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Abstract: A growing body of evidence indicates that a neuropathological cross-talk takes place
between the coronavirus disease 2019 (COVID-19) -the pandemic severe pneumonia that has had a
tremendous impact on the global economy and health since three years after its outbreak in December
2019- and Alzheimer’s Disease (AD), the leading cause of dementia among human beings, reaching
139 million by the year 2050. Even though COVID-19 is a primary respiratory disease, its causative
agent, the so-called Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), is also endowed
with high neuro-invasive potential (Neurocovid). The neurological complications of COVID-19,
resulting from the direct viral entry into the Central Nervous System (CNS) and/or indirect systemic
inflammation and dysregulated activation of immune response, encompass memory decline and
anosmia which are typically associated with AD symptomatology. In addition, patients diagnosed
with AD are more vulnerable to SARS-CoV-2 infection and are inclined to more severe clinical
outcomes. In the present review, we better elucidate the intimate connection between COVID-19 and
AD by summarizing the involved risk factors/targets and the underlying biological mechanisms
shared by these two disorders with a particular focus on the Angiotensin-Converting Enzyme
2 (ACE2) receptor, APOlipoprotein E (APOE), aging, neuroinflammation and cellular pathways
associated with the Amyloid Precursor Protein (APP)/Amyloid beta (Aβ) and tau neuropathologies.
Finally, the involvement of ophthalmological manifestations, including vitreo-retinal abnormalities
and visual deficits, in both COVID-19 and AD are also discussed. Understanding the common
physiopathological aspects linking COVID-19 and AD will pave the way to novel management and
diagnostic/therapeutic approaches to cope with them in the post-pandemic future.

Keywords: post-pandemic; COVID-19; Alzheimer’s Disease (AD); neurological disorders; brain; eyes

1. Introduction

The relationship between Alzheimer’s Disease (AD)—the most prevalent form of
neurodegenerative dementia among the elderly with more than 55 million people world-
wide [1,2]—and the global pandemic coronavirus disease 2019 (COVID-19), caused by
the novel etiological agent known as Severe Acute Respiratory Syndrome coronavirus 2
(SARS-CoV-2), is receiving great attention from the scientific community due to its detri-
mental impact on healthcare and socioeconomic organizations [3].
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Even though the most common clinical presentation of COVID-19 is interstitial pneu-
monia accompanied by a fever and gastrointestinal problems [4,5], a wide range of multi-
systemic/organ signs classified as “Post-Acute Sequelae of COVID-19 (PASC)”, “Long-term
COVID-19 syndrome”, or colloquially “Long COVID”/”Long Haul” has been described in
about 30% of affected patients, from 6 months up to 2 years after the initial phase of the
viral infection [6–10]. Prolonged mental manifestations—including memory deficits and
depression, confusion and anxiety accompanied by a marked sensory decline with a loss of
taste and smell—frequently occur during the acute phase and/or the recovery period, as a
part of the multi-faced and complex long COVID-19 syndrome. These epidemiological find-
ings are in agreement with the capability of SARS-CoV-2 to penetrate the Central Nervous
System (CNS) along multiple ways (neuroinvasion), where it can, directly and/or indirectly,
infect both neurons and glial cells (neurotropism) and, possibly, induce and/or contribute
to the development of neurological diseases (neurovirulence) [11,12]. This might not be
surprising because the Angiotensin-Converting Enzyme 2 (ACE2) receptor for SARS-CoV-2
is widely distributed in different areas of the human brain, including the prefrontal cortex
and hippocampus along with the ocular surface and associated structures [13]. Consis-
tently, the neurotropism and the replication capacity of SARS-CoV-2 have been confirmed
in neuronal cultures, brain organoids, mice and human brain autopsies [14–18]. Both
viral-dependent (the viral invasion of brain parenchyma and vessels and/or replications)
and viral-independent mechanisms (the hijacking of host innate immune response with
inflammatory cytokine production, including perivascular inflammation) contribute to
SARS-CoV-2-induced neuronal injuries and degeneration leading, eventually, to neurologi-
cal and neuropsychiatric and neurosensorial symptoms [11,19].

AD is a chronic neurodegenerative disorder which is characterized by the progressive
deterioration of cognitive functions due to the selective loss of vulnerable brain areas
in association with olphactory and visual dysfunctions [20–25]. The extracellular senile
plaques (SPs), mainly composed of the Amyloid-beta peptide (Aβ) aggregates, and the
neurofibrillary tangles (NFTs), comprised of post-translational modified deposits of the
intracellular microtubule-associated protein tau, are the two main distinctive histopatho-
logical lesions. Although the precise etiology is still unknown, aberrant protein misfolding,
vascular damage involving large and small brain vessels, immunosenescence, neuroinflam-
mation and the increased production of pro-inflammatory cytokines, Blood–Brain Barrier
(BBB) breakdown, oxidative stress with the overproduction of Reactive Oxygen Species
(ROS), mitochondrial dysfunction, synaptic derangement and inappropriate elimination
and neural loss are implicated in the onset/progression of AD [20–25].

In this review, we highlight the clinical/epidemiological aspects and the molecular
physiopathological mechanisms pointing to an increased susceptibility of developing AD
in subjects that have experienced the COVID-19 infection. To support this finding, we give
detailed insights into the neurochemical interplay occurring between COVID-19 and AD,
both in the brain and eye, by paying particular attention to the many common risk factors
and neuro-ophthalmological complications shared by these two disorders. We hope that
this review, including for the first time a section devoted to ocular manifestations occurring
both in COVID-19 and AD, will provide interesting information for researchers, clinicians
and ophthalmologists working in the field.

2. Neuroinvasive Mechanisms of SARS-CoV-2 and Neurological Manifestations
of COVID-19

Clinical and experimental evidence has shown that the SARS-CoV-2 infection can affect
multiple organs beyond the respiratory system, including the Central (CNS) and Peripheral
Nervous System (PNS), thus triggering per se neuronal injuries and/or exacerbating the
neurodegenerative conditions of pre-existing diseases [26–28]. For mechanistic insights, the
cerebral and mental complications of COVID-19 are the neuropathological consequences
of one or a combination of all of the following factors: (1) direct viral neuronal damage
leading to encephalitis (virus-induced neuropathology); (2) systemic inflammation with
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“cytokine storm” causing the damage of peripheral organs (the liver, kidney and lungs)
which indirectly affects the brain’s health (neuroimmunopathology); (3) global ischemia
secondary to respiratory insufficiency and the so-called acute respiratory distress syndrome
(ARDS); and (4) cerebrovascular damage (blood vessels and coagulopathies) with ischemic
or hemorrhagic strokes. Consistently, a high incidence of both CNS and PNS persistent
symptoms and/or delayed or long-term neurological, sensorial and motor manifesta-
tions are associated with the pathogenesis of SARS-CoV-2 infection. Hyposmia, headache,
dizziness, ataxia, cerebrovascular injury, hypogeusia, nausea, encephalitis, fatigue, myal-
gia, ataxia, neuropathies, conjunctivitis, retinopathy, encephalopathy, myelitis, vomiting,
delirium, psychosis, ischemic stroke, epileptic seizures, neurocognitive and psychiatric
complications, acute respiratory distress syndrome and affective disorders are recorded
in observational studies on COVID-19 survivors [26,29–31] (Figure 1). More importantly,
the SARS-CoV-2 neuroinvasion of the CNS has been claimed based on quite a few in vitro
and in vivo analyses ranging from immunohistochemistry, in situ hybridization, Real-Time
Polymerase Chain Reaction (RT-PCR) and Transmission Electron Microscopy (TEM) carried
out on autoptic brain tissues and the CerebroSpinal Fluid (CSF) of patients who died of
COVID-19 to experimental evidence on human-induced Pluripotent Stem Cells (iPSCs) and
brain organoids and animal models [11,17,32–38]. However, it is also worth noting that, up
to now, the definite evidence of SARS-CoV-2’s presence in the nervous system is a matter
of debate since neither viral RNA nor particles have been found in human tissues and CSFs
by other researchers [39–43]. Moreover, not all animals inoculated with the SARS-CoV-2
virus have shown neurological complications or full-blown CNS infections [44,45].
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Figure 1. Long-term neurological and cognitive consequences of COVID-19. An illustration of the
peripheral and central neurological manifestations of the post-COVID-19 syndrome.

In general, the replication process of SARS-CoV-2 into host cells requires the initial
binding of viral Spike Protein 1 (SP1) to its membrane-anchored ACE2 receptor, even though
other proteins such as integrins, neuropilin-1 and the TransMembrane PRoteaSes Serine
2 and Serine 4 (TMPRSS2 and TMPRSS4, respectively) can also take part in it [27,46–49]
(Figure 2). Relevantly, the evidence that the ACE2 receptor as long as two other co-
receptors such as TMPRSS2 and neuropilin-1 [27] are widely distributed throughout the
CNS and PNS, including the brainstem, cortex, striatum, hypothalamus, choroid plexuses,
spinal cord, olfactory neuroepithelium, retinal ganglion cells, tongue gustatory nerve and
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neuromuscular junction [26–28], provides the strong biological rationale for SARS-CoV-2
neurotropism [31,32,50].
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In this connection, several both direct and/or indirect routes for the invasion of
SARS-CoV-2 into the nervous system (Figure 3) have been proposed [26,30,51–53]:

- The hematogenous pathway or “Trojan horse mechanism” wherein infected circulating
immune cells serve as reservoirs for the virus that traverses from the bloodstream to
the CNS (cell transmigration); SARS-CoV-2 infects, near the vessel wall, the resident
peripheral immune cells of the blood circulation (phagocytic monocytes/macrophages,
neutrophils and lymphocytes) which, in turn, penetrate the neurovascular unit of
the Blood–Brain Barrier (BBB), becoming a pool of viral dissemination toward the
CNS [54–56] (Figure 3a);

- The Blood–CerebroSpinal Fluid (B-CSF) pathway (paracellular migration): SARS-CoV-2
binds to the ACE2 receptors of the endothelial cells and damages the integral citoar-
chitecture of the BBB. To get into the brain, the virus locally activates the signaling
transduction pathway of Nuclear Factor kappa B (NF-kB) transcription factor, lead-
ing to an up-regulation in the basal expression level of Matrix MetalloPeptidase 9
(MMP9) which, in turn, degrades the extracellular matrix with consequent increased
B-CSF permeability and alterations in immune cell trafficking (MMP8, Monocyte
Chemoattractant Protein-1 (MCP-1), InterCellular Adhesion Molecule 1 (ICAM-1),
a neuroinflammatory response with the release of pro-inflammatory cytokines and
chemokines such as Interleukin (IL) IL-2, IL-6, IL-7 and IL-8, Tumor Necrosis Factor
(TNF) TNFα, C-C Motif Chemokine Ligand (CCL) CCL2, CCL3 and CCL7 and C-X-C
motif chemokine ligand (CXCL) CXCL10) [54,57] (Figure 3a);

- The transneuronal spreading or “neuronal route” (via exocytosis/endocytosis or “fast
axonal transport” mechanisms of vesicles along the microtubules track in order to
move the virus from synaptic terminals back towards neuronal cell bodies) from
systemic organs to the CNS throughout the cranial nerves: In this process, the virus
first enters the nerve endings (i.e., the peripheral nerves) and then is retrogradely
transported to the soma to invade the CNS; in detail, SARS-CoV-2 enters through
(i) the olfactory mucosa (causing anosmia), and it spreads via the olfactory nerve to
the olfactory cortex; (ii) the lacrimal and salivary glands, and it spreads via the facial
VII and glossopharyngeal IX nerves to their respective brainstem nuclei; (iii) the taste
buds of gustatory mucosa (triggering ageusia), and it spreads via the VII and IX nerves
to the Nucleus Tractus Solitarius (NTS) located in the brainstem; or (iv) the respiratory
system, and, via the vagus nerve X, it spreads both to other systemic organs (the heart,
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kidneys and gastrointestinal tract) innervated by this nerve and to the brainstem [58]
(Figure 3b);

- The circumventricular organs (CVO) lacking the BBB: SARS-CoV-2 enters the CNS
through the ACE2-expressing and vascularized subfornical organ, the paraventricular
nucleus, the NTS and the rostral ventrolateral medulla by triggering local neurovascu-
lar damage (Figure 3b);

- The ocular system: the epithelial cells of the cornea and conjunctiva, the trabecular
meshwork, choroid and retinal cells, optic nerve and geniculo-calcarin tract expressing
the ACE2 receptor and neuropilin-1 are also entry points for the SARS-CoV-2 infection
towards the occipital cortical areas [26,30] (Figure 3c).
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Once in the CNS, as with other viruses endowed with neurotrophic properties,
SARS-CoV-2 binds to neurons, astrocytes, oligodendrocytes and microglia, which all ex-
press, on their membrane, both ACE2 and TMPRSS2 receptors, and then spreads to multiple
brain areas including the cerebral cortex, caudate/putamen, ventral striatum, thalamus,
hypothalamus (paraventricular nuclei), spinal cord, hippocampus, frontal cortex, substan-
tia nigra, middle temporal gyrus and along the synapse-interconnected anatomic networks,
causing, eventually, neuronal cell dysfunction and degeneration [29,30].

3. Bidirectional Relationships between Long COVID-19 and AD

Severe and debilitating neurological complications that are classically associated with
AD symptomatology, such as memory deficits (73%) and cognitive impairments (brain
fog) (85%), have also been recorded in follow-ups more than 2 years after the resolution
of the acute infection of SARS-CoV-2, occurring at similar rates in hospitalized and non-
hospitalized adults [8,9,59–62]. In line with this finding, a growing body of longitudinal,
prospective and retrospective studies indicates that the virus neurotropism can per se signif-
icantly trigger and/or contribute to the occurrence of AD-like neuropathological features
in the brain, even though how the post-infection sequelae of COVID-19 actually impacts
mental processes concerning the acquisition, storage, integration and retrieval of informa-
tion needs to be fully clarified [30,63–68]. In addition, whether the reciprocal association
between SARS-CoV-2 and AD implies a direct causal relationship and/or originates from
chronic and excessive systemic inflammatory conditions also remains to be determined.
Nevertheless, a strong bidirectional relationship existing between the COVID-19 infection
and AD development has been clearly documented [69,70]. On one side, elderly individ-
uals with AD are more prone to the SARS-CoV-2 infection, showing an increased chance
of severe COVID-19 complications and mortality [71–77]. On the other side, people who
have experienced COVID-19 are at a greater risk of suffering AD, with a global reduction
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in attention and executive and visuospatial functions [77–90]. Consistently, a marked
mental decline in connection with an overall reduction in brain size and a diminution
of grey matter thickness in the orbitofrontal cortex and para-hippocampal gyrus—two
cerebral areas that are largely affected in AD subjects—have been demonstrated in subjects
recovering from COVID-19 when compared to healthy controls, even in non-hospitalized
patients [91]. In addition, a mouse model of mild SARS-CoV-2 infection displayed several
morphological, molecular and biochemical markers typical of AD, including an impaired
hippocampal neurogenesis, microgliosis, myelin disintegration, elevated CSF levels of
cytokines/chemokines, such as CCL11, and neuronal loss with cognitive dysfunctions [92].
Bioinformatic screening of the SARS-CoV-2 proteome has also revealed different peptides
with a high propensity to self-aggregate into amorphous and fibrillary amyloid clumps
which are toxic to neurons, which also occurs in AD brains [93]. Anosmia, due to sustained
and protracted inflammation, is caused by the persistence of the SARS-CoV-2 virus in the
olfactory mucosa and/or in the olfactory bulb of the COVID-19-affected brain [94–99], and,
in parallel, this sensorial complication, particularly the inability of olfactory identifica-
tion/discrimination, is visible in the early/prodromal stages of AD subjects suffering from
Mild Cognitive Impairment (MCI) [100]. Hypometabolism detected in AD brains with
BBB leakage/dysfunction and cerebral microvascular changes have been also reported in
patients with long COVID-19 in correlation with specific cognitive symptoms [101,102]. Fur-
thermore, the activation of Kynurenine signaling—a cellular pathway whose stimulation
is involved in the regulation of immune tolerance, neurotoxicity and vascular injury—is
dysregulated both in AD [103] and COVID-19. To this point, in a large cohort of cases recov-
ering from mild-moderate to acute SARS-CoV-2 infection across a 12-month period, a causal
relationship among the presence of its typical metabolites, such as Quinolinic Acid (QA)
and Kynurenine (Kyn) 3-HydroxyKynurenine (3HK) and 3-hydroxyantranilic acid (3HAA),
intellectual disabilities and anosmia has been recently reported [104]. In the reminiscence
of structural and metabolic mitochondrial alterations responsible of energy deficiency that
drives the loss of dendritic spines and synapses occurring in AD development [105,106],
abnormal levels of mitochondrial proteins as well as SARS-CoV-2 spikes and nucleocapsid
proteins have been also detected both in neuron- and astrocyte-derived exosomes in the
plasma of COVID-19 patients with neurological and psychiatric manifestations [107]. More
importantly, the SARS-CoV-2 infection provokes and/or precipitates several neurodegener-
ative processes, in particular, widespread neuroinflammatory response, synaptic pruning,
protein misfolding, the disruption of the oxidation-reduction systems, damage to blood
vessels by coagulopathy and endothelial dysfunction and neuronal injuries, that are all
traits classically discernable in AD brains [108]. As a matter of fact, the virus damages
not only the post-mitotic neurons but also the surrounding astrocytes and microglia and,
thus, indirectly further aggravates the brain injury, owing to the exaggerated release of pro-
inflammatory cytokines and/or deleterious Reactive Oxygen Species (ROS) [32]. Moreover,
in addition to triggering neurodegeneration and neuroinflammation, SARS-CoV-2 also pro-
motes the chronicity of these changes, up to months or even years after the acute infection,
since it invades and diffusely infiltrates/propagates throughout the brain via trans-synaptic
spreading along the motor-based, microtubule-dependent axonal transport [26,31,51,66].
More importantly, ACE2 is co-expressed in both GLUtamatergic and GABAergic neurons,
indicating that, in the CNS, SARS-CoV-2 infection is able to interfere with the signaling
transduction pathways activated by these two neurotransmitters regulating the cortical
excitability. Therefore, SARS-CoV-2 seems to initiate and/or exacerbate the imbalance
between excitatory and inhibitory electrical neuronal circuits, leading to excitotoxicity and
cell loss, which also occurs in AD progression [109,110]. Finally, based on the evidence
connecting the repeated infection of Herpex Simplex Virus type-1 (HSV-1) and amyloidosis,
the viral re-activation of SARS-CoV-2 in the CNS in concomitance with an age-dependent
physiological decline of innate immunity is more likely to trigger an inflammatory process
which, in turn, increases the Aβ synthesis and accumulation, as well as the hyperphos-
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phorylation of tau (pTau) and aggregation, a cascade that is suggestive of the so-called
“infection hypotesis of AD” [68,111].

4. Common Risk Factors and Involved Mechanisms That Mediate the Association
between COVID-19 and AD

Compelling studies have shown that COVID-19 and AD share several physiopatholog-
ical aspects including ACE2 expression, age, inflammation with “cytokine storm”, oxidative
stress, the APOE4 genetic variant, the neurotransmitter system, hypoxia and the activation
of intracellular pathways associated with the altered metabolism of APP/Aβ and tau
(Figure 4).
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4.1. ACE2 and Ageing

ACE2, the SARS-CoV-2 receptor required for cell entry, is considered the most impor-
tant determinant in dictating the greater susceptibility of developing AD among COVID-19
patients [108,112]. Microarray, Western blotting, Reverse Transcription quantitative Poly-
merase Chain Reaction (RT-qPCR) and immunostaining analyses have undoubtedly shown
that the expression levels of ACE2 significantly increase in the brain tissues of human AD
subjects when compared with healthy, not-demented controls and in close relationship with
the severity of clinical dementia and different neuropathological parameters, including the
density of dystrophic neurites, the Aβ plaques and NFT accumulation [113–115]. In addi-
tion, in a SARS-CoV-2 pseudovirus infection model, the fibrillogenic and highly-neurotoxic
Aβ1-42 peptide—but not the shorter Aβ1-40 one—binds to both the S1 protein and ACE2
receptor [116], by facilitating the virus invasion and production of IL-6. Apart from being
a SARS-CoV-2 receptor, ACE2 is also a key regulator of the Renin-Angiotensin System
(RAS) that is one of the most complex hormonal regulatory axes involved in maintaining
the body homeostasis and exerting a broad range of other important functions in multiple
organs, in particular the cardiovascular and immune systems. In detail, ACE2 catalyzes
the Angiotensin II conversion to Angiotensin(1–7) (Ang 1–7) which, in turn, binds to its
G Protein-Coupled Receptor (GPCR) MAS to regulate several downstream signaling cas-
cades, for instance the Phosphatidyl-Inositol 3-Kinase (PI3K)/Akt serine/threonine kinase
1 (Akt/) cAMP response element-binding protein(CREB)/Brain-Derived-Neurotrophic
Factor (BDNF)/Tropomyosin receptor kinase B (TrkB) [112]. Interestingly, the SARS-CoV-2

BioRender.com


Cells 2023, 12, 2601 8 of 24

infection seems to instigate and/or accelerate the AD phenotype by inhibiting ACE2 enzy-
matic activity, triggering a hyperinflammatory response and downregulating the secretion
of BDNF, a potent neurotrophin endowed with crucial functions in supporting neuroge-
nesis, cognition and the prevention of neurodegeneration upon binding to its cognate
transmembrane TrkB receptor protein [117]. In concomitance with an elevation in the
mRNA transcript of ACE2 facilitating the entry points of SARS-CoV-2 in the CNS, a high
level of its TBS/Detergent-soluble inactive form has also been detected in the parietal cortex
of two large cohorts of AD-fully diagnosed subjects when compared to controls, suggesting
that a defective brain RAS signaling with a consequent decrease in its anti-inflammatory
and neuroprotective properties is more likely to take place in humans with a low cognitive
score [115].

Ageing is the greatest contributing factor to AD onset/progression by causing genomic
instability, telomere shortening, epigenetic modifications, a loss of proteostasis, a decline in
mitochondrial respiration and energy production, deregulated nutrient sensing, altered
intercellular communication, an increased permeability of BBB and deregulated inflamma-
tion [118]. Another important hallmark of ageing is cellular senescence [119,120], a terminal
state of cell-cycle arrest characterized by the proinflammatory Senescence-Associated Se-
cretory Phenotype (SASP) as result of an increased release of various tissue-remodeling
(e.g., Tumor Growth Factor (TGF) TGF-β and MMPs) and immune-related (e.g., IL-6, IL-8
and IFNs) factors involved in regeneration/repair and immunosurveillance. In chronic age-
associated neurodegenerative diseases such as AD, these events persist for long time and
then turn out to be detrimental, with consequent organ dysfunctions, aberrant paracrine
senescence and chronic inflammation [121,122]. In line with this notion, the elimination of
senescent cells by means of senolytic compounds significantly mitigates the extent of neu-
ropathology [123]. It is noteworthy that SARS-CoV-2 infection can induce per se a condition
of premature senescence both directly, by increasing the secretion of InterFeroNs (IFNs)
and other pro-inflammatory mediators such as CXCL-10, CCL-2, IL-6, IL-8, IL-12, IL-
1β, IFN-γ and TNF-α from infected cells, and/or indirectly, by promoting the release of
Danger-Associated-Molecular Patterns (DAMPs) via necroptosis and pyroptosis [124,125].
Moreover, and more importantly, older COVID-19 patients are more likely to accumulate
huge levels of cellular senescence, since aged tissues show a decreased intrinsic capacity
of repairing damages and/or eliminating senescent cells via the immune system [126].
Relevantly, the age-dependent decay of immune defense against SARS-CoV-2 infection,
the so called “immunosenescence and inflamm-aging”, plays a major role in boosting the
vulnerability to severe COVID-19 outcomes in older adults [127–130]. In agreement, in
COVID-19 patients, a strong association has been documented between the severity of
infection with more severe-to-lethal outcomes and the presence of the immunosenescence
phenotype with a high level of the Neutrophils-to-Lymphocytes Ratio (NLR) [131] and
IL-6 production [132]. Interestingly, the reduction in telomere elongation and the reacti-
vation of reverse transcriptase telomerase [133], two important molecular hallmarks of
cellular senescence in chronic neurodegenerative diseases, critically influence the severity
of COVID-19 symptoms, as proved by the observation that an elevated risk of developing
grave and fatal complications is found in SARS-CoV-2-infected patients carrying shorter
telomeres from their peripheral blood lymphocytes [134]. Several senolytic compounds,
such as the flavonoid Quercetin and the mammalian Target of Rapamycin (mTOR) kinase
inhibitor Sirolimus—both known to reduce the SASP and prevent the senescence induction
(geroconversion)—are currently exploited in clinical trials to counteract the long-COVID-19
syndrome [126]. Finally, the up-regulation of the steady-state expression level of ACE2
occurring in several human tissues with an increasing age, mainly in the nasal neuroep-
ithelium, which is one of the most accessible routes of SARS-CoV-2 invasion in the CNS,
also accounts for the elevated risk of contracting COVID-19 in the elderly population in
connection with poor clinical outcomes [135].
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4.2. Neuroinflammation, Oxidative Stress and Nicotinic Cholinergic System

Apart from the premature synapses’ elimination and neuronal deterioration tightly
associated with a cognitive decline, a pronounced neuroinflammation characterized by re-
active microglia, astrogliosis and the infiltration of cytotoxic CD8-positive T cells is among
the most prominent neuropathological traits discernable in the brains of patients who died
from both AD [136–139] and COVID-19 [37,140,141]. In this regard, COVID-19 chronic in-
flammation is caused both directly, by the SARS-CoV-2 infection of the CNS, and indirectly,
by peripheral inflammation via immune-to-brain signaling [52]. Consistently, IL-6, IL-1,
TNFα, complement proteins and Galectin-3/9 are common prognostic biomarkers for the
activation of inflammatory immune responses in the CNS, following both SARS-CoV-2
neuroinvasion and AD [142]. By single-nucleus RNA sequencing (snRNA-seq), followed by
immunohistochemical staining validation, an excessive stimulation of microglia and brain-
barrier inflammatory signals in concomitance with a downregulation in the expression
of neuronal genes encoding several synaptic vesicle components, such as synaptobrevins
(VAMP1 and VAMP2), SynTaXin 1B (STX1B) and the SyNAPtosome-associated protein
of 25 kDa (SNAP25), which regulate the glutamate release and excitatory neurotransmis-
sion, have been also documented in post-mortem brain tissues from individuals with
AD [143] and COVID-19 (frontal cortex and choroid plexus) [144]. Moreover, the activation
of PYrin (PYD)-Domain-containing protein 3 inflammasome (NLRP3) [145], which affects
the microglial-dependent clearance of Aβ [146] and promotes tau pathology [147], is trig-
gered in the brain as a consequence of SARS-CoV-2 neuroinvasion, just as described in the
AD etiology.

Oxidative stress with the excessive production of the harmful ROS provoking Aβ

accumulation/aggregation and tau hyperphosphorylation in AD brains [148] also takes
part in the innate response against SARS-CoV-2 invasion [149,150]. A large amount of
activated radical-producing neutrophils are found in COVID-19 patients, consistent with
a massive production of ROS [151,152]. Changes in mitochondrial respiration and associ-
ated redox imbalances have been detected in Peripheral Blood Mononuclear Cells (PBMCs)
from patients with COVID-19, in agreement with the energy supply required for the pro-
duction of pro-inflammatory cytokines during the virus-triggered immune response [153].
Interestingly, upon exposure to SARS-CoV-2, the activation of inducible Nitric Oxide Syn-
thase (iNOS), an important biological mediator of inflammation and immunoregulation
producing Nitric Oxide (NO) from L-arginine, causes an overproduction of the superoxide
radical ion (O2

−) in people who have survived the acute phase of COVID-19 that becomes
self-perpetuating, even when the virus has been cleared, turning into a persistent and
protracted free radical-induced damage [154].

In addition to being involved in the CNS in high-order cognitive processing, sen-
sory information integration, sleep and wakefulness, Acetylcholine (Ach) and its nicotinic
Receptors (nAChRs) play a pivotal role in the homeostatic regulation of inflammatory
response, owing to the high expression of the α7 receptor (α7nAChR) on the surface
of immune cells (B cells, macrophages and T cells) [155–157]. Therefore, it is not sur-
prising that the dysregulation of the nicotinic cholinergic system is involved, in parallel,
in both COVID-19 and AD pathophysiology [158–160]. In support of this finding, the
SARS-CoV-2 S1 glycoprotein protein has proved to interact with the cholinergic nicotinic
ACh receptor α7 (α7nAChR) and to negatively impair its function by preventing the acetyl-
choline’s binding and, in turn, the specific intracellular activation of its downstream sig-
naling(s) [161–163]. Interestingly, nicotine—a selective agonist of α7nAChR—was recently
approved as a promising therapeutic option to counteract the neurological complications
in COVID-19 syndrome, as a direct result of its potent anti-inflammatory and neuroprotec-
tive actions [159,164]. Likewise, the neocortical cholinergic innervation is also gradually
destroyed in AD brains—mainly due to the sequential and aberrant deposition of the insol-
uble, ThioflavinT (ThT)-positive, dense SP and NFTs—with consequent clinical changes in
cognition, behavior, mood and emotions [160]. In particular, alterations in acetylcholine
release in concomitance with a decrease in high-affinity choline uptake and a downregula-
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tion in muscarinic and nicotinic acetylcholine receptor expressions represent a solid ground
for the cholinergic hypofunction detected in AD. In line with this so-called “cholinergic
hypothesis”, in vitro and in vivo studies have clearly shown that the Low Molecular Weight
(LMW) oligomeric Aβ conformers—which are the most neurotoxic species to synapses
found in autoptic AD brains—actually bind to and impair the function of the α7nAChR,
both in cultured hippocampal neurons and in mouse models [158–160]. Finally, similar to
COVID-19, a pharmacological strategy in the clinical management of AD is based on the
preservation/restoration of cholinergic neurotransmission, and, in this framework, several
FDA-approved cholinesterase inhibitors such as donepezil, rivastigmine and galantamine
are currently used in therapy to slow down the cognitive and functional decline in affected
patients [158–160].

4.3. APOE Genetic Variant and Signal Pathways

Another strong risk factor which accounts for more than 95% of all sporadic AD
cases is the genetic variant APOE4 [164–166] that plays a causal role in the alteration of
cellular trafficking/the metabolism of cholesterol and in the regulation of the aggrega-
tion state and deposition of Aβ peptide(s). Interestingly, the APOE polymorphism is
also involved in the COVID-19 syndrome by increasing the incidence and severity of the
SARS-CoV-2 infection and neurodegeneration [167–174]. In this connection, several lines of
evidence have shown that the APOE4 genotype (i) increases the permeability of the BBB,
which makes patients more susceptible to viral infections [175]; (ii) augments the produc-
tion of pro-inflammatory cytokines by peripheral macrophages and CNS microglia [176];
(iii) elevates the infectivity of SARS-CoV-2 both in neurons and astrocytes [177]; (iv) controls
the cholesterol homeostasis which, in turn, facilitates the binding of the S1 protein to the
ACE2 receptor during the first step of the SARS-CoV-2 infection [178]; (v) decreases the
expression of several antiviral defense genes, including InterFeron-Induced TransMem-
brane Proteins (IFITM) IFITM2 and IFITM3, InterFeroN Alpha(α) and Beta(β) Receptor
Subunit 1 (IFNAR1) and Lymphocyte Antigen 6 Family Member E (LY6E) [179–181]; and
(vi) downregulates the ACE2 expression, followed by an imbalance in Renin-Angiotensin
System (RAS) that catalyzes the degradation of Angiotensin II (Ang II) to Angiotensin(1–7)
(Ang 1–7), associated with the chronic hyperinflammatory state of COVID-19 [182].

The activation of intracellular signaling transduction pathways associated with APP/Aβ

and tau pathologies represents an additional relevant commonality, putting in mutual
relation the occurrence of COVID-19 and AD. It is widely acknowledged that the main
histopathological features detected in the vulnerable regions of AD brains, such as the en-
torhinal region and the hippocampus which are involved in memory/learning and synaptic
plasticity, are the SP and the NFTs. These two lesions are, respectively, composed in their
aggregated forms of Aβ peptide(s)—generated by the aberrant and sequential beta/gamma
(β/γ)-mediated amyloidogenic proteolysis of its membrane precursor Amyloid Precursor
Protein (APP) involved in synaptogenesis and neurogenesis—and by abnormally hyper-
phosphorylated and/or truncated tau protein, whose function is the modulation of the
intracellular stability of axonal microtubules [183,184]. Consistently, the mRNA of the holo-
protein APP has turned out to be greatly upregulated in single-cell RNA-seq studies carried
out on blood samples from COVID-19 survivors in comparison with controls ones [185]
and on oligodendrocytes isolated from their post-mortem brain tissues [186], hinting at the
deregulation of APP metabolism and its proteolytic cleavage. Furthermore, just as detected
in AD, a tendency toward an accelerated APP amyloidogenic processing/Aβ deposition
in the brains from patients with the COVID-19 neurological syndrome is evident when
compared to healthy controls and in connection with significant lower amounts of the
soluble Amyloid Precursor Protein alpha and beta fragments (sAPPα and sAPPβ) as well
as the Aβ40, Aβ42 and Aβ42/Aβ40 ratio in their peripheral CSFs [187]. The transcrip-
tomic and interactomic profiles from the frontal cortex of fully diagnosed AD subjects with
cognitive decline who have also experienced COVID-19 have revealed that SARS-CoV-2
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can indirectly amplify the Aβ toxicity in the brain, giving rise to neuroinflammation and
an imbalance in the relative levels of cellular pro-oxidants and antioxidants [188].

Relevantly, Aβ1-42, but not Aβ1-40, binds with high affinity to both the viral S1 protein
and ACE2 receptor of SARS-CoV-2 [189]. Immunohistochemical staining studies using dif-
ferent specific antibodies clearly decorate insoluble, proteinaceous Aβ-positive aggregates
in the autopsied brains of patients who died of COVID-19 [190]. From a mechanistic point
of view, immunofluorescence and RNA-seq analyses performed on the cortical and hip-
pocampal tissues of transgenic mice expressing human Angiotensin-Converting Enzyme 2
(hACE2) suggest novel insights by showing, for the first time, that the SARS-CoV-2 spike
protein S2 subunit is able per se to enhance the Aβ production via direct binding to and
the modulation of the processing enzymatic activity of the γ-secretase complex [191]. A
persistent brain neuropathology with the accumulation of AT8 (ptauSer202, Thr205), an AD-
pathognomonic site of tau hyperphosphorylation, has been also reported in Syrian golden
hamsters after the intranasal inoculation of SARS-CoV-2 [192]. Furthermore, the activation
of NF-κB signaling driving the neuroinflammatory cascade in response of SARS-CoV-2
neurotropism [193,194] also activates the beta(β)-site APP cleaving enzyme 1 (BACE-1)
activity, thereby triggering the first step of proteolytic cleavages sub-serving the sequential
generation of Aβ peptide(s) [195]. A marked elevation in tau phosphorylation at multiple
AD-like epitopes, such as pSer262, pSer214 and pSer356 and pSer199/202, has also been
ascertained in COVID-19 brains in concomitance with the activation of several known tau-
directed kinase, including the AMP-activated Protein Kinase (AMPK), Glycogen Synthase
Kinase 3 beta (GSK3β), Protein Kinase A (PKA) and Calcium/Calmodulin-Dependent
Protein Kinase II (CAMKII) [196]. Moreover, the levels of specific peripheral biomarkers
that are routinely used in clinical practice for AD diagnosis—such as total tau protein
in association with IL-6, Neurofilament Light Chain (NFL) and Glial Fibrillary Acidic
Protein (GFAP)—are elevated in the CSF and serum of COVID-19 patients [197,198]. More
importantly, SARS-CoV-2 targets the neurons of 3D human brain organoids, inducing
an aberrant subcellular redistribution of tau from axonal processes to soma, hyperphospho-
rylation at Threonine 231 (Thr231), apoptotic caspase-3 activation and, eventually, neuronal
death, specific cellular changes that are reminiscent of key features associated with AD
neuropathology [199]. In a similar way, hyperphosphorylation at the Ser262 and Ser396
sites and the mislocalization and increased aggregation of tau are also detected in human
neuron-like SH-SY5Y cells after in vitro infection with different clinical strains (B.1, B.1.1.7
and B.1.617.2) of SARS-CoV-2 [200]. Furthermore, by using a combination of ThT assay,
Transmission Electron Microscopy (TEM) staining, analytical High-Performance Liquid
Chromatography (HPLC) and Mass Spectrometry (MS), Eberle and colleagues have recently
reported that tau is proteolytically cleaved in vitro by the viral SARS-CoV-2 3CL protease
with a consequent release of the 25kDa fragment, triggering the formation of amorphous
fibrils, resembling the paired helical (PHF) and/or straight filaments (SFs) typically de-
tected in AD brains [201]. Finally, in brain cortices from Murine Hepatitis Virus-1 (MHV-1)
coronavirus-inoculated mice—an in vivo model which is very similar to the SARS-CoV-2 in-
fection observed in humans—a significant increase in AT8-tau hyperphosphorylation along
with reactive astrocytes and microglia (GFAP and Iba1-positive, respectively) and reduced
synaptophysin-1 synaptic protein are found up to 12 months post-infection, again recapit-
ulating several characteristic features of chronic neurodegenerative human tauopathies,
including AD [202].

4.4. Hypoxia

Among the major clinical manifestations of COVID-19 with acute respiratory dis-
tress syndrome (ARSD) stands out hypoxia, a pathological condition that is caused by
the lack of oxygen and/or the accumulation of mitochondrial ROS into the lungs’ upper
airways due to a maladaptive inflammatory response to viral penetration [203]. Relevantly,
the SARS-CoV-2 infection induces the cellular expression of Hypoxia-Inducible Factor
1α (HIF-1α), an important transcriptional factor responsible for cellular adaption to low
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oxygen tension, which, in turn, plays a key role in driving the virus-mediated inflamma-
tory response (cytokines storm), metabolic reprogramming and oxidative stress [204–206].
Just as SARS-CoV-2 damages the pulmonary tissue locally inhibiting the gas exchange,
post-mitotic neurons with high energy requirements are particularly vulnerable, in the
brain, to any subtle change in oxygen saturation, resulting in the activation of pro-apoptotic
signaling pathways and, eventually, neuronal injuries [203]. Therefore, it is not surprising
that hypoxia significantly increases the risk of developing neurodegenerative diseases, in
particular AD, with the dysregulation of the HIF-1α pathway leading to AβPP amyloido-
genic processing with Aβ accumulation, due to increased production [207–209] and/or
decreased degradation [210], tau hyperphosphorylation and microglial activation [211].
Focal deposits of Aβ have been detected in the brains of young (less than 60 years old)
hospitalized patients who died of COVID-19 in correlation with widespread hypoxic dam-
age [212]. Interestingly, the important contribution of oxygen dyshomeostasis to long-term
cognitive impairment in the post-COVID-19 syndrome has been highlighted in a recent
follow-up study reporting that an improved memory and attentional capacities, likely
due to delayed hippocampal damage, are observed in a small cohort of patients that under-
went oxygen therapy and were prospectively recruited after 3–9 months of the SARS-CoV-2
infection [213]. In line with this, prolonged hyperbaric oxygen treatment can reduce hy-
poxia, neuroinflammation, the accumulation of Aβ and phosphorylated tau, leading to a
significant improvement of cognitive performances in a 3xTg AD mouse model carrying
three mutations associated with familial AD (APP Swedish, MAPT P301L, and PSEN1
M146V) when tested in hippocampal-dependent behavioral tasks [214] and, possibly, in
affected patients [215].

4.5. Serotonin or 5-Hydroxytryptamine (5-HT)

Serotonin or 5-HydroxyTryptamine (5-HT), a monoamine neurotransmitter involved
in the control of mood/reward and learning, is an additional link to explaining the neu-
rocognitive impairments associated with COVID-19 and AD. In this regard, an elegant
study recently reported that the long COVID syndrome is associated with a low peripheral
level of circulating serotonin which, in turn, impairs the hippocampal-dependent memory
function via the reduced stimulation of the vagus nerve signaling [216]. Interestingly, Selec-
tive Serotonin Reuptake Inhibitors (SSRIs) are widely prescribed to treat neurobehavioral
symptoms associated with dementia [217], and lower levels of serotonin have been detected
in AD brains [218].

5. Neuro-Ophthalmic Complications Shared by COVID-19 and AD

Compelling experimental, molecular, histological and clinical studies suggest that
the neuro-ophthalmic system and related visual manifestations are another important
pathogenetic connection between the COVID-19 and AD syndromes (Figure 4).

In this context, the eye and associated ocular structures are possible transmission
routes of SARS-CoV-2 penetration to the brain [219–224]. Moreover, in addition to the
visual pathway which provides a direct anatomical connection between the ocular surface
and the brain, the hematogenous route has been recently proposed as an alternative mode
of penetration/transmission of the virus from eye to body. Indeed, after the infection of
the iris and conjunctival cells both expressing the ACE2 receptor, SARS-CoV-2 can reach
the blood capillaries and then gain access through the Blood–Retinal Barrier (BRB) in the
Retinal Pigment Epithelium (RPE) and blood vessel endothelial cells to reach, eventually,
the bloodstream and infect the extraocular areas [220]. Thus, in humans, the localization of
the ACE2 receptor, required for an efficient viral entry from the eyes, can be considered both
intra- and extra-ocular, with large expressions in conjunctival and corneal cells, retinas and
retinal pigment epithelium [224–229]. In agreement, SARS-CoV-2 can infect and replicate
in retinal organoids, and quantitative Real-Time Polymerase Chain Reaction (RT-PCR)
analyses have confirmed the presence of SARS-CoV-2 genomic RNA in different ocular
tissues including human retina, cornea, conjunctiva, lacrimal sacs and tears from deceased
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cases with COVID-19 [230–234]. Finally, ocular complications are frequently described
by patients both during and after recovery from COVID-19, especially conjunctivitis,
retinopathy (retinitis, retinal hemorrhages, retinal venous and arterial occlusion), uveitis,
vitritis, optic neuritis [219,222,235–240] in association with signs of excessive inflammation,
nerve fiber loss, increased dendritic cell density, impaired retinal microcirculation and poor
vision [239,241–246].

Regarding AD, there is a growing body of literature endorsing the concept that the two
hallmarks classically discernable in the brains of affected patients and preclinical animal
models—i.e., the deposits of Aβ and hyperphosphorylated tau protein—are also present
in their eyes, sometimes even before the appearance of clinical cognitive symptoms, in
close association with other ocular pathophysiological alterations such as nerve fiber layer
thinning, the degeneration of retinal ganglion cells, vascular alterations, local inflammatory
responses and gliosis [247–252]. These findings are in agreement with the fact that the
retina and optic nerve are neurodevelopmental outgrowths of the CNS, while the aqueous
humor and tear film located in the anterior eye segment are more likely to be comparable
to the CSF. Consistently, changes in functional visual processing are detected in subjects
suffering from AD, including a loss of the visual field, decreased contrast sensitivity, low
visual acuity, impaired color vision or motion perception and visuospatial deficits [253–260].
More importantly, in light of the great accessibility of the eyes, which are considered a
direct “window” to brain, advanced high-resolution imaging techniques detecting ocular
Aβ and pTau in the retina are currently used as predictive and diagnostic biomarkers in
the clinical management of AD by allowing for the large-scale noninvasive screening and
monitoring of at-risk populations [246,261,262].

6. Conclusions and Future Perspectives

Despite the great interest in the COVID-19 pandemic outbreak and its neurological
consequences, it is important to remember that there are still several controversial re-
sults concerning the presence of the SARS-CoV-2 virus in the brain [263]. To this point,
several studies have identified the direct neuro-invasive capacity of SARS-CoV-2 to en-
ter the brain [264,265] while others do not confirm the presence of the virus within the
brain [38,266,267] or report very low levels of detectable RNA and viral protein brains [37,140],
suggesting that the virus neuropathology is more likely to be mediated by cytokines through
systemic effects [52].

Nevertheless, among the long-term manifestations of post-COVID-19, AD-like demen-
tia stands out as the most frequent disorder with higher susceptibility of subjects exposed
to the SARS-CoV-2 infection toward more severe clinical outcomes [268]. Relevantly, even
though COVID-19 and AD have different clinical presentations, there are multiple, neuro-
logical, psychiatric and ophthalmological, physiopathological aspects linking with each
other and increasing the patients’ complications and mortality.

The cellular mechanisms underlying the COVID-19-induced cognitive impairment
and visual deficits mainly include the SARS-CoV-2 neurotropism to the CNS and the eyes
as a potential route of the virus’s invasion of the brain [269,270]. In addition, several
common risk factors such as excessive neuroinflammation, ACE2 expression, APOE4 geno-
type, age, oxidative stress, hypoxia, neurotransmitter system, the activation of signaling
pathways associated with APP/Aβ and tau pathologies provide solid neurobiochemi-
cal correlates for reciprocal associations between COVID-19 and AD [271]. In addition,
the “inflamm-aging” not only predisposes one to the SARS-CoV-2 infection but also re-
duces the antibody response to vaccinations, reinforcing COVID-19 as a risk factor in
developing cognitive impairments and dementia in frail and elderly patients [272,273].
Clinical follow-up studies with the intent of evaluating the extent and the duration of cog-
nitive impairment in large cohorts of COVID-19 patients along with further experimental
investigations on SARS-CoV-2-infected human brain organoids possibly recapitulating
the phenotypic expression of key AD hallmarks are still needed. From a translational
point of view, the concerted effort from clinicians, researchers, patients, caregivers and



Cells 2023, 12, 2601 14 of 24

health and social care agencies, in association with a deep understanding of the biologi-
cal aspects linking COVD-19 and AD physiopathologies, will help in designing specific
diagnostic/therapeutic strategies [274,275], in order to mitigate the impact of long-lasting
neurological and ophthalmological COVID-19 complications in the aging population.
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