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Abstract: Meningioma, a primary brain tumor, is commonly encountered and accounts for 39% of
overall CNS tumors. Despite significant progress in clinical research, conventional surgical and
clinical interventions remain the primary treatment options for meningioma. Several proteomics and
transcriptomics studies have identified potential markers and altered biological pathways; however,
comprehensive exploration and data integration can help to achieve an in-depth understanding of the
altered pathobiology. This study applied integrated meta-analysis strategies to proteomic and tran-
scriptomic datasets comprising 48 tissue samples, identifying around 1832 common genes/proteins
to explore the underlying mechanism in high-grade meningioma tumorigenesis. The in silico path-
way analysis indicated the roles of extracellular matrix organization (EMO) and integrin binding
cascades in regulating the apoptosis, angiogenesis, and proliferation responsible for the pathobi-
ology. Subsequently, the expression of pathway components was validated in an independent
cohort of 32 fresh frozen tissue samples using multiple reaction monitoring (MRM), confirming
their expression in high-grade meningioma. Furthermore, proteome-level changes in EMO and
integrin cell surface interactions were investigated in a high-grade meningioma (IOMM-Lee) cell
line by inhibiting integrin-linked kinase (ILK). Inhibition of ILK by administrating Cpd22 demon-
strated an anti-proliferative effect, inducing apoptosis and downregulating proteins associated with
proliferation and metastasis, which provides mechanistic insight into the disease pathophysiology.

Keywords: meningioma; integrin-linked kinase (ILK); extracellular matrix organization (EMO);
proteomics; transcriptomics; apoptosis; integrated-omics; meta-analysis

1. Introduction

Meningioma, the most common primary intracranial tumor, is predominantly slow-
growing and known to arise primarily from arachnoid cap cells [1]. Meningioma has
broadly been classified into 3 grades, majorly relying on histopathology and cytomorpho-
logical criteria. Grade I (benign) tumors comprise 95% of total meningioma cases, grade
II (atypical) tumors comprise 4–5%, and, grade III (anaplastic) tumors comprising less
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than 1% are fast-growing malignant tumors [2]. Benign WHO grade I meningioma, which
accounts for 80% of all meningioma cases, may be surgically excised. In contrast, high-
grade meningioma, which accounts for the remaining 20% of cases, provides significant
treatment hurdles and is becoming the core of research interest due to its high recurrence
rate and aggressiveness [3–5]. Depending on the tumor’s location and degree of brain
invasion, surgical excision might be challenging, while the substantially enhanced risk of
recurrence has led to the recommendation of radiotherapy as an adjuvant therapy after
resection [6–8]. Chemotherapy is resorted to when no other surgical or radiation treatments
are available, but it is still experimental and under clinical trials. The effectiveness of
chemotherapy and radiation is limited and prone to toxic side effects, making the condition
challenging to treat [9,10]. All of these aspects warrant investigating the development of
better strategies to contain the explosive growth of high-grade meningioma and achieve
better prognostic outcomes.

Global initiatives and advancements in clinical exploration have developed the Interna-
tional Consortium on Meningioma (ICOM) to promote and drive meningioma research [11].
In the last 10 years, different studies on meningioma have revealed new insights and
improved the understanding of the progression of the disease [12,13]. Genomics studies
reported that NF2 variants are strongly associated with meningioma, wherein aberrant
expression of Merlin protein leads to its transfer from the plasma membrane to the nucleus
and results in alteration of cell adhesion and contact inhibition [1,14]. Although NF2 in-
volvement is one of the important findings in meningioma, the frequency and occurrence
are restricted to around 40% of total tumors [15,16]. Other non-NF2 mutational signa-
tures that are prevalent in meningioma include TRAF7, AKT1, POLR2A, PIK3CA, KLF4,
SMARCE1, and BAP1. Causative variants in SMO, AKT1, and the TERT promoter seem
to indicate increased risk of tumor recurrence and might be indicators for close surveil-
lance [17]. Recently, another study reported mutations in ARID1A and SMARC genes that
constitute the SW1/SNF chromatin remodeling complex [18]. In addition to different ge-
nomics studies, there have also been transcriptome and proteome-wide studies to identify
biomarkers and altered biological pathways in meningioma. Mass spectrometry-based
proteomics has widened the possibility of pinpointing biomarkers of various subtypes
through high-throughput data generation and validation. In the last 5 years, several
proteomics studies have reported proteome-level alterations and associated biological
pathways in meningioma [19–21]. Among these studies, Mukherjee et al. (2020) and
Dunn et al. (2019) investigated perturbations between meningioma tumors and non-tumor
control samples via grade-wise comparisons in fresh frozen tissue samples. Addition-
ally, Papaioannou et al. (2019) investigated grade-wise comparisons in formalin-fixed
paraffin-embedded (FFPE) tissues. These proteome-level investigations have enhanced
the understanding of meningioma by identifying protein markers and also established the
foundation for better therapeutic strategies.

Surgical excision is indeed the preferred and often effective therapy for meningioma;
however, tumor location and recurrence make complete tumor resection a challenge [22,23].
Many studies have investigated the potential of molecular inhibitors in established menin-
gioma cell lines like BEN-MEN-1 for lower grade meningioma and IOMM-Lee and CH157-
MN for higher grade meningioma. A few of the inhibitors that have been tested and taken
forward for clinical trials include the cyclooxygenase-2 inhibitor celecoxib, the histone
deacetylase inhibitor AR-42, and the mTOR inhibitors sirolimus and everolimus [24]. De-
spite the acceleration in drug repurposing and therapeutic target identification, high-grade
meningioma remains indecipherable.

In this study, we performed a meta-analysis of proteomics studies conducted by
Mukherjee et al. (2020) and Dunn et al. (2019), and further integrated the results with tran-
scriptomic datasets to understand the molecular level alterations in high-grade meningioma.
The in silico pathway analysis was followed by validation of integrin-linked kinase (ILK)
along with its associated pathway components, like ITGB1 and VIM, which are known to
play important roles in regulating the EMO and EMT transmission responsible for the pro-
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gression of meningioma. Furthermore, the role of ILK and its potential in tumorigenesis was
investigated in the IOMM-Lee cell line, unveiling the regulatory effect of ILK on apoptosis,
ECM, and tumor progression. The integrated proteomics-transcriptomics analysis, path-
way enrichment mapping, and in vitro studies provide a better understanding of disease
progression and the underlying mechanism of the pathobiology in high-grade meningioma.

2. Materials and Methods
2.1. Omic Data Mining, Literature Search, and Data Analysis

The data mining for the meta-analysis of meningioma was performed in three public
data repositories: ArrayExpress, ProteomeXchange Consortium, Gene Expression Omnibus
(GEO), and Omics Discovery Index (OmicsDI) for Proteomics and Transcriptomics [24–27].
The primary keyword was “meningioma” and the other search keywords were “tissue”
along with “human” as a species filter. Subsequently, two proteomic datasets, PXD014852
and PXD007073, were matched with the meta-analysis criteria and downloaded. The tran-
scriptomic dataset was searched primarily in OmicsDI and ArrayExpress. The keywords
included “meningioma” AND omics type “transcriptomics.” Microarray data belonging
to HG-U133A platform were selected. GSE43290 was found to match the criteria and files
were accessed using the GEO database. In addition to this, the outputs of the published
manuscripts by Dunn et al. (2020) and Papaioannou et al. (2019) were also included to
understand the commonalities between the data [20,28].

The raw files of PXD007073 and PXD014852 were re-analyzed in MaxQuant (v2.0.1.0)
to minimize cross-search engine variability. Raw files were processed within Label-Free-
Quantification (LFQ) parameters, setting label-type as “standard” with a multiplicity of 1.
The match between runs was selected. Trypsin was used for digestion with a maximum
missed cleavage of 2. Carbamidomethylation of cysteine (+57.021464 Da) was set as the
fixed modification, whereas oxidation of methionine (+15.994915 Da) was set as the variable
modification. The false discovery rate (FDR) was set to 1% for proteins, PSM, and site decoy
fraction to ensure high protein identification/quantification reliability. The decoy mode
was set to “reverse,” and the minimum peptide length was kept at 7AA.

2.2. Pre-Processing, Normalization, and Statistical Data Analysis of Proteomic Datasets

Correlation analysis and unsupervised clustering of PXD014852 and PXD007073 were
performed to understand the data quality. Dataset integration or cross-dataset normal-
ization was not performed to prevent technical bias. The two datasets were median-
normalized and separately imputed using the kNN algorithm. Significant differentially
expressed proteins were identified using Welch’s t-test with a p-value ≤ 0.05. The common
list of differentially expressed proteins was taken forward to draw a correlation plot be-
tween the two datasets. The analysis was visualized using correlation plots, scatter plots,
heatmaps, volcano plots, and violin plots drawn using the visualization libraries in Python
(https://www.python.org/, accessed on 15 April 2023), Metaboanalyst, Orange [29], and
Morpheus [30,31].

2.3. Data Quality Check and Statistical Analysis of Transcriptomic Datasets

The CEL format files containing the microarray experimental data were downloaded
in the R environment to perform the statistical analysis. The Bioconductor package ar-
rayQualityMetrics was used to assess the technical quality of arrays, which was determined
based on background values and various scaling factors [32]. The difference of high-grade
meningioma against control samples, i.e., arachnoid tissues in GSE43290, was used to
identify differentially expressed genes (DEGs). Identification of DEGs was performed using
LIMMA, an R-based open-source software integrated within afflmGUI [33]. The cut-off for
adjusted p-value was set at 5% to identify significant differentially expressed genes.

https://www.python.org/
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2.4. Protein–Protein Interaction Network (PPIN) and Pathway Enrichment Analysis

The list of common significant differentially expressed proteins (DEPs) between the
datasets was taken forward as input in Metascape and g:GOSt of g:Profiler for pathway
enrichment analysis [34,35]. Gene set enrichment analysis (borad.mit.edu/gsea, accessed
on 20 April 2023) was performed for both proteomic datasets using the KEGG pathway
database under canonical pathways (CP) from the Molecular Signatures Database (MSigDB).
The number of permutations was set to 1000, and the metric for ranking genes was the
signal-to-noise ratio [36]. Network enrichment analysis and disease gene enrichment
analysis were performed in STRING and Networkanalyst, taking DisGeNET and DISNOR
as the reference disease knowledge base [37–40].

2.5. Sample Preparation for Targeted Proteomics Analysis

The samples used in this study were approved by the Institutional Ethics Committee
of the Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata
Memorial Hospital (TMH), Mumbai, India, and IIT Bombay (ACTREC-TMC IEC No. 149).
The healthy samples as the control references were collected from NIHMANS Brain Bank.
Around 50 mg of tissue was resected to extract the proteins from the tissue specimens using
a lysis buffer consisting of 8 M urea, Tris HCl buffer, and a protease inhibitor cocktail (PIC)
(Sigma Aldrich®, St. Louis, MO, USA, Catalogue Number: 539131). First, 50 µg of proteins
was reduced with TCEP, and then the proteins were alkylated with iodoacetamide (IAA).
The resulting reduced and alkylated proteins underwent enzymatic digestion using trypsin
(Pierce, Thermo Fisher Scientific, Vilnius, Lithuania). Following an overnight incubation
of 16 h at 37 ◦C, the digests were concentrated through vacuum drying and reconstituted
in 0.1% (v/v) formic acid (FA). Desalting of the peptides was performed using in-house
C18 stage tips, as mentioned in our previous study [41]. The desalted peptides were
subsequently dried and reconstituted in 0.1% (v/v) FA.

2.6. Transition List Preparation and Data Acquisition for Targeted Proteomics Analysis

The transition list for the selected proteins was prepared using Skyline. The settings
and protocol were followed as discussed in our previous manuscript with slight modi-
fications [42,43]. Data acquisition was conducted using a TSQ Altis Mass Spectrometer
(Thermo Fisher Scientific) coupled with an HPLC system (Dionex Ultimate 3000, Thermo
Fisher Scientific). A 1 ug sample of peptide was injected and separated using a Hypersil
Gold C18 column (1.9 µm, 100 × 2.1 mm, Thermo Fisher Scientific). MRM runs were
performed with a flow rate of 450 µL/min, cycle time of 2 s, and resolution of 0.7 m/z (Q1
and Q3) across a 10 min LC gradient. The solvent system consisted of 0.1% formic acid
(FA) and 100% acetonitrile (ACN). The obtained data were analyzed using Skyline-daily,
as discussed in a previous study [44]. Peak selection and refinement were conducted by
considering peak shape, dot product, and retention time.

2.7. Cell Culture, Stocks, and Doses of Inhibitor

The IOMM-Lee high-grade meningioma cell line was obtained from ATCC (CRL-3370).
Cells were grown in DMEM supplemented with 10% fetal bovine serum, 100 units/mL
penicillin, and 100 µg/mL streptomycin. Cpd22® (Merck Millipore, Burlington, MA, USA)
was dissolved in DMSO to prepare the drug solution. Cells were cultured in a CO2 incubator
under standard conditions of 5% CO2, 95% humidity, and 37 ◦C temperature. Once the
cells reached the desired confluency (70–80%), the cells were cleared by trypsinization and
transferred to new culture vessels for maintenance.

2.8. Cell Proliferation Assay

Around 8000 cells were seeded in a 96-well plate and incubated until morphology was
achieved. The drug was dissolved in DMSO, and various concentrations of the drug were
added to the cells. Following incubation, 10 µL of 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide (MTT) reagent from the stock solution of 5 mg/mL was added, and
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the cells were incubated for another 3 h followed by the addition of 150 µL of DMSO to
each well. The absorbance was measured at 570 nm.

2.9. Apoptosis Assay

Cells were grown to ~70% confluency, followed by Cpd22 treatment. The FITC
Annexin V Apoptosis Detection Kit (BD Biosciences, Franklin Lakes, NJ, USA) was used
to detect apoptosis, as discussed in our previous manuscript [45]. Cells were suspended
in 1× binding buffer, followed by double staining with FITC Annexin V and PI. Each cell
was analyzed through flow cytometry. The experiments were performed with biological
replicates to determine the reproducibility.

2.10. Protein Extraction and Mass Spectrometry Data Acquisition

The cell pellets of three biological replicates from Cpd22 treatment and control samples
(DMSO-treated) were gently washed with 1× phosphate-buffered saline (PBS) and lysed
using urea (8 M) buffer. Around 300 µL lysis buffer containing 8 M urea, 50 mM Tris
pH 8.0, 75 mM NaCl, 1 mM MgCl2, and 500 units of benzonase was added to the cell pellets
followed by a brief sonication on ice to produce the cell extract. The debris was separated
by centrifugation at 8000 rpm for 15 min at 4 ◦C. The supernatant was collected in a fresh
sterile Axygen/microcentrifuge tube. Protein quality was checked by performing SDS-
PAGE, and simultaneously, the concentration of protein in the tissue lysate was determined
using Bradford Assay. Approximately 100 ug of protein sample was taken for tryptic
digestion. Prior to digestion, the proteins were reduced with 20 mM of TCEP, followed
by alkylation with 37.5 mM of IAA. The digested peptide was then vacuum-dried and
reconstituted in 0.1% (v/v) FA. To reduce the salt concentration in the digested peptide, it
was cleaned up using C-18 stage tips by obeying the reverse-phase column chromatography
principle. The cleaned peptide was further dried and dissolved in 0.1% (v/v) formic acid
(FA). The peptide concentration was calculated using the Scopes method from its O.D.
values at 205 nm and 280 nm (33). A 1 µg sample of the peptide was analyzed using the
Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Fischer Scientific) equipped with
the Easy-nLC 1200 system, with a gradient of 80% ACN and 0.1% FA for 120 min and
a flow rate of 300 nL/min. Mass spectrometric data acquisition was performed in data-
dependent acquisition mode with a mass scan range of 375–1700 m/z and mass resolution
of 60,000. For dynamic exclusion under MS (precursor ions), the mass tolerance was set
to 10 ppm with an exclusion duration of 40 s. The ddMS2 (data-dependent MS2) scan
properties activation type was set to HCD with the collision energy mode fixed to 30%, and
spectra were acquired on an Orbitrap with a resolution of 15 k and maximum injection
time of 30 ms.

2.11. Label-Free Quantification and Biological Analysis of Cell Line Proteome Data

The proteomic raw files were analyzed using MaxQuant with similar parameters
as were used for the meta-analysis [46]. Furthermore, proteins without any missing val-
ues were taken for differential proteomics analysis of the control and treatment groups.
The normalized and log2-transformed data were used to calculate fold change, p-value,
and FDR. The p-value were set to ≤0.05 for the significance level. The list of signif-
icant differentially expressed proteins (DEPs) and proteins found in either of the two
groups (binary proteins) was further analyzed in Reactome and Metascape to under-
stand the enriched biological pathways [34,47]. The protein–protein interaction network
was constructed in STRING [37]. Finally, the altered pathways and their components
in the meta-analysis were compared with cell line data to assess the influence of ILK
inhibition on key components of the signaling cascades that were also overexpressed
in meningioma.
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2.12. In Silico Drug Docking of Compounds Similar to Cpd22 as Well as FDA-Approved Drugs

The 3D crystal structure of ILK (PDB ID: 3 KMW) was downloaded from PDB (https:
//www.rcsb.org/, accessed on 27 May 2022) [48]. Protein remodeling was performed using
Chimera [49]. It involved the following steps: removal of alpha-parvin (chain B), Mg, ATP,
and water molecules, followed by energy minimization using the steepest descent algorithm
for 50,000 steps. After this, the preprocessed structure was uploaded and visualized using
NGL viewer [50]. The PDB structure of the protein was preprocessed before docking using
an in-built tool present in the Galaxy webserver (https://cheminformatics.usegalaxy.eu/,
accessed on 27 May 2022) [51]. The grid box parameters were calculated using Mg-ATP
as a ligand with the help of the RDkit tool embedded within the Galaxy webserver (https:
//www.rdkit.org/, accessed on 27 May 2022). Molecular docking was performed on the
Galaxy webserver using the AutoDock Vina tool with exhaustiveness set to 24 following
calculation of the grid parameters using RDkit. The parameters were 14.757, 21.972, and
18.3 for the x-, y-, and z-axes, respectively. The center_x, center_y, and center_z values were
−7.9295, 3.039, and 11.623, respectively. The receptor–ligand interactions were checked on
Discovery Studio Visualizer.

The drug library was prepared by searching the CHEMBL database in the Galaxy web
server, setting the Tanimoto cut-off score for similarity to 60. Further, the drug-likeness of
compounds was studied using the QED tool [52]. The FDA-approved drugs were chosen on
the basis of being antineoplastic and immunomodulating agents (https://www.whocc.no/
atc_ddd_index/, accessed on 10 May 2022). The specific compounds were searched using
specific parameters on CHEMBL (https://www.ebi.ac.uk/chembl/, accessed on 12 May
2022), like the maximum clinical phase trial or clinical phase trial 4, and to be reported as
protein-kinase inhibitors. Also, a compound belonging to antipsychotic classification (https:
//www.whocc.no/atc_ddd_index/, accessed on 10 May 2022) having target molecule as
serine/threonine kinase inhibitors reported in CHEMBL was chosen for docking with ILK.
The compounds were pre-processed using the receptor-ligand tool present in the Galaxy
web server before being subjected to docking.

3. Results
3.1. Integrated Omics Analysis of Meningioma Datasets

The proteomic and transcriptomic datasets mined from the data repositories were
re-analyzed, and the schematic outline of the meta-analysis is shown in Figure 1A and
Table S1. A total of 1995 proteins were found to be common between the two datasets,
which are shown in the form of a Venn Diagram (Figure 1B). Classification and fold change
between the control and high-grade meningioma sample cohorts were performed to un-
derstand similarities in the trends of proteins between the datasets (Figure S1A). The
commonalities between the two datasets, PXD014852 and PXD007073, led to the identifi-
cation of around 248 differentially expressed proteins (Figure S1B). Transcriptomic data
integration with proteomic data resulted in a total of around 1832 common features and
95 common concordant features with similar trends, which were taken forward to perform
correlation analysis between the log2 fold change (Figures 1C and S1C). A list of 38 signifi-
cant (p-value < 0.05) common DEPs with similar trends was found between the proteomic
and transcriptomic datasets, wherein myosin heavy chain 11 (MYH11), calponin 1 (CNN1),
and glycoprotein M6A (GPM6A) were downregulated with minimal fold change; however,
heterogeneous nuclear ribonucleoprotein U-like protein 1 (HNRNPUL1), filamin B, beta
(FLNB), and GDP-mannose 4,6-dehydratase (GMDS) were upregulated with maximum
fold change (Figure S2A). This list of DEPs was taken forward for biological pathway
mapping and enrichment analysis.

https://www.rcsb.org/
https://www.rcsb.org/
https://cheminformatics.usegalaxy.eu/
https://www.rdkit.org/
https://www.rdkit.org/
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
https://www.ebi.ac.uk/chembl/
https://www.whocc.no/atc_ddd_index/
https://www.whocc.no/atc_ddd_index/
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Figure 1. Integrated omics analysis to understand the commonalities driving disease progression in
high-grade meningioma: (A) illustrates the schematic workflow of the proteomics and transcriptomics
analysis of high-grade meningioma; (B) depicts the Venn diagram of common proteins between
the two proteomic datasets, PXD007073 and PXD014852; (C) deciphers the correlation of common
differentially expressed features based on scaled log2FC acquired from the statistical analysis.

3.2. Pathway Mapping and Gene-Set Enrichment Analysis to Understand the Proteomic and
Transcriptomic Alterations in High-Grade Meningioma

A list of common dysregulated proteins was taken forward to perform pathway
mapping using over-representation analysis. Extracellular matrix organization (R-HSA-
1474244) was found to map with the highest score, followed by collagen binding, cell
adhesion, integrin cell surface interactions, and the VEGF signaling pathway, as shown
in Figures 2A and S2B,C. The results of gene set enrichment analysis showed a total of
17 common gene sets with positive correlations with high-grade meningioma, including
MYC target variant 1 (M5926), a hallmark gene set of proliferation that has been found
to be most prominent in cancers with a maximum consolidated normalized enrichment
score (NES), followed by E2F targets and the cell cycle G2/M checkpoint, which also came
under the proliferation category of the hallmark gene set (Figure 2B). In addition, the
spliceosome, DNA repair, and protein secretion were also found to be common pathways
mapped with all three datasets. All of these pathway components were integrated to-
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gether to construct a network for better visualization and interpretation of the connections
(Table S2 and Figure 2C).
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phers the enrichment of altered pathways using common dysregulated proteins; (B) shows the linear
projection plot illustrating common gene sets between the three datasets with positive correlations
with high-grade meningioma; (C) depicts the network analysis of genes and proteins involved in
high-grade meningioma tumorigenesis and proliferation.

3.3. Validation of the Potential Common Markers Using MRM-based Targeted Proteomics

A total of 32 fresh frozen tissue samples, including 13 high-grade (Grades 3 and 2),
10 low-grade (Grade 1), and 9 control (arachnoid and dura tissues) samples, were selected
for the study (Table 1). A list of unique peptides, including vimentin (VIM), integrin subunit
beta 1 (ITGB1), integrin-linked kinase (ILK), prelamin-A/C (LMNA), fibrinogen gamma
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chain (FGG), and heat shock protein HSP 90-alpha (HSP90AA1), were taken forward and
optimized for the development of MRM-based targeted validation (Table S3).

Table 1. Demographic table representing the sample information.

Variables High-Grade Low-Grade Control

Age

N (N miss) 13 (0) 10 (0) 9 (0)

Mean ± SD 45.3 ± 13.2 48.2 ± 10.7 49.7 ± 29.7

Min–Max 23–67 31–74 0.5–88

Median (IQR) 46.5 (45–53) 47 (40.5–57.5) 45 (28–85)

Gender (%)

Female 6 (46.2) 7 (70) 1 (12)

Male 7 (53.8) 3 (30) 8 (88)

A schematic outline of the experiment is illustrated in Figure 3A. The coefficient of
variance (CV) of a spiked synthetic peptide to monitor the variation between runs was
found to be 8%, and the peak areas of the three conditions are shown in Figure 3B,C.
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Figure 3. Experimental setup and quality assessment of targeted proteomics validation: (A) illustrates
the schematic workflow of targeted proteomics-based biomarker validation in meningioma tissues;
(B,C) depicts the comparison of peak intensities of a standard non-human spike-in heavy labeled
peptide “VFPYDNTLPK” added to each samples to monitor the run-to-run variation sample-wise
and group-wise, respectively. No significant variation in spike-in peptide intensity was observed,
ruling out run-to-run variation. [MG = Meningioma].

LMNA and VIM were found to be upregulated in high-grade meningioma for the
peptides monitored (Figure 4A,B). The peak areas of peptides ITGB1 and ILK showed
upregulation in high-grade meningioma when compared with control samples and low-
grade meningioma (Figure 4C,D).
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Figure 4. Validation of key proteins in altered pathways using MRM-based targeted proteomics
depicting peptide-level intensities and peak areas: (A) prelamin-A/C (LMNA), (B) Vimentin (VIM),
(C) integrin subunit beta 1 (ITGB1), and (D) integrin-linked kinase (ILK). The plots were made with
peak areas, with the significance level calculated based on the independent t-test with Bonferroni
correction (p-value annotation in legend: **, 1.00 × 10–03 < p ≤ 1.00 × 10–02; ****, p ≤ 1.00 × 10–04).
[MG = Meningioma; HG = High Grade; LG = Low Grade].

3.4. In Vitro Inhibition Using Cpd22 Reveals the Anti-Tumor Potential of the Pathway

ILK, being the central signaling hub along with overexpression in high-grade menin-
gioma, regulates pivotal cellular homeostatic processes, including cell growth, proliferation,
cell survival, etc. The importance of ILK in homeostatic processes was examined through
treatment with a potential ILK inhibitor in the high-grade meningioma cell line, IOMM-Lee.
Cpd22 treatment for 24 h at various doses, including 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 µM,
decreased cell growth in a concentration-dependent manner. The reduction in half of the
cell population (IC50) was identified in the range of ~ 3 to 4 µM (Figure 5A). The 3 µM
concentration of the drug was taken for further cell assays. The apoptotic potential of ILK
inhibition was studied by staining the cells using the FITC-Annexin V assay. Following
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treatment, the cells were stained with FITC-Annexin V and PI and the amount of apoptosis
was quantified through flow cytometry. A substantial change in apoptotic morphology
was seen in the treated population. In the treated population, ~42% of cells were found to
be in the apoptotic phase. The output of the flow cytometry-based apoptosis assay was
interpreted with biological replicates to calculate the standard deviation (Figure 5B,C).
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Figure 5. Impact of Cpd22 in proliferation and apoptosis. (A) Determination of IC-50 of Cpd22 in
the IOMM-Lee cell line; morphology after 24 h treatment with DMSO and Cpd22; (B) Percentage
of apoptotic cells after 24 h treatment with DMSO and Cpd22 determined by flow cytometry with
t-statistic (****, p ≤ 1.00 × 10–04); (C) Flow cytometry assay: the fraction of apoptotic cells was
determined by flow cytometry with Annexin V–FITC and Propidium Iodide (PI) double staining.

3.5. Proteomic Alterations and Biological Pathway Perturbations Post-Treatment with an ILK
Inhibitor in the Meningioma Cell Line

MaxQuant analysis of six files, which included three biological replicates for control
and Cpd22-treated cells, provided a total of 1721 proteins. The correlation between the
samples was found to be greater than 0.8, and the intensities were properly normalized
(Figure S3A,B). Principal component analysis (PCA) showed two clear clusters of the con-
trol and treatment groups, with 33.3% as PC1 and 21% as PC2 (Figure S3C). The data
analysis resulted in 245 binary proteins (identified in either of the two conditions) and
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66 significant differentially expressed proteins, as shown in Figure 6A. The enriched path-
ways with differentially expressed proteins in the treatment group compared to the control
group showed alterations in focal adhesion (hsa04510), regulation of actin cytoskeleton
(hsa04810), the PI3K-Akt signaling pathway (hsa04151), and the spliceosome (hsa03040).
In addition to the pathway analysis, a few key proteins were found to be altered in the
treatment group, like metastasis associated 1 family member 2 (MTA2) and marker of
proliferation Ki-67 (MKI67), were found to be downregulated in the Cpd22-treated pop-
ulation. However, Na+/H+ exchanger regulatory factor 1 (NHERF1) and protein kinase
C and casein kinase substrate in neurons (PACSIN2) were found to be upregulated in the
Cpd22-treated population. A heatmap depicting a list of eight interesting proteins with
functional correlations is shown in Figure 6B.
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Figure 6. Role of Cpd22 in proteome-level regulation and drug discovery: (A) deciphers the differen-
tially expressed proteins in Cpd22-treated cells in comparison to control cells, taking fold change as 2
and a p-value cutoff of 0.05 using proteomics analysis; (B) represents the heatmap showing expression
changes in treatment and control groups on a scale of 0–1; (C) shows the drug docking results along
with binding affinity (kcal/mol) scores of belumosudil, oxypertin, and pemigatinib.

3.6. Screening of Compounds Using in Silico Docking for ILK

The results from in silico screening of FDA-approved drugs showed that some drugs
have high binding affinity for ILK as well as other protein kinase inhibitors. Amongst these
drugs, belumosudil, a known inhibitor of Rho-associated protein kinase 2 (ROCK2), was
observed to have a high binding affinity of −9.904 kcal/mol. The receptor-ligand interac-
tion showed several conventional hydrogen bonds with the following residues: ASN200,
ASN279, and ASP339 (Figure 6C). In addition, compounds like selpercatinib, pemigatinib,
and oxypertine showed high binding affinities of −8.570 kcal/mol, −8.111 kcal/mol, and
−7.981 kcal/mol, respectively. Their interactions with residues of the target protein, ILK,
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were observed to form different types of bonds, such as conventional hydrogen bonds, pi–
alkyl bonds, carbon-hydrogen bonds, alkyl bonds, pi–cation bonds, etc., which are shown
in Figure 6C and Table S4. Some other notable small compounds exhibiting potential
inhibition of ILK, along with drug-likeness analysis, are shown in Table S4. The reported
drugs are to be further checked out in in vitro and in vivo based studies to understand
their efficacy.

4. Discussion

Meningioma and its pathobiology have consistently garnered attention in neuroscience
primarily due to its prevalence, although its aggressiveness and tendency to metastasize
are comparatively lower than those of glioblastoma multiforme (GBM). Despite low-grade
meningioma generally having a favorable prognosis, the recurrence and recent reports
of metastasis in high-grade meningioma highlight its grave nature and severity [53,54].
With the upsurge in clinical research and advancements in omics technology and big
data analysis, in-depth investigations have assisted in enhancing our understanding of
meningioma pathobiology [28,55]. However, investigation and in-depth understanding
of high-grade meningioma tumorigenesis and research with therapeutic potential are lim-
ited. Meningioma treatments solely depend on surgical resection and radiation therapy
due to the lack of efficacy in chemotherapy. However, these clinical management strate-
gies have limitations, particularly when dealing with advanced grades of meningioma
or complications with tumor location [56,57]. These limitations and pitfalls could be re-
solved with a pellucid understanding of the molecular pathways involved, accelerating
the discovery of targeted drugs for managing complicated clinical cases. An overview of
early investigations and different clinical reports showed that altered expression of EGFR,
PDGFR, and VEGFR in meningioma, which is one of the most important aspects of car-
cinogenesis, has been widely studied [58,59]. A plethora of studies and clinical trials have
investigated the potential role of kinase inhibitors, including imatinib, vatalanib, and er-
lotinib; however, the paradox of disease progression, especially in high-grade meningioma,
remains unclear.

The introduction of integrated omics analysis and meta-analysis has garnered tremen-
dous improvements in comprehending the underlying mechanisms of dreadful brain
tumors. This study used a meta-analysis pipeline to understand alterations in high-grade
meningioma by integrating proteomic and transcriptomic datasets. Re-analysis and inter-
pretation of publicly available proteomic datasets provided a total of 1995 proteins, which
were further integrated with transcriptomic data to illustrate the perturbations between
high-grade meningioma and reference controls. Our analysis resulted in concordant and
discordant differential expression between datasets, which provided clues for comprehend-
ing the clinical complexity and biological correlations reported earlier [28]. GSEA and in
silico pathway analyses of the integrated data unraveled the complexity by identifying
alterations in signaling cascades in advanced grade meningioma, which primarily included
extracellular matrix organization, integrin binding pathways, the spliceosome, and ECM
proteoglycans on the one hand, and hallmark gene sets like apoptosis, angiogenesis, E2F,
and Myc targets on the other. Functional clustering analysis and literature mapping aided
in understanding the potential role of integrin-linked kinase (ILK) in regulating the altered
biological cascades in high-grade meningioma, interconnecting integrin binding, angio-
genesis, proliferation, and apoptosis (Figure 7). The inhibitory effect of ILK and control of
tumorigenesis has been reported in regard to glioblastoma, but understanding its potential
in high-grade meningioma remains unexplored [60].
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Figure 7. Summarization of the involvement of extracellular matrix organization (ECMO) and integrin
in the regulation of altered biological pathways and signaling cascades in high-grade meningioma
tumorigenesis. Cross-talk between components of these pathways with integrin-linked kinase (ILK)
deciphers its potential as a master regulator. ILK results in the phosphorylation of GSK3B and PI3K,
which triggers beta-catenin expression and activation of AKT, leading to cell proliferation, migration,
and angiogenesis, respectively. Activation of the PI3K pathway also leads to increased expression
of vascular endothelial growth factor (VEGF). Inhibition of ILK leads to arrest of phosphorylation,
followed by decreased VEGF expression, inducing cell apoptosis. The positive feedback loop of
PI3K/Akt/mTOR/c-Myc/mtp53 is also impacted, resulting in cells remaining arrested in the G1
phase of the cell cycle, leading to an anti-proliferative effect. [Created with BioRender.com].

The commonalities in the over-representation analysis indicated the association of in-
tegrin binding pathways, which regulate extracellular matrix organization (EMO), integrin
cell surface interactions, and cell adhesion. These pathways were found to be upregulated
in high-grade meningioma, with concordant proteome-level overexpression of integrin,
heat shock proteins, fibrinogens, and lamins. The peptide-level validation of ITGB1 and
lamin A/C in an independent sample cohort in this study, along with Annexin A1 vali-
dation in our previous study, confirmed that upregulation of these proteins, along with
other cell-adhesion components, plays an important role in high-grade meningioma tu-
morigenesis inducing angiogenesis [21]. Conversely, advanced meningioma tumors exhibit
stiffness, which also plays an important role during resection [61]. Nuclear lamins have a
strong association with stiffness and have also been reported as a candidate biomarker for
glioblastoma multiforme. Additionally, a previous study also found a connection between
aggressiveness and the expression of lamins [62]. In our study, the expression of lamins
was found to be upregulated in high-grade meningioma, reconfirming the connection with
aggressiveness. Molecular function ontology enrichment analysis depicted the spliceosome
and its associated biological pathway as one of the common alterations in both the pro-
teomic and transcriptomic datasets. Bordeleau et al. reported the relationship between
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stiffness in ECM with mRNA splicing in cells [63]. The direct connection between ECM stiff-
ness and SR splicing factors uses the integrin pathway, which in turn involves PI3K/AKT
components to mediate biochemical signals [63]. High-grade meningioma shows higher
levels of active AKT, and its phosphorylation inhibits proapoptotic factors like Bad, Bax,
caspase-9, and forkhead, thereby inhibiting apoptosis [19]. The downregulation of Bax and
Bid in the proteome-level meta-analysis formed a link between the upregulation of integrin
components and tumorigenesis, with alterations in the apoptosis pathway. Additionally,
the gene set enrichment analysis of the proteomic and transcriptomic datasets showed
that Myc, E2F, and the G2M checkpoint hallmark gene sets were under the proliferation
category and were found to have positive correlations with high-grade meningioma. Over-
all, the in silico pathway analysis and biological mapping unveiled overexpression of the
integrin binding pathway, extracellular matrix organization (EMO), and angiogenesis in
atypical and anaplastic meningioma, along with a positive correlation with proliferation
gene set cascades. The upregulation of vimentin, a prominent marker of mesenchymal
transmission in the validation experiment, indicated the likelihood of invasiveness with the
advancement of grade [64]. This combination contributes to the poor prognosis associated
with high-grade meningioma. Additionally, underexpression of pro-apoptotic proteins
hinders cell death, further complicating treatment and cure.

Integrin-linked kinase (ILK), known to regulate a several downstream signaling cas-
cades, connected all of the discussed altered pathways, acting as a master regulator. In
this study, we validated the overexpression of ILK in high-grade meningioma using a
MRM-based targeted proteomics approach. These results and correlation strengthen the
involvement of integrin–cell adhesion in proliferation and angiogenesis. ILK also coordi-
nates epithelial–mesenchymal transition (EMT), which acts as a contributing factor in the
metastatic and invasive nature of anaplastic meningioma. Moreover, the inhibition of ILK
would inhibit the activation of AKT, leading to reduced cell growth, and may promote
apoptosis [10,64]. The administration of Cpd22 (ILK inhibitor) in a high-grade meningioma
cell line (IOMM-Lee) provided evidence supporting the therapeutic potential of this kinase.
Treatment with the compound showed the oncogenic role of the kinase as inhibiting the
pathway triggered dose-dependent cell cytotoxicity in meningioma cells. Around 3–4 µM of
the compound showed an anti-proliferative effect along with the appearance of a change in
morphology after treatment for 24 h. Flow cytometry staining using FITC and PI indicated
a clear spike in apoptotic populations after Cpd22 treatment. Furthermore, the cell assays
demonstrated a strong correlation with the comprehensive proteomic characterization of
the Cpd22 treatment that showed downregulation of the marker of proliferation Ki-67
(MKI67) and proliferation-associated 2G4 (PA2G4) in the treated population. Ki-67 has
proven to be a reliable indicator of proliferation and is widely used to investigate tumor het-
erogeneity and prognosis. The downregulation of this marker in treated cells suggested the
effectiveness of ILK inhibition in impeding tumor growth [65]. Apoptosis-inducing factor
(AIFM1), a pro-apoptotic protein, was found to be upregulated in the treated population in
the proteomics analysis, which correlated with the increase in apoptosis. Mitochondrial
AIFM1 translocates to the nucleus, where it induces DNA fragmentation and chromatin
condensation following the induction of apoptosis. The proteomics analysis also showed
downregulation of metastasis associated 1 family member 2 (MTA2) and protocadherin
fat 3 (FAT3), suggesting clear inhibition of the metastatic modulators. MTA2 serves as a
pivotal nexus for coordinating cytoskeletal organization and transcription, establishing a
crucial connection between nuclear cytoskeletal dynamics and promoting cancer metasta-
sis [66]. MTA2 also has the potential to interact with eukaryotic initiation factor 4E (EIF4E),
leading to the positive regulation of Twist expression, a recognized master regulator of
epithelial–mesenchymal transition (EMT) [64]. Conversely, protein kinase C and casein
kinase substrate in neurons (PACSIN2) was found to be upregulated in the treatment group.
It has been reported to have a negative correlation with malignancy in glioma, whereas
PACSIN2 was found to be downregulated in meningioma tumors when compared with
controls in the meningioma datasets of BrainProt [67,68]. The Cpd22-based inhibition
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of ILK was shown to be efficient in controlling meningioma cells through the regulation
of crucial proteins and pathways linked to tumorigenesis and metastasis, establishing
the therapeutic potential of targeting ILK with regard to the regulation of proliferation,
angiogenesis, apoptosis, and metastasis in high-grade meningioma. The highlighted role
of ILK in disease progression thus resulted in considering the molecule as a major target
for determining potential drug candidates using in silico docking.

The molecular docking performed in this study is indicative of a futuristic approach
to the treatment of high-grade meningioma using FDA-approved drugs. FDA-approved
drugs like oxypertine, pemigatinib, selpercatinib, and belumosudil showed encouraging
results with high binding affinities and can be further explored for their inhibitory effects
on ILK and treating high-grade meningioma. Selpercatinib is used as an FDA-approved
drug for use against thyroid and lung cancers [69]. It is a known receptor for tyrosine
kinase. Pemigatinib is approved for the treatment of cholangiocarcinoma and it targets
FGFR, whereas oxypertine is currently used as a medication for psychotic disorders [70].
Belumosudil, the drug shown to have the highest affinity for ILK in drug docking, is an
FDA-approved drug for use against graft-versus-host disease and is known to target the
polymerization of G-actin fibrils and inhibit the Rho-ROCK-MRTF pathway [71]. The
pathway coupling ILK to ECM matrix in high-grade meningioma unveils the potential
that could be unleashed using belumosudil to treat high-grade meningioma. The results
of the in silico docking can be further investigated in cell lines and animal models to
prove its efficacy in treating high-grade meningioma in the future. Future investigations
might lead to unraveling the huge potential of ILK as a therapeutic target by taking these
repurposed drugs along with reported inhibitors like QLT-0267 and OSU-T315 in the context
of high-grade meningioma. An earlier investigation with QLT-0267 in glioblastoma xenograft
models showed decreased PI3K/Akt activity, VEGF secretion, and apoptosis induction, hence
interfering with most cancer hallmark pathways [66]. Similarly, OSU-T315 has been used as
a B cell-specific therapeutic ligand in breast and prostate cancer cells [65]. Meningioma has
many unknown pathological mechanisms that can be discovered through in-depth molecular
research; in that light, ILK inhibitors are indeed an integral research tool.

In conclusion, this study illustrates the power of integrated meta-analysis of proteomic
and transcriptomic datasets in deciphering global alterations in high-grade meningioma,
which was used herein to identify alterations in signaling cascades in high-grade menin-
gioma. The enriched altered pathways highlight the role of ILK as a master regulator in
high-grade meningioma tumorigenesis, regulating apoptosis, proliferation, and angiogene-
sis. The investigation of ILK inhibition using Cpd22 in a high-grade meningioma cell line
(IOMM-Lee) showed a decrease in proliferation and angiogenesis followed by an increase
of apoptosis. This study provides valuable mechanistic insight into the pathophysiology of
high-grade meningioma and may contribute to the development of targeted therapies for
this disease.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12202483/s1.

Author Contributions: D.B. and S.S. designed the experiments. A.M., P.S. and S.E. provided the
clinical information and sample collection. D.B., A.B. and A.H. performed cell culture work. D.B.,
A.H. and A.C. performed sample preparation and mass spectrometry analysis. D.B., A.H., A.B.,
A.C., S.G., G.R.B. and L.B. performed data analysis and visualization. A.H. performed the molecular
docking. All authors contributed to the article and approved the submitted version. All authors have
read and agreed to the published version of the manuscript.

Funding: The study was funded through MHRD-UAY (UCHHATAR AVISHKAR YOJANA), project
#34_IITB (2016) to SS and MASSFIIT (Mass Spectrometry Facility, IIT Bombay) for MS-based pro-
teomics work (BT/PR13114/INF/22/206/2015). We also thank MERCK-COE (DO/2021-MLSP) for
their extended support. AH was funded by the Ministry of Education, India, through the Prime Min-
ister’s Research Fellowship (PMRF) program. D.B. was funded by the University Grants Commission
(UGC) through the UGC fellowship program.

https://www.mdpi.com/article/10.3390/cells12202483/s1
https://www.mdpi.com/article/10.3390/cells12202483/s1


Cells 2023, 12, 2483 17 of 20

Institutional Review Board Statement: The study has been performed in accordance with the
approval of the Institutional Ethics Committee of the Advanced Centre for Treatment Research and
Education in Cancer (ACTREC), Tata Memorial Hospital (TMH), Mumbai, India, and IIT Bombay
(ACTREC-TMC IEC No. 149).

Informed Consent Statement: All participants in the study provided consent to be part of the study.

Data Availability Statement: The mass spectrometry proteomic datasets have been deposited in the
MassIVE repository with the dataset identifier MSV000092770. Targeted Proteomics Data Availability:
Username: PASS04833. Full URL: ftp://PASS04833:PA3845xst@ftp.peptideatlas.org/, submitted on
26 May 2023.

Acknowledgments: We are thankful to the Mass Spectrometry Facility IIT Bombay (MASSFIITB) for
sample generation and the NIMHANS Brain Bank facility for providing normal brain tissue samples.
We are also thankful to Aniruddha Mukherjee and Adrita Saha for their support in analysis. We
would also like to acknowledge Servier Medical Art for providing representative and illustrative
images. Lastly, we would also like to thank the ProteomeXchange, OmicsDi, and GEO databases for
providing access to omic datasets for analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yamashima, T. Human Meninges: Anatomy and Its Role in Meningioma Pathogenesis. In Meningiomas; Lee, J.H., Ed.; Springer:

London, UK, 2009; pp. 15–24. ISBN 978-1-84882-910-7.
2. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger,

G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251.
[CrossRef] [PubMed]

3. Paldor, I.; Awad, M.; Sufaro, Y.Z.; Kaye, A.H.; Shoshan, Y. Review of Controversies in Management of Non-Benign Meningioma.
J. Clin. Neurosci. 2016, 31, 37–46. [CrossRef] [PubMed]

4. Negroni, C.; Hilton, D.A.; Ercolano, E.; Adams, C.L.; Kurian, K.M.; Baiz, D.; Hanemann, C.O. GATA-4, a Potential Novel
Therapeutic Target for High-Grade Meningioma, Regulates miR-497, a Potential Novel Circulating Biomarker for High-Grade
Meningioma. eBioMedicine 2020, 59, 102941. [CrossRef] [PubMed]

5. Wang, Y.-C.; Chuang, C.-C.; Wei, K.-C.; Chang, C.-N.; Lee, S.-T.; Wu, C.-T.; Hsu, Y.-H.; Lin, T.-K.; Hsu, P.-W.; Huang, Y.-C.; et al.
Long Term Surgical Outcome and Prognostic Factors of Atypical and Malignant Meningiomas. Sci. Rep. 2016, 6, 35743. [CrossRef]

6. Marosi, C.; Hassler, M.; Roessler, K.; Reni, M.; Sant, M.; Mazza, E.; Vecht, C. Meningioma. Crit. Rev. Oncol. Hematol. 2008, 67,
153–171. [CrossRef]

7. Sun, S.Q.; Hawasli, A.H.; Huang, J.; Chicoine, M.R.; Kim, A.H. An Evidence-Based Treatment Algorithm for the Management of
WHO Grade II and III Meningiomas. FOC 2015, 38, E3. [CrossRef]

8. Mukherjee, S.; Biswas, D.; Epari, S.; Shetty, P.; Moiyadi, A.; Ball, G.R.; Srivastava, S. Comprehensive Proteomic Analysis Reveals
Distinct Functional Modules Associated with Skull Base and Supratentorial Meningiomas and Perturbations in Collagen Pathway
Components. J. Proteom. 2021, 246, 104303. [CrossRef]

9. Suppiah, S.; Nassiri, F.; Bi, W.L.; Dunn, I.F.; Hanemann, C.O.; Horbinski, C.M.; Hashizume, R.; James, C.D.; Mawrin, C.;
Noushmehr, H.; et al. Molecular and Translational Advances in Meningiomas. Neuro-Oncology 2019, 21, i4–i17. [CrossRef]

10. Karsy, M.; Hoang, N.; Barth, T.; Burt, L.; Dunson, W.; Gillespie, D.L.; Jensen, R.L. Combined Hydroxyurea and Verapamil in the
Clinical Treatment of Refractory Meningioma: Human and Orthotopic Xenograft Studies. World Neurosurg. 2016, 86, 210–219.
[CrossRef]

11. Nassiri, F.; Tabatabai, G.; Aldape, K.; Zadeh, G. Challenges and Opportunities in Meningiomas: Recommendations from the
International Consortium on Meningiomas. Neuro-Oncology 2019, 21, i2–i3. [CrossRef]

12. Buerki, R.A.; Horbinski, C.M.; Kruser, T.; Horowitz, P.M.; James, C.D.; Lukas, R.V. An Overview of Meningiomas. Future Oncol.
2018, 14, 2161–2177. [CrossRef]

13. Burnett, B.A.; Womeldorff, M.R.; Jensen, R. Meningioma: Signaling Pathways and Tumor Growth. Handb. Clin. Neurol. 2020, 169,
137–150. [CrossRef] [PubMed]

14. Bi, W.L.; Zhang, M.; Wu, W.W.; Mei, Y.; Dunn, I.F. Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications.
Front. Surg. 2016, 3. [CrossRef] [PubMed]

15. Petrilli, A.M.; Fernández-Valle, C. Role of Merlin/NF2 Inactivation in Tumor Biology. Oncogene 2016, 35, 537–548. [CrossRef]
[PubMed]
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J.; et al. Community-Driven Data Analysis Training for Biology. Cell Syst. 2018, 6, 752–758.e1. [CrossRef] [PubMed]

52. Bickerton, G.R.; Paolini, G.V.; Besnard, J.; Muresan, S.; Hopkins, A.L. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2012,
4, 90–98. [CrossRef]

53. Ahmed, N. Management of High-Grade Meningioma: Present, Past and Promising Future. In Central Nervous System Tumors—
Primary and Secondary; Birol Sarica, F., Ed.; IntechOpen: London, UK, 2023; ISBN 978-1-80356-752-5.

54. Bailey, D.D.; Montgomery, E.Y.; Garzon-Muvdi, T. Metastatic High-Grade Meningioma: A Case Report and Review of Risk
Factors for Metastasis. Neuro-Oncol. Adv. 2023, 5, vdad014. [CrossRef]

55. Bi, W.L.; Greenwald, N.F.; Abedalthagafi, M.; Wala, J.; Gibson, W.J.; Agarwalla, P.K.; Horowitz, P.; Schumacher, S.E.; Esaulova, E.;
Mei, Y.; et al. Genomic Landscape of High-Grade Meningiomas. npj Genom. Med. 2017, 2, 15. [CrossRef]

56. Shrivastava, R.K.; Sen, C.; Costantino, P.D.; Della Rocca, R. Sphenoorbital Meningiomas: Surgical Limitations and Lessons
Learned in Their Long-Term Management. J. Neurosurg. 2005, 103, 491–497. [CrossRef] [PubMed]

57. Shaikh, N.; Dixit, K.; Raizer, J. Recent Advances in Managing/Understanding Meningioma. F1000Res 2018, 7, 490. [CrossRef]
[PubMed]

58. Maxwell, M.; Galanopoulos, T.; Tessa Hedley-Whyte, E.; Black, P.M.; Antoniades, H.N. Human Meningiomas Co-Express
Platelet-Derived Growth Factor (Pdgf) and Pdgf-Receptor Genes and Their Protein Products. Int. J. Cancer 1990, 46, 16–21.
[CrossRef] [PubMed]

59. Weisman, A.S.; Raguet, S.S.; Kelly, P.A. Characterization of the Epidermal Growth Factor Receptor in Human Meningioma. Cancer
Res. 1987, 47, 2172–2176.

60. Koul, D.; Shen, R.; Bergh, S.; Lu, Y.; De Groot, J.F.; Liu, T.J.; Mills, G.B.; Yung, W.K.A. Targeting Integrin-Linked Kinase Inhibits Akt
Signaling Pathways and Decreases Tumor Progression of Human Glioblastoma. Mol. Cancer Ther. 2005, 4, 1681–1688. [CrossRef]

61. Murphy, M.C.; Huston, J.; Glaser, K.J.; Manduca, A.; Meyer, F.B.; Lanzino, G.; Morris, J.M.; Felmlee, J.P.; Ehman, R.L. Preoperative
Assessment of Meningioma Stiffness by Magnetic Resonance Elastography. J. Neurosurg. 2013, 118, 643–648. [CrossRef]

62. Gatti, G.; Vilardo, L.; Musa, C.; Di Pietro, C.; Bonaventura, F.; Scavizzi, F.; Torcinaro, A.; Bucci, B.; Saporito, R.; Arisi, I.; et al. Role
of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines 2021, 9,
1343. [CrossRef]

63. Bordeleau, F.; Califano, J.P.; Negrón Abril, Y.L.; Mason, B.N.; LaValley, D.J.; Shin, S.J.; Weiss, R.S.; Reinhart-King, C.A. Tissue
Stiffness Regulates Serine/Arginine-Rich Protein-Mediated Splicing of the Extra Domain B-Fibronectin Isoform in Tumors. Proc.
Natl. Acad. Sci. USA 2015, 112, 8314–8319. [CrossRef]

64. Kafka, A. Epithelial-to-Mesenchymal Transition Possible Role in Meningiomas. Front. Biosci. 2012, E4, 889–896. [CrossRef]
65. Van Belle, K.; Herman, J.; Waer, M.; Sprangers, B.; Louat, T. OSU-T315 as an Interesting Lead Molecule for Novel B Cell-Specific

Therapeutics. J. Immunol. Res. 2018, 2018, 1–14. [CrossRef]

https://doi.org/10.1016/j.mcpro.2022.100478
https://doi.org/10.3389/fonc.2021.548243
https://doi.org/10.1089/omi.2022.0082
https://doi.org/10.1186/s12014-023-09426-9
https://doi.org/10.1021/acs.jproteome.2c00646
https://www.ncbi.nlm.nih.gov/pubmed/36731020
https://doi.org/10.1038/nprot.2016.136
https://www.ncbi.nlm.nih.gov/pubmed/27809316
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1016/j.molcel.2009.11.028
https://www.ncbi.nlm.nih.gov/pubmed/20005845
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1093/nar/gkv402
https://www.ncbi.nlm.nih.gov/pubmed/25925569
https://doi.org/10.1016/j.cels.2018.05.012
https://www.ncbi.nlm.nih.gov/pubmed/29953864
https://doi.org/10.1038/nchem.1243
https://doi.org/10.1093/noajnl/vdad014
https://doi.org/10.1038/s41525-017-0014-7
https://doi.org/10.3171/jns.2005.103.3.0491
https://www.ncbi.nlm.nih.gov/pubmed/16235682
https://doi.org/10.12688/f1000research.13674.1
https://www.ncbi.nlm.nih.gov/pubmed/29770198
https://doi.org/10.1002/ijc.2910460106
https://www.ncbi.nlm.nih.gov/pubmed/2163990
https://doi.org/10.1158/1535-7163.MCT-05-0258
https://doi.org/10.3171/2012.9.JNS12519
https://doi.org/10.3390/biomedicines9101343
https://doi.org/10.1073/pnas.1505421112
https://doi.org/10.2741/e427
https://doi.org/10.1155/2018/2505818


Cells 2023, 12, 2483 20 of 20

66. Edwards, L.A.; Woo, J.; Huxham, L.A.; Verreault, M.; Dragowska, W.H.; Chiu, G.; Rajput, A.; Kyle, A.H.; Kalra, J.; Yapp, D.; et al.
Suppression of VEGF Secretion and Changes in Glioblastoma Multiforme Microenvironment by Inhibition of Integrin-Linked
Kinase (ILK). Mol. Cancer Ther. 2008, 7, 59–70. [CrossRef] [PubMed]

67. Zimu, Z.; Jia, Z.; Xian, F.; Rui, M.; Yuting, R.; Yuan, W.; Tianhong, W.; Mian, M.; Yinlong, L.; Enfang, S. Decreased Expression of
PACSIN1 in Brain Glioma Samples Predicts Poor Prognosis. Front. Mol. Biosci. 2021, 8, 696072. [CrossRef]

68. Biswas, D.; Shenoy, S.V.; Chauhan, A.; Halder, A.; Ghosh, B.; Padhye, A.; Auromahima, S.; Yadav, D.; Sasmal, S.; Dutta, S.; et al.
BrainProt(TM) 3.0: Understanding Human Brain Diseases Using Comprehensively Curated & Integrated OMICS Datasets. bioRxiv
2023. [CrossRef]

69. Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho,
B.C.; et al. Efficacy of Selpercatinib in RET Fusion–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824.
[CrossRef] [PubMed]

70. Rizzo, A.; Ricci, A.D.; Brandi, G. Pemigatinib: Hot Topics behind the First Approval of a Targeted Therapy in Cholangiocarcinoma.
Cancer Treat. Res. Commun. 2021, 27, 100337. [CrossRef]

71. Salhotra, A.; Sandhu, K.; O’Hearn, J.; Ali, H.; Nakamura, R.; Modi, B.G. A Critical Review of Belumosudil in Adult and Pediatric
Patients with Chronic Graft-versus-Host Disease. Expert. Rev. Clin. Immunol. 2023, 19, 241–251. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/1535-7163.MCT-07-0329
https://www.ncbi.nlm.nih.gov/pubmed/18202010
https://doi.org/10.3389/fmolb.2021.696072
https://doi.org/10.1101/2023.06.21.545851
https://doi.org/10.1056/NEJMoa2005653
https://www.ncbi.nlm.nih.gov/pubmed/32846060
https://doi.org/10.1016/j.ctarc.2021.100337
https://doi.org/10.1080/1744666X.2023.2152330

	Introduction 
	Materials and Methods 
	Omic Data Mining, Literature Search, and Data Analysis 
	Pre-Processing, Normalization, and Statistical Data Analysis of Proteomic Datasets 
	Data Quality Check and Statistical Analysis of Transcriptomic Datasets 
	Protein–Protein Interaction Network (PPIN) and Pathway Enrichment Analysis 
	Sample Preparation for Targeted Proteomics Analysis 
	Transition List Preparation and Data Acquisition for Targeted Proteomics Analysis 
	Cell Culture, Stocks, and Doses of Inhibitor 
	Cell Proliferation Assay 
	Apoptosis Assay 
	Protein Extraction and Mass Spectrometry Data Acquisition 
	Label-Free Quantification and Biological Analysis of Cell Line Proteome Data 
	In Silico Drug Docking of Compounds Similar to Cpd22 as Well as FDA-Approved Drugs 

	Results 
	Integrated Omics Analysis of Meningioma Datasets 
	Pathway Mapping and Gene-Set Enrichment Analysis to Understand the Proteomic and Transcriptomic Alterations in High-Grade Meningioma 
	Validation of the Potential Common Markers Using MRM-based Targeted Proteomics 
	In Vitro Inhibition Using Cpd22 Reveals the Anti-Tumor Potential of the Pathway 
	Proteomic Alterations and Biological Pathway Perturbations Post-Treatment with an ILK Inhibitor in the Meningioma Cell Line 
	Screening of Compounds Using in Silico Docking for ILK 

	Discussion 
	References

