work: synthesis of gene-specific oligonucleotides, ExtractRNA reagent
(#BC032), an MMLV-RT kit for cDNA synthesis (#SK021), a qPCRmix-HS SYBR mixture for
PCR in real time (#PK147S), and DNA length markers (#NL001, #NL002). The following pri-
mary antibodies were used in the work: anti-GAPDH (Thermo FS, Waltham, MA, USA #14-
9523-82), anti -CHOP (Thermo FS, Waltham, MA, USA #MA1-250), anti-CASP-3 (Abcam,
Cambridge, UK#ab184787), anti-CASP-12 (Abcam, Cambridge, UK #ab235180), anti-IL-1β
(Abcam, Cambridge, UK #ab205924), anti-IL-6 (Abcam, Cambridge, UK #ab290735), anti-
IL-33 (Abcam, Cambridge, UK#ab187060), anti-TNFα (Abcam, Cambridge, UK #ab307164),
anti-α-SMA (Abcam, Cambridge, UK #ab7817), anti ATF-4 (Abcam, Cambridge, UK
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#ab216839). Rabbit-anti-mouse Ab (Abcam, Cambridge, UK #ab6728) and mouse anti-
rabbit Ab (Abcam, Cambridge, UK #ab 99697) were used as secondary antibodies. PVDF
membranes (Thermo FS, Waltham, MA, USA #LC2005) were used for protein transfer.
Protein concentrators (Thermo FS, Waltham, MA, USA #88517) were used to concentrate
proteins in liver lysates. Histological sections were performed using a Thermo Scientific
Microm HM 325 microtome (Thermo FS, Waltham, MA, USA). To fix stained histological
sections, synthetic mounting medium Vitrogel (BioVitrum, Saint Petersburg, Russia) was
used. To characterize the nanoparticles, a galvanomechanical scanner LScanH (Ateko-
TM, Moscow, Russia), a Zetasizer Ultra Red Label (Malvern, Worcestershire, UK), and a
transmission electron microscope 200FE (Carl Zeiss, Oberkochen, Germany) were used.
The fluorescence of the samples was studied on a spectrometer FP-8300 (JASCO Applied
Sciences, Halifax, Canada) and a precision multi-wavelength digital refractometer Abbemat
MW (Anton Paar, Graz, Austria). Analysis of ALT and AST activities was carried out using
commercial kits (# E-BC-K235-M and #E-BC-K236-M, respectively, Proteins-Antibodies,
Moscow, Russia) and using an iMark™ Microplate Absorbance Reader (Biorad, Hercules,
CA, USA).

2.2. Animals

This work used male mice of the C57BL/6J line (weight 15 g, 2–3 weeks old), which
were purchased from the Stolbovaya branch of the Federal State Budgetary Institution of
Science “Scientific Center for Biomedical Technologies of the Federal Medical and Biological
Agency” of Russia. All animals were certified in accordance with the regulations on quality
control of laboratory animals, nurseries, and experimental biological clinics (vivariums).

2.3. Injection Protocol

To induce liver fibrosis, male C57BL/6J mice (weight 15 g, 2–3 weeks) were intraperi-
toneally injected with TAA (150 µg/g mouse weight) twice a week for three months. After
that, the animals were divided into several groups and administered either sorafenib
(1 µg/g and 5 µg/g mouse weight), selenium nanoparticles (1 µg/g and 5 µg/g mouse
weight), or a nanocomplex of sorafenib and selenium nanoparticles (1 µg/g and 5 µg/g
mouse weight). Injections of nanoparticles were carried out intraperitoneally for a month;
the indicated concentrations of nanoparticles were administered to the mice every other
day. The results of the treatment for liver fibrosis were analyzed one and a half months
after treatment. One group of animals was self-healing during the entire period of injection
with nanoparticles. The control group consisted of animals that received injections of saline
solution in the same volumes as in the experimental groups. The number of animals in
each experimental group was 10.

2.4. Method for Obtaining Selenium Nanoparticles

Selenium nanoparticles (SeNPs) and sorafenib-doped selenium nanoparticles (SeSo)
were prepared by laser ablation of bulk selenium targets with a polished top surface in
deionized water. To do this, water was added to the cuvette at the bottom of which the
target was located, covering the target by 2–3 mm, after which the massive target was
irradiated with a laser beam (λ = 532 nm; T = 8 ns; f = 10 kHz; P = 20 W; Ep = 5 mJ). The
displacement of the laser beam on the target along a given path in the form of parallel
straight lines inscribed in a square with a step of 10 µm was carried out using an LScanH
galvanomechanical scanner [28]. By changing the characteristics of laser radiation, the
mixing speed, and the trajectory of the laser beam, it is possible to control the geometric
parameters of nanoparticles: their size, concentration in the colloidal solution, and electro-
kinetic potential, which was carried out using a Zetasizer Ultra Red Label [29]. Sorafenib
was dissolved in 0.1 M citrate buffer (pH 4.1) to a final concentration of 30 mg/mL, since
the solubility of sorafenib in water depends on the pH. Selenium nanoparticles were added
to an aqueous solution of sorafenib in citrate buffer and incubated for 30 min. After this, to
separate the nanoparticles from the initial solution, centrifugation was carried out using a
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Sigma 3-18KS centrifuge at a temperature of 4 ◦C and a rotor speed of 18,000 rpm with the
Spincontrol S control system turned on [30]. This procedure was carried out three times.
The amount of sorafenib associated with the nanoparticles was determined by the change
in the absorption spectrum of the solution before the addition of the nanoparticles and
after the deposition of the nanoparticles. A preparation of selenium nanoparticles with a
concentration of 1011 ×mL−1 can contain about 12 mg/mL of sorafenib on the surface of
the nanoparticles.

The morphology of the nanoparticles was studied using a 200FE transmission electron
microscope. The fluorescence of the samples was studied on an FP-8300 spectrometer.
The measurements were carried out with the shutter turned on in quartz cells with an
optical path length of 10 mm at room temperature (~22 ◦C). Each sample was measured
three times. The refractive index of the media was measured using an Abbemat MW
precision multi-wavelength digital refractometer. The experimental approaches used in the
measurements were published previously [31].

2.5. RNA Isolation, Reverse Transcription, RT-PCR

RNA isolation was carried out using the ExtractRNA reagent (Evrogen), intended for
the isolation of total RNA from biological samples. This reagent is a monophasic solution
of phenol and guanidine isothiocyanate. Liver tissue was homogenized by pipetting in
1 mL of ExtractRNA reagent, and then total RNA was isolated according to the manufac-
turer’s protocol. The quality of RNA isolation was checked using electrophoresis in a 1%
agarose gel as well as using a spectrophotometer at a wavelength of 260 nm. To prevent
contamination of the RNA samples with genomic DNA, they were treated with DNase I
at 37 ◦C for 1 h, after which the enzyme was inactivated by adding 50 mM EDTA to the
mixture and heating to 60 ◦C for 10 min.

The reverse transcription reaction was carried out according to the protocol and using a
first-strand cDNA synthesis reagent kit containing murine leukemia virus (MMLV) reverse
transcriptase. The content of total RNA (0.5–2 µg) was controlled by performing a parallel
amplification reaction using primers specific to the reference gene.

The resulting cDNA was used as a template for RT-PCR using the qPCRmix–HS SYBR
mixture containing the intercalating dye SYBR Green I. The amplification reaction was
carried out at the following temperature conditions: 95 ◦C for 1 min; 95 ◦C for 10 s, 60 ◦C
for 10 s, and 72 ◦C for 15 s (35 cycles). The relative level of gene expression (RUE—the
level of expression of the gene under study relative to the expression of the reference
gene) in each cell line was determined by the formula. The change in the level of mRNA
expression of the studied proteins before and after treatment was determined by the formula
TUE = 2−∆∆ Ct, where ∆∆Ct is the difference in ∆Ct values for each gene before and after cell
treatment. Each experimental cycle was repeated three or more times. When performing
RT-PCR, reference gene-encoding glyceraldehyde-3-phosphate dehydrogenase was used.
The sequences of all primers used in RT-PCR are given in Table 1.

Table 1. Sequences of oligonucleotides used in the real-time PCR reaction.

Gene
Names

Forward Primer 5′- > 3′

Reverse Primer 5′- > 3′
Gene

Names
Forward Primer 5′- > 3′

Reverse Primer 5′- > 3′

TGF-β ATGCAATGGGCTTAGTGTTCTG
TCCTGTTGGCTGAGTTGTGAC HIF-1α

GGCGACTGTGCACCTACTATG
TGATCCAAAGCTCTGAGTAATTC

EGF CCTTGGTTTGTGGTCCTAGAG
CTGGGGTCCTCTGTCACTTG XBP1s AGTCCGCAGCACAGCAGGT

AGAGAAAGGGAGGCTGGTAAG

Col1a1 CATCACCTATCACTGCAAGAAC
AGGTCTTGGTGGTTTTGTTATTC ATF-4 TCGGGTTTGGGGGCTGAAG

AAACAGAGCATCGAAGTCAAAC

Col1a2 TCTCAGAACATCACCTACCAC
CACGGAATTCTTGGTCAGCAC ATF-6 AGGAGGGGAGATACGTTTTAC

CGAGGAGCTTTTGATGTGGAG
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Table 1. Cont.

Gene
Names

Forward Primer 5′- > 3′

Reverse Primer 5′- > 3′
Gene

Names
Forward Primer 5′- > 3′

Reverse Primer 5′- > 3′

Angpt1 GGGACAGCAGGCAAACAGAG
CTGGGCCCTTTGAAGTAGTG CASP-1 AGAGAAATGAAGTTGCTGCTGG

ATCACCTTGGGCTTGTCTTTC

PDGF ATTGAGATTGTGCGAAAGAAGC
GGGGGCAATACAGCAAATACC CASP-3 CTCTTCATCATTCAGGCCTGC

GACCCGTCCTTTGAATTTCTC

α-SMA AGGAAGGATCTCTATGCTAACAAC
ACTTAGAAGCATTTGCGGTGG CASP-12 TGTTGGTGTTATCATTTGGAGG

TTTTCTTTTCTTCTCAGCTACAG

GFAP CCGCCACCTGCAGGAGTAC
TGTATTGTGAGCCTTTTGAGAG BIM AATGGCCGGCTATGGATGATG

GCCAATTGGGTTCACTGTCTG

IL-17 CCCTCAAAGCTCAGCGTGTC
CCAGCTTTCCCTCCGCATTG GADD34 GAGTCCCATGAAGAGATTGTAC

ACCAGCCCAGCAGCCACTTAG

IL-1β
CGTGCTGTCGGACCCATATG

GCTCTTGACTTCTATCTTGTTG PUMA TGAAGATCTGCGCCGGGAG
GAGAGGGACATGACGCGTG

IL-33 TTTTGGAGAATGGATGTTATGTG
TTTGTGAAGGACGAAGAAGGC CHOP CAGCTGGGAGCTGGAAGCCTG

GACCACTCTGTTTCCGTTTCC

IL-22 GCTCCCCCAGTCAGACAGG
TAGAAGGCAGGAAGGAGCAG BAX TAAAGTGCCCGAGCTGATCAGAAC

CTTCCCAGCCACCCTGGTCTT

IL-10 AGCATGGCCCAGAAATCAAGG
AGACTCAATACACACTGCAGG BAK CAGATGGATCGCACAGAGAG

GCGTCTTTGCCCTGGGGAG

IL-6 TCCAGAGATACAAAGAAATGATG
TTGGAAATTGGGGTAGGAAGG BCL-2 AAGTCAACACAAACCCCAAGTCCTC

GCAGATCTTCAGGTTCCTCCTGAGA

NFkB TTAAAGAAACACTCAACAGCCAG
TTCAGCACTCGCACGGACAC BCL-XL AGAGTGAGCCCAGCAGAACC

GCAAGTTGGATGGCCACCTATC

STAT3 CCCCGTACCTGAAGACCAAG
ATGGGGTTCGGCTGCTTAGG NRF-2 CACATTGGGATTCACGCATAGGAGCACT

TCCTGGACGGGACTATTGAAGGCTG

TNF-α TGGAAAGACAGAGGGTGCAG
TTGTCCCTTGAAGAGAACCTG JNK1 AGAAGCAGAAGCCCCACCAC

ACTGCTGTCTGTATCCGAGG

INF-γ GTGACATGAAAATCCTGCAGAG
TGAGGCTGGATTCCGGCAAC P53 TGTTTAGGTCAAGGTGTCTCC

GAACACAGCCCCTAACACAG

NOX1 ACAAGAGATGGAGGAATTAGG
TTCCTAGGATCCAGACTCGAG P38 GTCGACCTACTGGAGAAGATC

AGTGAGATAGACAGAACAGAAAC

NOX4 TACCTCAGTCAAACAGATGGG
TGTCCCATATGAGTTGTTCCG GAPDH GTAAAGACCTCTATGCCAACAC

GGTGCACGATGGAGGGGC

2.6. Western Blotting

Liver samples were homogenized in lysis buffer (20 mM Tris, 150 mM NaCl, 2 mM
EDTA, 1 mM PMSF, 1% Triton-X100), incubated on ice for 15 min, and then centrifuged
for 30 min at 20,000 g at 4 ◦C, and the supernatant fraction was concentrated. A total of
70 µg of protein was added per well for each sample. The proteins were separated by
PAGE electrophoresis in a 12.5% polyacrylamide gel, after which the proteins were electro-
transferred to a PVDF membrane. The membranes were blocked in 5% BSA for 5 h at room
temperature or for 15 h at 4 ◦C, and then the membranes were incubated with primary
antibodies in 3% BSA for 2 h at room temperature or for 15 h at 4 ◦C. After thoroughly
washing the membranes in 1x PBST, they were incubated with secondary antibodies for
2 h at room temperature and then washed thoroughly, and the immunoreactive bands
were visualized by determining the peroxidase activity using DAB staining (0.05% DAB in
1× PBS + 10 µL 30% peroxide hydrogen).
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2.7. Histological Analysis

Liver samples were fixed with a solution of 10% formalin and 0.05% glutaraldehyde
in 0.9% NaCl and passed through solutions of ethyl alcohol in increasing order of concen-
tration and o-xylene. Then, the samples were embedded in paraffin and sections were cut
at a thickness of 3 µm using a Thermo Scientific Microm HM 325 microtome (Thermo FS,
Waltham, MA, USA). The sections were deparaffinized using o-xylene and ethyl alcohol
solutions in descending order of concentration, and then the sections were stained with
solutions of dyes—hematoxylin-eosin and picro-sirius red—according to the staining pro-
tocols of the specified kits. The stained sections were fixed on slides using the synthetic
mounting medium Vitrogel. The sections were photographed using a Leica DM6000B
microscope. To calculate the relative area of collagen fibers, the ImageJ program was used
according to the specified calculation method: https://imagej.nih.gov/ij/docs/examples/
stained-sections/index.html (accessed on 15 January 2023).

2.8. Measurement of ALT/AST Activities

Analysis of enzyme activities in serum was performed using the Reitman–Frankel
colorimetric method. To do this, the animals were first sedated with a solution of Rometar/
Telazole (5 mg/kg and 50 mg/kg, respectively), after which the animals were killed by
decapitation. Blood samples were incubated for 30 min at room temperature until the blood
clotted, and the resulting clot was centrifuged at 2000 g for 15 min at 4 ◦C. Serum was
collected and used to analyze the activities of ALT and AST enzymes using commercial
reagent kits. Briefly, a specific amount of aspartate (AST/GOT) or alanine (ALT/GPT)
was added to the sample and incubated for 30 min at 37 ◦C, and then phenylhydrazine
was added to stop the enzymatic reactions and the samples were incubated for 20 min
at 37 ◦C, after which the 0.4 N NaOH solution was added and incubated with it for
10 min at room temperature. Next, optical measurements of the visible color absorption of
phenylhydrazone were carried out on a microplate reader at a wavelength of 490 nm.

2.9. Statistical Data Processing

Microsoft Excel and GraphPadPrism 5 software were used to analyze the data, gen-
erate graphs, and process the statistics. Protein assessment was carried out in different
samples using the Lowry method. Protein concentration was calculated using a stan-
dard curve constructed using a 1 mg/mL BSA solution. Values are given here as the
mean ± standard deviation of at least three independent experiments. Differences were
considered significant at p < 0.05. Protein expression was quantified using ImageJ software,
version number 1.8.0. Origin 8.5 (Microcal Software Inc., Northampton, MA, USA) and
Prism 5 (GraphPad Software, La Jolla, CA, USA) were used for plotting and statistical
processing, respectively. The significance of differences between experimental groups
was determined using analysis of variance (one-way ANOVA with post-hoc Tukey test or
post hoc Student–Newman–Keuls test) or Student’s t-test, and within groups, Student’s
t-test. Differences were considered significant as follows: *** for p < 0.001, ** for p < 0.01,
* for p < 0.05; n/s—differences were not significant. To calculate the relative area of colla-
gen fibers, the ImageJ program was used according to the specified calculation method:
https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html (accessed on 15
January 2023).

3. Results and Discussion

The results presented in this study indicate for the first time a direct connection
between liver fibrosis induced by TAA injections and the development of endoplasmic
reticulum stress (ER-stress), which is accompanied by the activation of both adaptive
unfolded protein response (UPR) signaling pathways and apoptotic ones. In addition,
these processes are associated with inflammation. The selenium-based nanoparticles
developed in this work have a number of significant advantages aimed at preventing these
negative consequences.

https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html
https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html
https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html
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3.1. General Characteristics of the Obtained Selenium Nanoparticles

A preparation of selenium nanoparticles with a monomodal size distribution and
particle concentration of 1011 ×mL−1 was obtained. The average hydrodynamic diameter
of SeNPs was about 100 nm, with a half-width in the range of 70–130 nm (Figure 1A).
After the attachment of So to SeNPs, an increase in the hydrodynamic diameter of the
SeSo complex by 10–20 nm was observed. The average zeta potential of SeNPs was
in the order of −30 mV, whereas the zeta potential of the SeSo complex was in the or-
der of −20–25 mV (Figure 1B). It should be noted that the aqueous colloidal solution of
SeNPs had a weak reddish tint and absorbed rather weakly in the wavelength range of
240–300 nm, whereas the SeSo nanocomplex absorbed intensely in the wavelength range of
240–300 nm. The absorption spectrum of SeSo was quite characteristic and had four local
maxima. This spectrum was imparted to the complex by sorafenib molecules, but the nature
of the spectrum did not change qualitatively when sorafenib was added to the selenium
nanoparticles (Figure 1C). According to electron microscopy data, the nanoparticles had a
spherical shape (Figure 1D). TEM is equipped with an attachment for energy-dispersive
X-ray spectroscopy. Using this method, it was shown that the nanoparticles consisted of
selenium in the zero-valent state.
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Figure 1. Basic physicochemical characteristics of a colloidal solution of selenium nanoparticles
(SeNPs) and a complex of selenium nanoparticles with sorafenib (SeSo). (A) Hydrodynamic diameter
of SeNPs and SeSo; (B) electro-kinetic potential of SeNPs and SeSo; (C) spectral properties of SeNPs
and SeSo and chemically pure sorafenib (So); (D) TEM micrographs of SeNPs. Data on the TEM
study of SeSo are not presented, since the “coat” of sorafenib has low contrast.
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It was shown that at all wavelengths used for measurements, the refractive index was
minimal for SeNPs and at the maximum for the SeSo complex. Moreover, the refractive
index of the SeSo nanocomplex was higher than that of a solution of chemically pure So
and a colloidal solution of SeSo in the same concentration (Figure 2).

1 

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2. Study of the refractive index of aqueous solutions of SeNPs and SeSo and chemically
pure So. The refractive index of the media was calculated using an Abbemat MW (Anton Paar,
Austria) precision multi-wavelength digital refractometer Abbemat MW. (A) Refractive index mea-
surement at a wavelength of 435.8 nm; (B) refractive index measurement at a wavelength of 589.3 nm;
(C) refractive index measurement at a wavelength of 632.9 nm.

When studying the fluorescence of the samples, it was shown that the colloidal
solution of SeNPs almost did not fluoresce (Figure 3A), whereas the aqueous solution of So
fluoresced intensely when excited in the wavelength range of 230–280 nm and emission
was observed in the range of 275–300 nm. Also, there were two separate weakly defined
emission peaks at 405 nm. Fluorescence maxima were observed upon excitation at 266 nm
and 236 nm (Figure 3B). The fluorescence of the SeSo complex appeared to be due to the
fluorescence of sorafenib (Figure 3C). The fluorescent spectrum was similar but had almost
two times less intensity.
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Figure 3. Study of the fluorescence of aqueous solutions of SeNPs (A), So (B), and SeSo (C). Typical
3D spectra are shown; with repeated measurements, the intensity maxima change by no more than
a few percentage points. The fluorescence of the samples was studied on a FP-8300 spectrometer
(JASCO Applied Sciences, Canada), and measurements were carried out with the shutter turned on
in quartz cuvettes with an optical path length of 10 mm at room temperature (~22 ◦C). Each sample
was measured three times.

3.2. The Weight of Animals Returns to Normal when Injected with Selenium-
Containing Nanoparticles

When comparing the body weight of mice in control groups with the weight of mice
after injections of TAA (150 µg/g) for three months, it was seen that there was a notice-
able decrease in the body weight of animals in the experimental group by an average of
2.7 g compared to the control group (Figure 4A), whereas the average weight of the liver
in animals of both groups was the same (Figure 4B). This indicates that the ratio of liver
weight to animal weight increased by an average of 12% after TAA injections relative to the
control (Figure 4C).

Measurements of the average weight of animals and their livers after a course of
injections with the studied nanoparticles did not reveal significant differences from the
average weight of animals in the control group, with the exception of mice receiving
injections of So at a concentration of 5 µg/g, for which the average weight of the animals
increased by 4 g less compared to control. In addition, the average weight of the mice
undergoing self-healing was 3 g lower than that of the control group (Figure 4D).

When comparing the liver weight of animals in the self-healing group and in the
groups after nanoparticle injections with the control group, we can conclude that mice from
the self-healing groups, as well as those receiving injections of 5 µg/g So and SeSo, differed
the most from the control (Figure 4E). The liver weight of these animals was 0.3 g lower
than the average liver weight of the control group. However, the ratio of liver weight to
animal weight was, on average, 12% lower in the group of mice after injections of 5 µg/g
SeSo, whereas in the other two groups this figure was close to the control. It is worth noting
that the ratio of liver weight to animal weight in the group of mice injected with 1 µg/g
SeNPs was, on average, 21% higher than in the control (Figure 4F).

Thus, the average weight of animals in the self-healing group and after injections of
So at a concentration of 5 µg/g did not return to control values; however, the ratio of liver
weight to total weight of the animals in these groups was, on average, close to normal.
What was not observed in the groups of mice after injections of 1 µg/g SeNPs and 5 µg/g
SeSo, was that the average the values of this indicator were higher by 21% and lower by
12%, respectively.
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Figure 4. Statistical analysis of liver and animal weight and their ratio. (A) Animal weight (g);
(B) liver weight (g); (C) ratio of liver weight to animal weight (%) before and after treatment of
animals with TAA (150 µg/g); (D) animal weight (g); (E) liver weight (g); (F) ratio of liver weight to
animal weight (%) after intraperitoneal injections of SeNPs, So, and SeSo at concentrations of 1 and
5 µg/g and self-healing animals (SH) in which liver cell regeneration was tested after TAA injections
without any therapy. The numbers indicate mean ± SD. Statistical analysis was performed using
the unpaired nonparametric t-test with the Mann–Whitney test. Ranks were compared. Reliability
comparisons were completed relative to the control group. N/s—data not significant (p > 0.05),
* p < 0.05, ** p < 0.01. The number of animals in each group was 7.

3.3. Selenium-Containing Nanoparticles Have an Antifibrotic Effect

Macroscopic analysis of liver samples, shown in Figure 5A,B, indicated numerous
inclusions of connective tissue in the livers of mice treated with TAA, which indicates that
there were pathological disturbances in the architectonics of the liver and the formation of
fibrotic changes in it.

Subsequent microscopic analysis of histological liver samples confirmed the collage-
nous nature of the identified structures, which is consistent with literature data on the
induction of fibrosis through the toxic effect of TAA [32–34]. Figure 6(Ab,Ac) shows that
global architectural distortions occurred in the liver compared to the normal tissue archi-
tecture in the control, in which the liver plates radiated away from the central vein, the
liver parenchyma was homogeneous and fine-grained, and there were no signs of fibrosis
(Figure 6(Aa)).



Cells 2023, 12, 2723 11 of 32Cells 2023, 12, x FOR PEER REVIEW 11 of 33 
 

 

 
Figure 5. Macroscopic analysis of various liver samples from C57BL/6J mice. (A) Photographs of 
mouse livers before and after injections of TAA, non-particles, and sorafenib at various concentra-
tions, as well as in the self-healing group; (B) photographs of a section of mouse liver after TAA 
injections. 

Subsequent microscopic analysis of histological liver samples confirmed the colla-
genous nature of the identified structures, which is consistent with literature data on the 
induction of fibrosis through the toxic effect of TAA [32–34]. Figure 6(Ab,Ac) shows that 
global architectural distortions occurred in the liver compared to the normal tissue archi-
tecture in the control, in which the liver plates radiated away from the central vein, the 
liver parenchyma was homogeneous and fine-grained, and there were no signs of fibrosis 
(Figure 6 Aa). 

In samples after TAA injections, fibrotic changes appeared as dark stripes along the 
tissue, dividing the liver into septa, which indicated a violation of the lobular structure of 
the liver, with the formation of false lobules of different sizes (1) surrounded by fibrous 
tissue (2). Dystrophy of the hepatocytes of the false lobules was pronounced. The de-
scribed morphological changes were absent in the liver samples from all treatment 
groups, shown in photograph Figure 6(Ad). 

To identify collagen structures in the liver, picro-sirius red was used, which selec-
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as well as in the self-healing group; (B) photographs of a section of mouse liver after TAA injections.
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Figure 6. Microscopic analysis of histological liver samples. (A) Liver samples stained with hema-
toxylin and eosin: (a) morphology of the liver of the control group; (b–d) liver morphology after TAA
injections, where (1) is false lobules and (2) is fibrous tissue; (B) liver samples stained with picro-sirius
red: (a) morphology of the liver of the control group; (b–d) liver morphology after TAA injections.
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In samples after TAA injections, fibrotic changes appeared as dark stripes along the
tissue, dividing the liver into septa, which indicated a violation of the lobular structure of
the liver, with the formation of false lobules of different sizes (1) surrounded by fibrous
tissue (2). Dystrophy of the hepatocytes of the false lobules was pronounced. The described
morphological changes were absent in the liver samples from all treatment groups, shown
in photograph Figure 6(Ad).

To identify collagen structures in the liver, picro-sirius red was used, which selectively
stained collagen types I and III and confirmed the collagen nature of the identified struc-
tures, as evidenced by the images in Figure 6B. Microscopy of preparations from the control
group (normal liver), shown in Figure 6(Ba), showed red coloration only of the vessel walls,
which is a normal site of collagen deposition.

After exposure to TAA, liver sections from the mice showed a wide range of mor-
phological stages of the pathological process. Figure 6(Bb) shows mild focal portal and
periportal fibrosis and extended portal triads. A pronounced concentric proliferation of
collagen around the bile ducts (periductal fibrosis) was observed, which may indicate
the formation of primary sclerosing cholangitis. Areas of moderately expressed venular
and perivenular fibrosis were more common. At the same time, the structure of the liver
parenchyma was disrupted; some fibrous septa were clearly shown to connect the cen-
trilobular veins with the portal tracts, which are clearly visible in Figure 6(Bc). A severe
degree of fibrosis was characterized by wide connective tissue septa forming the porto-
portal and centro-portal septa, forming false lobules of the liver and regenerative nodules
that disrupted the architectonics of the liver (Figure 6(Bd)). Thus, we observed a mix,
the most common form of fibrosis, in which various stages of the fibrotic process were
simultaneously represented.

In the treatment groups, a decrease in edema was observed (which was reflected
in a more uniform lumen of the sinusoids), as well as restoration of the integrity of the
hepatic beams. A significant number of regenerating hepatocytes in a state of mitosis was
noted in the periportal zone, and the number of functionally active liver cells increased
(Figure 7A,B). Compared with the TAA group, the pronounced inflammatory cell infiltra-
tion of the portal tracts was almost completely replaced by moderate diffuse infiltration of
the liver parenchyma.

Subsequent experimental use of nanoparticles and sorafenib suggested a correction
of the fibrotic state obtained by TAA. The area of the stained collagen was calculated
using ImageJ, showing a significant increase in the TAA group, but the differences in the
treatment groups were not significant (Figure 7C).

Thus, the consequences of induced severe toxic liver fibrosis in mice were significantly
reduced with the use of nanoparticles and sorafenib, which indicates the antifibrotic effect
of selenium nanoparticles, comparable to the biological effect of sorafenib.
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Figure 7. Microscopic analysis of histological samples of mouse liver in different study groups.
(A) Staining with hematoxylin and eosin; (B) picro-sirius red stain; (C) the relative area of collagen
fibers, calculated using the ImageJ program according to the specified calculation method (https:
//imagej.nih.gov/ij/docs/examples/stained-sections/index.html, accessed on 15 January 2023).

https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html
https://imagej.nih.gov/ij/docs/examples/stained-sections/index.html


Cells 2023, 12, 2723 14 of 32

3.4. Selenium-Containing Nanoparticles Reduce Cytolysis, Normalizing ALT and AST Levels in
the Blood of Animals

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are enzymes
predominantly found in liver cells and the most important indicators of damage in this organ,
so we analyzed the activity of these enzymes in the serum of the experimental animals.

According to the results shown in Figure 8A,B, the measurements of ALT and AST
activity showed that TAA injections resulted in an increase in ALT and AST activity by more
than 13 times relative to the control. In the blood of animals receiving injections of 1 and
5 µg/g SeNPs, a decrease in the activities of ALT and AST was observed of eight or
more times compared to TAA injections. After injections of SeSo nanoparticles at con-
centrations of 1 and 5 µg/g, a decrease in ALT activity was observed of more than 9 and
11 times, respectively. Sorafenib at the same concentrations reduced ALT activity by 6.8 and
7.5 times, respectively, whereas AST enzyme activity was decreased by only 2.8 and
4.4 times compared to the group of animals injected with TAA.
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Thus, selenium-containing nanoparticles significantly contributed to the normaliza-
tion of the activity of ALT and AST enzymes in the blood of animals compared to soraf-
enib, which was an indicator of a decrease in liver cell damage (cytolysis) and the effec-
tiveness of treatment with these selenium-containing agents. 

3.5. Selenium-Containing Nanoparticles Have an Anti-Inflammatory Effect 

Figure 8. Analysis of the activities of liver enzymes ALT/GPT (A) and AST/GOT (B) in the serum
of the experimental animals. Enzyme activity analysis was performed using the Reitman–Frankel
colorimetric method. the standard curve was plotted by using the OD value of the standard and
corresponding Carmen units (0, 28, 57, 97, 150, 200 Carmen units) as the x-axis and y-axis, respectively.
The standard curve was created with graph software (or EXCEL). The Carmen units of the sample
were calculated according to the formula based on the OD value of sample, *** for p < 0.001, * for
p < 0.05

Thus, selenium-containing nanoparticles significantly contributed to the normalization
of the activity of ALT and AST enzymes in the blood of animals compared to sorafenib,
which was an indicator of a decrease in liver cell damage (cytolysis) and the effectiveness
of treatment with these selenium-containing agents.

3.5. Selenium-Containing Nanoparticles Have an Anti-Inflammatory Effect

At the first stage, it was important to establish the presence of fibrosis in the liver tissue
of the studied animals. To do this, we analyzed a number of genes, the expression of which,
according to previously obtained data, increases during fibrogenesis [32–40]. According to
the results presented in Figure 9A, we can say that the TAA injection protocol we chose led
to a fivefold increase in the expression of the mRNA of the TGF-β gene, which is a powerful
stimulator of scar tissue accumulation, proliferation and activation of mesenchymal cells,
and the biosynthesis of type 1 collagen [35–38]. In addition, the mRNA expression of the
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Col1a1 and Col1a2 genes, encoding pro-alpha 1 or 2 chains of type I collagen, increased by
almost four and seven times, respectively. At the same time, an eightfold increase in the
expression of alpha-smooth muscle actin (α-SMA) mRNA was observed, which indicates
increased collagen synthesis [41].
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Figure 9. Relative levels of mRNA expression of pro- and anti-inflammatory and pro- and anti-fi-
brotic genes obtained by real-time PCR. (A) After TAA injections in relation to control; (B) effect of 
self-healing in relation to control; (C) effect of self-healing in relation to TAA; (D) after injections of 
SeNPs (1 and 5 µg/g) relative to control; € after injections of SeNPs (1 and 5 µg/g) relative to TAA; 
(F) after injections of So (1 and 5 µg/g) relative to control; (G) after injections of So (1 and 5 µg/g) 
relative to TAA; (H) after injections of SeSo (1 and 5 µg/g) relative to control; (I) after injections of 
SeSo (1 and 5 µg/g) relative to TAA. Mean values ± standard errors (SEs) were determined by ana-
lyzing data from at least three independent experiments and are indicated by error bars; n/s—data 
not significant; (p > 0.05), * p <0.05, ** p < 0.01, *** p < 0.001. 
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Figure 9. Relative levels of mRNA expression of pro- and anti-inflammatory and pro- and anti-
fibrotic genes obtained by real-time PCR. (A) After TAA injections in relation to control; (B) effect of
self-healing in relation to control; (C) effect of self-healing in relation to TAA; (D) after injections of
SeNPs (1 and 5 µg/g) relative to control; (E) after injections of SeNPs (1 and 5 µg/g) relative to TAA;
(F) after injections of So (1 and 5 µg/g) relative to control; (G) after injections of So (1 and 5 µg/g)
relative to TAA; (H) after injections of SeSo (1 and 5 µg/g) relative to control; (I) after injections
of SeSo (1 and 5 µg/g) relative to TAA. Mean values ± standard errors (SEs) were determined by
analyzing data from at least three independent experiments and are indicated by error bars; n/s—data
not significant; (p > 0.05), * p <0.05, ** p < 0.01, *** p < 0.001.

Regarding the activation of hepatic stellate cells (HSCs), which is known to play a key
role in the process of liver fibrogenesis and is accompanied by increased production of
extracellular matrix (ECM) components by these cells [42], the PCR results we obtained
most likely indicate the absence of their activation. Thus, the expression of mRNA of
epidermal growth factor (EGF), which plays an important role in the regulation of HSC
activation; glial fibrillar acidic protein (GFAP), a marker of early HSC activation [43]; and
angiopoietin-1 (Angpt1), which is also responsible for HSC activation [44], decreased, and
mRNA expression (platelet-derived growth factor (PDGF)) did not change (Figure 9A). This
may be due to an almost 10-fold decrease in the mRNA expression of the NOX4 isoform
of NADPH oxidases, the deficiency of which, along with NOX1 deficiency, protected
the mice from the development of inflammation and liver fibrosis by inhibiting HSC
activation [45,46].

In addition, it is known that various cytokines released by immune cells play a huge
role in the regulation of liver fibrogenesis. IL-17 is secreted in fibrotic livers by T helper
cells (Th17), neutrophils, and mast cells and is a pro-fibrotic cytokine that stimulates HSCs
to increase levels of type I collagen, α-SMA, and TGF-β [47–49]. According to our results,
we can state that there was an increase in IL-17 mRNA expression of two times compared
to the control (Figure 9A). A number of studies have shown that high levels of IL-22
mRNA expression are observed in the blood of patients with cirrhosis and hepatocellular
carcinoma of the liver [50,51], whereas IL-22 is able to inhibit liver fibrosis in mice [52].
Figure 9A demonstrates that TAA injections caused a strong inhibition of IL-22 mRNA
expression (almost 5-fold), which may indirectly indicate the activation of fibrogenesis.
In addition, TAA caused an almost fourfold increase in IL-33 mRNA expression, which
is also evidence of fibrosis since this interleukin in mice is known to be released from
damaged hepatocytes during fibrogenesis [53]. The level of IL-1β mRNA expression also
tended to increase (twice compared to the control), which also indicates the presence of
inflammation, since this interleukin, as a rule, has a pro-inflammatory effect on tissues
and cells, which was also evidenced by the increased expression of IL-6 mRNA, one of
the most important mediators of the acute phase of inflammation. It is known that IL-10
is a pleiotropic cytokine that has both anti-inflammatory and anti-fibrotic activity and
has the opposite effect [54,55]. In our experiments, TAA caused a 2.5-fold increase in the
expression of this interleukin mRNA. An active inflammatory response in the liver in
response to TAA injections was confirmed by a strong increase in the expression level
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of CASP-1 mRNA, which plays a central role in cellular immunity as an initiator of the
inflammatory response. The activation of inflammasome complexes is known to cleave
pro-CASP-1 and trigger the maturation and secretion of IL-1β and IL-18, which are critical
cytokines involved in immune responses and triggering the inflammatory cascade [56].
Recent studies have shown that inflammasomes and inflammation-related pyroptosis are
involved in liver fibrogenesis in various pathologies [57]. Pyroptosis, which is a type of
programmed cell death, depends on inflammatory caspase-1 to cleave gasdermins to form
membrane pores [58]. Thus, increased CASP-1 mRNA expression can lead to pyroptosis
of hepatocytes and immune cells [59]. According to our data, TAA promoted increased
expression of pro-inflammatory cytokines TNF-α and INF-γ, secreted by macrophages
and T cells, respectively. IL-17 is known to interact with TNF-α to increase the synergistic
secretion of IL-6 in various cell types, including hepatocytes [60], which is also consistent
with our data.

Thus, based on the expression patterns of a number of the above genes, we can
conclude that the thioacetamide injection protocol we chose contributed to the development
of severe liver fibrosis.

Further injections of SeNPs, So, and SeSo at concentrations of 1 and 5 µg/g led to a
significant change in the expression patterns of most of the above genes (Figure 9). Thus,
according to the results of real-time PCR, the level of expression of TGF-β mRNA decreased
by 10 or more times, α-SMA by more than 5 times, and genes encoding chains 1 and 2 of
type 1 collagen by an average of 5 times. A similar trend towards a decrease in expression
levels was characteristic of the EGF and Angpt1 genes responsible for the activation of
hepatic stellate cells. After injections of SeNPs, the expression of PDGF and GFAP mRNA
remained virtually unchanged, whereas after injections of So and SeSo, an increase in the
expression of the mRNA of these genes was observed.

When analyzing the expression patterns of interleukins, it was noted that the injec-
tions of nanoparticles caused a significant decrease in the expression of the mRNA of
pro-inflammatory cytokines IL-1β, IL-6, IL-17, IL-22, IL-33, TNF-α, INF-γ, and CASP-1
(Figure 9E,I). Similar injections of So into mice did not affect IL-1β, IL-6, or IL-33 mRNA
expression (Figure 9G). In addition, sorafenib injections caused an increase in the expres-
sion of PDGF and GFAP mRNA, returning them to normal levels. It is worth noting that
NOX4 mRNA expression increased compared to the inhibitory effect of TAA on its mRNA
expression after injections with all studied agents but without exceeding the control values
(in the liver without TAA exposure).

During the progress of fibrosis, regions of hypoxia were observed in the liver, accom-
panied by increased expression of hypoxia-inducible factor 1α (HIF-1α) [61,62]. Although
TAA did not significantly affect the expression of mRNA-encoding HIF-1α, subsequent
injections of SeNPs, So, and SeSo slightly decreased this indicator.

We also checked the expression of STAT3 (Janus kinase (JAK)-signal transducer and
activator of transcription (STAT)) mRNA, since STAT3 has been repeatedly shown to be
involved in the regulation of fibrogenesis of various organs [63,64]. However, its role in
these processes is still unclear, since it is involved in the regulation of various signaling
pathways and can have both pro- and anti-inflammatory effects. In our studies, TAA did
not significantly affect its expression.

The data we obtained regarding the expression of the mRNA of the genes under study
were confirmed by the immunoblotting results presented in Figure 10.
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Histological analysis revealed an anti-fibrotic effect in the self-healing group, slightly
different from that in the groups with injections of SeNPs, So, and SeSo, which was
confirmed by analyzing the expression of mRNA and the quantitative content of proteins
α-SMA, Col1a1, Col1a2, EGF, IL-17, and IL-10 (Figure 9B,C). However, there are serious
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differences in the mRNA expression patterns of a number of anti- and pro-fibrotic and
inflammatory genes and the quantification of the proteins they encode. Thus, the expression
of TNF-α, PDGF, Angpt1, GFAP, IL-1β, IL-33, IL-22, IL-6, TNFα, and INF-γ mRNA in
the livers of the animals from the self-healing group either did not change or increased
more than twice as much as in the TAA group. This may indicate that, despite visually
poorly noticeable differences, in the self-healing group, pro-fibrotic and pro-inflammatory
processes were still preserved and even enhanced, which is supported by data on the
relatively reduced weight indicators of the animals from this group compared to the control.
The noticeable positive dynamics in the self-healing group can also be explained by the
fact that liver regeneration, especially in initially healthy mice by nature, is very intense
and that by removing the fibrosis inducer, the activation of the animal’s immune system
improved a number of indicators. In particular, there was a decrease in collagen in the
liver. However, this is extremely insufficient for complete recovery, especially against the
backdrop of further growth of a number of pro-fibrotic and pro-inflammatory genes.

The results of real-time PCR and Western blotting regarding the expression of the
above genes in the liver of mice before and after treatment are schematically presented in
Figure 11.
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expression levels are lower than normal.
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Based on this scheme, it can be concluded that the number of genes whose mRNA
expression levels returned to normal levels was greater after SeNP injections (14 genes),
whereas after injections of So and SeSo there were only 10 genes. In the self-healing samples,
the number of genes whose expression levels returned to control values was only 6, whereas
the mRNA expression levels of 11 genes remained high.

In addition, based on the results of real-time PCR and immunoblotting that we ob-
tained, we can assume the implementation of the following events in the liver when it is
exposed to TAA (Figure 12). Exposure of liver cells to TAA leads to an acute inflammatory
response accompanied by activation of caspase-1, formation of the inflammasome, and
activation of IL-1β. These processes occur both in various immune cells and in hepatocytes,
which, along with the growth of other pro-inflammatory cytokines, can lead to pyroptosis
or cell necrosis. IL-1β, released into the extracellular environment, can contact receptors
on the surface of liver stellate cells, activating them. This, in turn, is accompanied by
excessive deposition of extracellular matrix and the growth of α-SMA, Col1a1, Col1a2, and
EGF, which leads to liver fibrosis. Despite the well-observed trend towards a decrease in
pro-fibrotic genes, after injections with sorafenib, high levels of expression of Casp-1 and
IL-1β still remained, which increases the risks of maintaining cell pyroptosis, which was
not observed after similar injections with nanoparticles containing selenium.
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Figure 12. Schematic representation of the processes hypothesized to occur in the liver following
TAA, SeNPs, So, and SeSo injections. Exposure of liver cells to TAA leads to an acute inflammatory
response accompanied by the formation of the inflammasome, activation of caspase-1, and subsequent
activation of IL-1β. These processes occur both in various immune cells and in hepatocytes, which,
along with the growth of other pro-inflammatory cytokines, can lead to pyroptosis or cell necrosis.
IL-1β, released into the extracellular environment, can contact receptors on the surface of liver
stellate cells, activating them. This, in turn, is accompanied by excessive deposition of extracellular
matrix and the growth of α-SMA, Col1a1, Col1a2, and EGF, which leads to liver fibrosis. Despite
the well-observed trend towards a decrease in pro-fibrotic genes, after injections of So and in the
livers of self-healing animals, high levels of expression of CASP-1 and IL-1β still remained, which
increases the risks of maintaining cell pyroptosis, which was not observed after similar injections of
selenium-containing nanoparticles.

3.6. Selenium-Containing Nanoparticles Neutralize the Effects of Prolonged ER-Stress and
Apoptosis in Liver Cells Caused by the Action of TAA

To understand the therapeutic effect of selenium-containing nanoparticles at the molec-
ular level, we examined changes in mRNA expression patterns and the amount of protein
they encode, primarily focusing on markers of ER-stress. We have repeatedly shown that
various versions of selenium nanoparticles, as well as other organic and inorganic selenium-
containing compounds, are capable of exerting cytotoxic effect in cancer cells through the
regulation of the expression of these markers [14,27]. Such regulation is varied and is
largely determined by the nature of the selenium-containing agents, the concentration used,
and the origin of the cancer cells [65–68]. Based largely on our previous results, in this work,
we checked how the mRNA expression of key markers of the PERK signaling pathway UPR
(ATF-4), IRE1α signaling pathway UPR (XBP1s), and ATF-6 signaling pathway UPR (ATF-
6) changed. In addition, the expression patterns of a number of genes that are involved
in the adaptive response and pro-apoptotic signaling cascades associated with ER-stress
were screened.

According to the real-time PCR results shown in Figure 13, we can conclude that TAA
caused an increase in the expression of CASP-12, CASP-3, PUMA, CHOP, NRF-2, BAX and
BAK, and JNK1 mRNA against the background of reduced mRNA expression of the anti-
apoptotic genes BCL-XL and BCL-2. Considering that JNK1 expression increased almost
fivefold, it is likely that IRE1α phosphorylated TRAF2 (TNF receptor-associated factor),
triggering the TRAF2-ASK1-JNK1 signaling cascade [69]. An increase in the expression
of the nuclear factor NRF-2 of six times may indicate activation of the PERK signaling
pathway, since NRF-2 is known to be the target of this serine–threonine kinase [70].

It is known that activation of the caspase pro-apoptotic pathway during ER-stress
occurs through two mechanisms. Firstly, it was found that, in mice under ER-stress, TRAF2
interacted with ER-stress-sensitive procaspase-12 [69], and secondly, that CASP-12 was
activated under conditions of ER-stress, which was apparently carried out through the Ca2+

signaling pathway. When ER-stress occurs, conformational changes and/or oligomerization
of pro-apoptotic proteins Bax and Bak (proteins belonging to the Bcl-2 family) occur on
the ER membrane, which leads to damage to calcium stores in the ER and the release of
Ca2+ into the cytosol. An increased Ca2+ flux activates m-calpain, which is a member of the
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family of Ca2+-dependent cysteine proteases [71]. Calpain, in turn, cleaves procaspase-12
to caspase-12, which leads to the activation of apoptosis. However, as part of this work, we
did not check the activation of this pathway, so we can only say that, most likely, activation
of caspase-12 occurred through TRAF-2 regulation.

To date, sufficient information has been accumulated regarding the complex regulation
of CHOP activation, which affects various signaling pathways [72–74]. Summarizing our
data regarding the expression of CHOP mRNA and the relative amount of the protein itself,
it is most likely that the increase in its gene expression and relative amount in the liver cells
after TAA injections was the result of the phosphorylation of p38MAPK or JNK1, as was
previously demonstrated [75].
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control; (C) after injections of SeNPs (1 and 5 µg/g) relative to TAA; (D) after injections of So
(1 and 5 µg/g) relative to control; (E) after injections of So (1 and 5 µg/g) relative to TAA; (F) after
injections of SeSo (1 and 5 µg/g) relative to control; (G) after injections of SeSo (1 and 5 µg/g) relative
to TAA. Mean values ± standard errors (SEs) were determined by analyzing data from at least
three independent experiments and are indicated by error bars; n/s—data not significant; (p > 0.05),
* p < 0.05, ** p < 0.01, *** p < 0.001.

Subsequent injections of selenium-containing nanoparticles and sorafenib led to a
sharp decrease in the levels of mRNA expression of the spliced form of the transcription
factor XBP1s and ATF-6, key markers of the IRE1α and ATF-6 UPR signaling pathways,
and a significant increase in the expression of mRNA of the transcription factor ATF-4, a
key marker of the PERK signaling pathway UPR (Figure 13).

In addition, all agents decreased the mRNA expression levels of PUMA, CHOP,
NRF-2, BAX, BAK, and, to varying degrees, JNK1. It is worth noting that only in the
case of injections of SeNPs at both concentrations and SeSo at a concentration of 5 µg/g,
respectively, was there a tendency towards a decrease in the expression of CASP-12 and
CASP-3, which correlates with a decrease in the expression of JNK1 mRNA (Figure 13). In
the case of injections with sorafenib, the expression levels and relative content of caspases
CASP-12 and CASP-3 in liver cells did not change, and at a concentration of 5 µg/g even
increased threefold against the background of high expression of JNK1, which indicates the
progression of apoptosis in liver cells.

The data we obtained regarding the expression of the mRNA of the genes under study
were confirmed by the immunoblotting results presented in Figure 14.Cells 2023, 12, x FOR PEER REVIEW 26 of 33 
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Figure 14. Relative levels of protein quantification in the liver. (A) Results of immunoblotting;
(B) quantification of the studied proteins in the samples obtained using ImageJ software presented as
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normalization; n/s—data not significant; (p > 0.05), *** p < 0.001.
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If we analyze the effects of So, SeNPs, and SeSo in relation to the normalization of
mRNA expression and the amount of protein encoded by them in the liver, then we learn
that SeNPs and SeSo nanoparticles normalized these indicators for 7 genes and So for
4 genes out of 17 studied in this part of the work (Figure 15).
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Figure 15. Schematic representation of how the levels of mRNA expression of the studied genes
changed in the livers of all groups of animals relative to healthy animals. Here, green indicates
genes whose mRNA expression levels are close to normal levels, red indicates genes whose mRNA
expression levels are higher than normal, and blue indicates genes whose mRNA expression levels
are lower than normal.

Thus, based on our data, we can assume that apoptotic liver cell death is a consequence
of exposure to TAA, which occurs even under conditions of prolonged ER-stress. We
hypothesize the following scenario, presented in Figure 16: TAA causes activation of
two of the three UPR pathways described so far, namely, IRE1α and PERK, since we
observed increased expression of JNK1 and NRF-2, which are targets of the IRE1α and
PERK kinases. Increased expression of PUMA and p53 leads to increased expression and
translocation to mitochondria of the pro-apoptotic proteins BAK and BAX, which ultimately
leads to apoptosome formation and activation of caspase-9 and caspase-3. In turn, active
caspase-12 also activates effector caspase-3 through activation of caspase-9, which forms
the apoptosome. Thus, under conditions of prolonged ER-stress caused by long-term action
of TAA, pro-apoptotic signaling pathways are activated.

After So injections, liver cells still retained high levels of some pro-apoptotic genes:
CASP-12, CASP-3, and JNK1, which may indicate a high risk of apoptosis in liver cells.
On the other hand, after injections with nanoparticles and against the background of
reduced expression of all pro-apoptotic genes, we can talk about the implementation of the
adaptive UPR response through activation of the PERK signaling pathway, as evidenced
by an increase in the expression level of its key target ATF-4. Thus, selenium-containing
nanoparticles were dose-dependently able to neutralize the effects of ER-stress and lead to
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a high increase in the expression of mRNA of a number of pro-apoptotic genes caused by
TAA injections.
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through increased expression of JNK1 and NRF-2, which are targets of the IRE1α and PERK kinases.
Increased expression of PUMA and p53 leads to increased expression and translocation to mitochon-
dria of the pro-apoptotic proteins BAK and BAX, which ultimately leads to apoptosome formation
and activation of caspase-9 and caspase-3. In turn, active caspase-12 also activates effector caspase-3
through activation of caspase-9, which forms the apoptosome. Thus, under conditions of prolonged
ER-stress caused by long-term action of TAA, pro-apoptotic signaling pathways are activated. After
So injections, liver cells still retain high levels of some pro-apoptotic genes: CASP-12, CASP-3, and
JNK1, which may indicate a high risk of apoptosis in liver cells. After injections with SeNPs or
SeSo nanoparticles, the adaptive UPR pathway is activated through the PERK signaling pathway.
Thus, SeNPs and SeSo are able to neutralize the effects of ER-stress and lead to a high increase in the
expression of mRNA of a number of pro-apoptotic genes caused by TAA injections.

4. Conclusions

We conducted a pilot study of the anti-fibrotic, anti-inflammatory, and anti-apoptotic
effect of selenium-containing nanoparticles and performed a comparative analysis of these
effects with the effect of the well-known drug sorafenib on a model of non-alcoholic mouse
liver fibrosis caused by thioacetamide injections. Based on the analysis of the molecular
regulation of fibrogenesis, we found that the two types of selenium nanoparticles we
obtained (doped with and without sorafenib) led to a significant decrease in almost all pro-
fibrotic and pro-inflammatory genes. Moreover, a comparative analysis of the expression
patterns of these genes after injections of selenium nanoparticles and in control samples
revealed a slight advantage of SeNPs.

Sorafenib injections also reduced mRNA expression of profibrotic and proinflamma-
tory genes but less effectively than both types of nanoparticles. In addition, it was shown
for the first time that TAA can be an inducer of ER-stress, most likely activating the IRE1α
and PERK signaling pathways of the UPR. In this case, activation of the pro-apoptotic
response to TAA was observed, which was accompanied by an increase in pro-apoptotic
genes. Sorafenib, despite a pronounced anti-apoptotic effect, still did not reduce the ex-
pression of caspase-3 and -12, nor mitogen-activated kinase JNK1, to control values, which
increases the risk of persistent apoptosis in liver cells.

After injections of selenium-containing nanoparticles, the negative effects caused by
TAA were reversed, causing an adaptive UPR signaling response through activation of the
PERK signaling pathway.

In general, we can conclude that the results obtained in this work allow us to speak
with confidence about the high therapeutic effectiveness of selenium nanoparticles aimed
at leveling liver fibrosis and the negative processes accompanying this disease. The ad-
vantages of selenium nanoparticles over sorafenib, established in the work, once again
emphasize the unique properties of this microelement and serve as an important factor for
the further introduction of drugs based on it into clinical practice.
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ducer and activator of transcription 3; TGF-β—transforming growth factor, beta receptor I; TNF-α—
tumor necrosis-α; UPR—unfolded protein response; XBP1—X-box binding protein 1; α-SMA—actin
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