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Abstract: Antigen presentation by major histocompatibility complex class II (MHC-II) molecules
is crucial for eliciting an efficient immune response by CD4+ T cells and maintaining self-antigen
tolerance. Some MHC-II alleles are known to be positively or negatively associated with the risk
of the development of different autoimmune diseases (ADs), including those characterized by the
emergence of autoreactive T cells. Apparently, the MHC-II presentation of self-antigens contributes to
the autoimmune T cell response, initiated through a breakdown of central tolerance to self-antigens
in the thymus. The appearance of autoreactive T cell might be the result of (i) the unusual interaction
between T cell receptors (TCRs) and self-antigens presented on MHC-II; (ii) the posttranslational
modifications (PTMs) of self-antigens; (iii) direct loading of the self-antigen to classical MHC-II
without additional nonclassical MHC assistance; (iv) the proinflammatory environment effect on
MHC-II expression and antigen presentation; and (v) molecular mimicry between foreign and self-
antigens. The peculiarities of the processes involved in the MHC-II-mediated presentation may have
crucial importance in the elucidation of the mechanisms of triggering and developing ADs as well as
for clarification on the protective effect of MHC-II alleles that are negatively associated with ADs.

Keywords: autoimmune diseases; autoreactive T cells; human leukocyte antigen; major histocompat-
ibility complex; negative selection; central tolerance; thymus; antigen presentation

1. Introduction

The efficacy of the immune response, as well as the severity of the disease, is strongly
associated with the genetics of individual patients. One of the most important genetic
determinants specifying the predisposition to different diseases is the MHC locus. Recently,
the undoubted existence of genetic gateways was demonstrated for viral infections such
as SARS-CoV-2. In particular, distinct MHC-I and -II alleles increase the probability of
the severe clinical course of the infection [1–4]. The existing cohorts of so-called “disease
controllers” and “progressors” patients in HIV with confirmed genetic resistance to infec-
tion were evidently shown in numerous studies [5–7]. Summarizing, genome-encoded
MHC alleles are decision-makers in terms of the dynamics and amplitude of the immune
response, including autoimmune abnormalities.

A highly polymorphic MHC genomic region is linked with a broad variety of au-
toimmune pathologies, particularly characterized by the presence of autoreactive T cell
clones [8]. One of the triggers of this autoreactive T cell response might be the presentation
of self-antigens by MHC-II molecules in the periphery. One may say that autoimmune
diseases may be initiated directly by MHC molecules due to their structural features inde-
pendent of antigen presentation [9–11], but such speculations are beyond the scope of our
review.
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Processing of proteins captured outside the cell is the conventional method for gen-
erating antigenic peptides presented by MHC-II molecules on the cell surface. Structural
polymorphism of the binding groove pockets determines a broad range of peptide lig-
ands that can be presented by MHC-II molecules to CD4+ T cells. The repertoire of T
cells is formed via positive and negative selection occurring in the cortex and the thymic
medulla, respectively (Figure 1). Depending on T cell receptor (TCR) affinity or avidity to
the peptide–MHC-II complex (pMHC), T cells undergo elimination or differentiation into
the Treg or naïve CD4+ T cell lineage [12–14]. However, there are some additional factors
influencing the T cell differentiation pathway during central tolerance establishment and
potentially facilitating the appearance of autoreactive T cells: the topology of self-antigen
presentation [15], the topology of recognition of TCR within the pMHC complex [16], the
frequency of pMHC–TCR interaction [17], and costimulatory interactions [18]. Moreover,
the modifications of antigens and the cytokine milieu might affect the presentation of
antigenic fragments in the periphery and thus enhance the development of autoreactive T
cells.
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mus to undergo negative selection. As they interact with APCs (medulla thymic epithelial cells 
(mTECs), migratory or resident DCs, and B cells), CD4+ T cells become CD4+ naïve T cells or T reg-
ulatory cells (Tregs) and leave the thymus. Negative selection is schematically shown only for SP 
CD4+ T cells. 

Extensive genotypic medical statistics indicate that certain MHC-II alleles are associ-
ated, either positively or negatively, with definite autoimmune diseases (ADs). The HLA-
DRB1*01:01 (DR1) and 04:01 (DR4) alleles are positively associated with rheumatoid ar-
thritis (RA) [19]. HLA-DRB1*15:01 (DR15) is the risk allele for multiple sclerosis (MS) [20] 
and Goodpasture syndrome [21], while HLA-DRB1*01:01 is protective against these two 
diseases [22–24]. The HLA-DQA1*05:01/DQB1*02:01 (DQ2.5) and HLA-
DQA1*03:01/DQB1*03:02 (DQ8.1) alleles are positively associated with type 1 diabetes 
(T1D), while the HLA-DQA1*01:02/DQB1*06:02 (DQ6.2) allele is negatively associated 

Figure 1. Stages of T cell selection during the establishment of central tolerance. T cell precursor
double-negative (DN) T cells enter the cortex of the thymus through a blood vessel to undergo
positive selection. Due to the interaction between antigen-presenting cells (APCs) present on cortical
thymic epithelial cells (cTECs) and migratory dendritic cells (DCs), double-positive (DP) T cells are
differentiated into CD4+ or CD8+ single-positive (SP) T cells and migrate to the medulla of the thymus
to undergo negative selection. As they interact with APCs (medulla thymic epithelial cells (mTECs),
migratory or resident DCs, and B cells), CD4+ T cells become CD4+ naïve T cells or T regulatory cells
(Tregs) and leave the thymus. Negative selection is schematically shown only for SP CD4+ T cells.

Extensive genotypic medical statistics indicate that certain MHC-II alleles are asso-
ciated, either positively or negatively, with definite autoimmune diseases (ADs). The
HLA-DRB1*01:01 (DR1) and 04:01 (DR4) alleles are positively associated with rheuma-
toid arthritis (RA) [19]. HLA-DRB1*15:01 (DR15) is the risk allele for multiple scle-
rosis (MS) [20] and Goodpasture syndrome [21], while HLA-DRB1*01:01 is protective
against these two diseases [22–24]. The HLA-DQA1*05:01/DQB1*02:01 (DQ2.5) and HLA-
DQA1*03:01/DQB1*03:02 (DQ8.1) alleles are positively associated with type 1 diabetes
(T1D), while the HLA-DQA1*01:02/DQB1*06:02 (DQ6.2) allele is negatively associated
with this disease [25–27]. Although a significant body of MHC-II association data has
been accumulated, the correlation between such associations and autoreactive T cell re-
sponse development has not yet been completely studied. Here, we attempt to establish
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several scenarios causing the emergence or lack of autoreactive T cells due to the pMHC
engagement.

2. MHC-II Presentation of Low-Affinity Self-Antigens

MHC-II molecules are synthesized in the endoplasmic reticulum (ER); the peptide-
binding groove is occupied by the invariant chain Ii (CD74 fragment) to prevent degrada-
tion and premature binding of self-antigens by the complex. As they migrate to the late
endosomal compartments with an acidic environment, proteolytic enzymes shorten the
invariant chain to a shorter class II-associated invariant chain peptide (CLIP) [28]. Protein
antigens are proteolytically processed in endosomes as well (Figure 2). The peptide-binding
groove of an MHC class II molecule has nine pockets that can accommodate certain amino
acid residues of the peptide, typically stabilized by noncovalent bonds [29]. The P1, P4, P6,
and P9 anchor residues interact with the groove of MHC-II, thus forming a binding register,
while the remaining residues of the peptide are oriented in the opposite direction for TCR
binding. Presumably, if there is a shift in the binding register between antigenic peptides
and MHC molecules, the pMHC complex can interact with an entirely different TCR.
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antigenic peptides [48,49]. Rapid dissociation of CLIP enables the generation of empty 
complexes without DM involvement, which may potentially bind low-affinity antigenic 
peptides. Due to the spontaneous release of CLIP, low-affinity antigenic peptides are able 
to bind MHC-II in early endosomes without DM assistance or directly on the cell surface. 
Therefore, pMHC complexes on the APC surface at the periphery can activate TCRs that 
have not undergone negative selection due to the low abundance of this pMHC in the 
thymus. For MS patients, there was detected an immune response to full-length MS auto-
antigen proteolipid protein (PLP), naturally processed by APCs, with 2 immunodominant 

Figure 2. MHC-II maturation and antigenic peptide loading. MHC-II molecules are synthesized in
the endoplasmic reticulum (ER) and loaded with an invariant chain (Ii). The MHC-II complex with
Ii is transported through the Golgi to the late endosome. Endosomal proteases process antigens to
short peptides and Ii to shorter class II-associated invariant chain peptide (CLIP). The binding of a
nonclassical HLA-DM (DM) molecule to MHC-II promotes CLIP exchange to the antigenic peptide
with an optimal binding register. The formed pMHC complex is transported to the surface of the
APC for CD4+ T cell recognition.

The nonclassical MHC molecules HLA-DM (DM) and HLA-DO (DO) in humans and
H2-DM and H2-DO in mice play an important role in exchanging CLIP for endosomal
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antigens [30]. By interacting with MHC-II, DM has the “editing” function: it ensures the
binding of peptides with higher affinity for the MHC molecule compared with CLIP, as
well as increases the loading/dissociation rate of the antigen, but it causes no effect on the
equilibrium affinity [31,32]. Apparently, DM facilitates the presentation of antigen epitopes
with the optimal binding register on MHC-II [33,34]. DO also performs an editing action,
interacting with DM and regulating its catalytic function by preventing its binding to
MHC-II [35]. Comparing MHC-II immunopeptidomes from two cell lines, DO knockout or
not, it was shown that only the DR1+, DM+, and DO+ lymphoblastoid cell lines presented
specific antigens on MHC-II [36]. Thus, DO contributes to the diversification of the MHC-
II-presented antigenic repertoire. In experiments with DM-knockout mice, CLIP was not
efficiently exchanged with other peptides, thus limiting the MHC-II antigen diversity and
causing incomplete negative selection of CD4+ T cells in the thymus [37]. The repertoire of
antigens presented by MHC-II can vary significantly depending on the DM/DO ratio in
the cell [38]. Presumably, DM “editing” decreases the number of antigens, characterized
by a low affinity for MHC-II, on the antigen-presenting cell (APC) surface, as was shown
for DQ1 and DQ6 [39], as well as for DR3 alleles [31]. Analysis of the immunopeptidome
of thymic APCs revealed that most antigens detected on MHC-II have a high affinity for
MHC-II molecules [40,41]. Most likely, the effect of nonclassical MHC molecules is one
of the important factors ensuring the highly competitive conditions for MHC-II ligand
binding, which eventually results in the presentation of higher-affinity antigens.

It should be emphasized that the presentation of preferentially high-affinity antigens
in the thymus may have its own shortcomings. It has been demonstrated that the MHC-II-
presented antigen repertoire from tissues affected by autoimmune processes mostly consists
of low-affinity peptides [42,43]. The abundance of self-antigens increases in peripheral
tissues (e.g., myelin basic protein (MBP) in the central nervous system (CNS) [44–46] and
insulin in the pancreas [47]). These protein self-antigens can be processed in the extracel-
lular environment outside APCs. Next, the resulting antigenic fragments, characterized
by a low affinity for MHC-II molecules, can be loaded directly on the APC surface or can
enter early endosomes with low DM levels, thus escaping DM editing, and as a result,
can be presented on the cell surface (Figure 3A,B). Certain MHC-II risk alleles bind CLIP
with diminished affinity, which additionally promotes the binding of low-affinity antigenic
peptides [48,49]. Rapid dissociation of CLIP enables the generation of empty complexes
without DM involvement, which may potentially bind low-affinity antigenic peptides. Due
to the spontaneous release of CLIP, low-affinity antigenic peptides are able to bind MHC-II
in early endosomes without DM assistance or directly on the cell surface. Therefore, pMHC
complexes on the APC surface at the periphery can activate TCRs that have not under-
gone negative selection due to the low abundance of this pMHC in the thymus. For MS
patients, there was detected an immune response to full-length MS autoantigen proteolipid
protein (PLP), naturally processed by APCs, with 2 immunodominant epitopes generation.
Alternatively, the T cell response to several PLP synthetic fragments with high affinity
to MS-associated MHC-II alleles was also observed after additional T cell stimulation by
these peptides [50]. Since these fragments are normally hidden in a protein fold and are
inaccessible for the endosomal proteases, the T cell activation seems to be the result of extra-
cellular PLP processing and loading on MHC-II. Thus, the classical intracellular processing
of antigen involves its capture by the APC with proteolytic processing and generation of
fragments with optimal binding registers with the participation of HLA-DM in late endo-
somes, followed by subsequent exposure of pMHCs on the APC surface. These pMHCs
take part in the negative selection process in the thymus, induce T cell clonal deletion and,
after all, no autoreactive T cell response is observed at the periphery. Since pMHCs with
“suboptimal” fragments were present in the thymus at low levels, autoreactive T cells might
engage them at the periphery due to the failure of negative selection in the thymus.
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self-antigen fragments can be loaded on MHC-II molecules in early endosomes or on the surface of 
APCs without the recruitment of DM. The absence of DM editing allows the emergence of either 
stable or unstable pMHC complexes. The pMHCs, containing high-affinity fragments, do not elicit 
a T cell response due to the deletion of autoreactive T cells in the thymus. Unstable complexes with 
low-affinity fragments can bind autoreactive T cells since such T cells are not susceptible to clonal 
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Figure 3. The role of a nonclassical DM molecule in the editing of the self-antigen repertoire presented
by MHC-II. (A) In a thymic APC, the self-antigen is processed through a classical pathway under
exposure to cellular proteolytic enzymes. Next, CLIP is exchanged to the high-affinity fragment
in late endosomes under DM control. The stable pMHC complex is then transferred to the APC
surface, where the T cells specific to this pMHC undergo clonal deletion. (B) If an excessive amount of
certain self-antigens, processed outside APCs, is present in peripheral tissues, then these self-antigen
fragments can be loaded on MHC-II molecules in early endosomes or on the surface of APCs without
the recruitment of DM. The absence of DM editing allows the emergence of either stable or unstable
pMHC complexes. The pMHCs, containing high-affinity fragments, do not elicit a T cell response due
to the deletion of autoreactive T cells in the thymus. Unstable complexes with low-affinity fragments
can bind autoreactive T cells since such T cells are not susceptible to clonal deletion.

Furthermore, a single antigen fragment can have several MHC-II binding registers. As
T1D develops in non-obese diabetic (NOD) mice (the mouse model of T1D), autoreactive T
cells recognize insulin (Ins. B:9–23) fragments presented on the product of diabetogenic
allele I-Ag7 [51,52]. The Ins. B:9–23 peptide has several binding registers in the context
of I-Ag7. The antigen with binding register 12–20 is characterized by low affinity and an
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increased dissociation rate in the presence of DM, while fragment 13–21 forms a more
stable complex with I-Ag7, which is almost insusceptible to DM editing. Immunization with
antigen fragments 12–20 elicits an autoreactive T cell response, while immunization with
antigen fragments 13–21 causes no response [53]. Presumably, the autoreactive TCR, specific
to the antigen fragment 13–21, undergoes negative selection in the thymus, while the TCR,
interacting with the antigen fragment 12–20, escapes the central tolerance mechanisms
due to the potentially low abundance of the pMHC complex on the medullary APCs.
Additionally, multiple autoreactive insulin-specific T cells were reported to recognize Ins.
B:9–23 bound to I-Ag7 in a low-affinity register 3 (Ins. B:14–22). The Ins. B:9–23 bound to
I-Ag7 activates diabetogenic CD4+ T cells and binds insulin-specific pancreatic T cells from
NOD mice [54,55]. Thus, peptides may bind MHC-II molecules in low-affinity register
in early endosomes or on the cell surface in the absence of DM due to the abundance of
certain antigens in the autoimmunity-affected peripheral sites. Derived pMHC complexes
engage autoreactive T cells escaping negative selection owing to the underrepresentation
of unstable pMHCs in the thymus. Human DQ8 shares structural similarities with mouse
I-Ag7. The Ins. B:11–23 binds DQ8 with a low affinity and engages autoreactive peripheral
blood CD4+ T cells of subjects with T1D [56].

Concluding, nonclassical MHC molecules help to present the most high-affinity anti-
gens with the optimal binding register by MHC-II on thymic APCs. Nevertheless, when
there is an excess of a certain self-antigen in peripheral tissues, its presentation on MHC-II
molecules can occur without DM editing, allowing the presentation of low-affinity self-
antigen fragments on the surface of APCs. The pMHC complexes loaded by low-affinity
antigens are unstable and have a short lifespan; however, if their abundance on the surface
of APCs is sufficiently high, they can potentially activate T cells, because the strength of the
autoreactive T cell response is not directly correlated with antigen affinity to MHC-II [57].

3. The Peculiarities of the Interaction between TCRs and Self-pMHC Complexes:
Links with Autoimmunity

Generally, CD4+ T cell TCRs recognize foreign antigens within MHC-II molecules [58–60]
with CD4 receptors playing the key role in the induction of the T cell signaling cascade [61–63].
The analysis of trimolecular complexes between TCRs, MHC-II, and exogenous antigens
has revealed some structural similarity in the TCR binding topology [64]. The TCR is
arranged diagonally with respect to the antigen residing in the peptide-binding groove
limited by α-helices. The variable regions of α and β TCR chains interact with the β and
α chains of the MHC-II molecule, respectively [65]. The most structurally diverse CDR3
fragments of α and β TCR chains are located above the P5 residue of the bound peptide,
while the CDR1 and CDR2 fragments interact with the α-helices of MHC-II molecules. The
binding of TCR HA1.7 to the fragment of hemagglutinin HA protein within DR1 is an
example of canonical interaction [66].

It was shown that, by contrast with TCRs binding bacterial or viral antigens on MHC-
II, some autoreactive TCRs have an alternative binding topology. Thus, the TCR from an
MS patient (Ob.1A12) specific for the fragment of myelin basic protein (MBP), which is
presented on the HLA-DR2b risk allele molecule, interacts mainly with the N-terminus of
the MBP fragment [16]. Furthermore, this TCR does not reside in the canonical diagonal
position: its orientation angle is 110◦, as opposed to 70◦ for HA1.7. The main interaction
with the pMHC complex occurs due to the binding of the CDR3 region of TCR with the
P2 residue of the MBP peptide fragment. Other TCRs, Ob.2F3 and Ob.3D1, obtained
from the same donor with MS, also have an alternative binding topology, as examined
using computational simulation [67]. Another TCR, 3A6, binds the MBP fragment in the
complex with different DR15 allomorph DR2a, which is positively associated with the risk
of developing MS. The 3A6 also has a suboptimal topology and low affinity for pMHC,
similar to other autoreactive TCRs [68]. Its CDRs are shifted toward the N-terminus of the
antigen, and CDR3 is also located above P2 of the MBP fragment. Nevertheless, similar to
HA1.7, 3A6 binds diagonally with respect to pMHC. Therefore, Ob.1A12 and 3A6 have low
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affinity for pMHC, and their binding topology is alternate to anti-viral and anti-bacterial
TCRs, which may potentially facilitate the escape from negative selection mechanisms in the
thymus. Low-affinity TCRs were also reported in the pathogenesis of T1D. The repertoire
of the autoreactive T cells, infiltrating pancreatic islets, exhibited low self-reactivity and
promoted the development of T1D [69]. Presumably, the interaction between these T1D
TCRs and self-antigen-carrying pMHCs is also characterized by alternate topology. The
MBP fragment presented by DQ1 is recognized by the Hy.1B11 TCR with relatively high
affinity [70]. These TCRs have canonical localization but are significantly shifted with
respect to the DQ1α chain so that their interaction with the antigen is substantially limited.
Only the CDR3 region of the Hy.1B11α chain contacts the MBP fragment. Presumably, the
unusual topology of autoreactive TCRs binding to pMHC impedes activation by the CD4
molecule and, therefore, clonal deletion of T cells at the negative selection stage. This may
explain the existence of T cells with similar TCRs (such as Hy.1B11) in the periphery [71].
The unusual topology of the trimolecular complex often implies the participation of a low-
affinity TCR. However, autoimmune TCRs with a high affinity for pMHCs have also been
reported. It is known that DQ molecules have a lower expression level than DR molecules.
Therefore, appropriate autoreactive TCRs might require higher affinities for DQ pMHC
complexes to overcome clonal deletion in the thymus [70]. Another possible explanation
of high-affinity autoreactive TCR emergence at the periphery is that the autoantigenic
fragment may be a weak binder in the pMHC complex. As previously discussed, pMHC
carrying low-affinity peptides allows T cells to escape negative selection. Nevertheless,
they can further bind autoreactive TCRs at the periphery. Interestingly, the weak interaction
between the MBP fragment and the product of the risk allele DR4 is stabilized by the MS2-
3C8 TCR involved in canonical high-affinity interaction with pMHC [72]. The structures
of the trimolecular complexes of three autoreactive TCRs in model mice with experimental
autoimmune encephalomyelitis (EAE), which bind the MBP fragment in complex with I-Au,
have revealed canonical binding. However, the interaction between the MBP antigen and
the I-Au molecule is characterized by low affinity due to partial occupation of the peptide-
binding cleft [73–75]. The affinities of self-peptides for MHC-II molecules of risk alleles and
autoreactive TCRs for pMHC complexes of risk alleles are summarized in Table 1.

Table 1. Autoantigens and autoimmune TCRs in autoimmune diseases.

AD Species MHC-II Allele Antigenic Peptide Proposed Molecular Mechanisms of AD Susceptibility Reference

Low-affinity autoantigenic peptides

T1D Mouse I-Ag7 Ins. B:12–20, Ins.
B:13–21

Weak binding of CLIP by MHC-II molecule promotes
loading of low-affinity peptides. [48]

T1D Mouse I-Ag7 Ins. B:12–20, Ins.
B:14–22

MHC-II binding of antigenic peptide in a low-affinity
register leads to recognition by autoreactive TCRs. [52–55]

T1D Human HLA-DQA1*03:01,
HLA-DQB1*03:02 Ins. B:11–23 MHC-II binding of antigenic peptide in a low-affinity

register leads to recognition by autoreactive TCRs. [56]

Low-affinity autoreactive TCRs

MS Human HLA-DRB1*15:01 MBP:85–99 Autoreactive TCRs bind pMHC complexes with low
affinity and alternate topology.

[16,67]

MS Human HLA-DRB5*01:01 MBP:84–102 [68]

High or intermediate affinity autoreactive TCRs

MS Human HLA-DQA1*01:02,
HLA-DQB1*05:02 MBP:85–99 The unusual topology of trimolecular complex impedes T

cell activation by CD4 receptor. [70]

MS Human HLA-DRB1*04:01 MBP:111–129 Autoreactive TCR stabilizes weak interaction between
antigenic peptide and MHC-II. [72]

EAE Mouse I-Au MBP:1–11
(acetylated)

Autoreactive TCRs bind pMHC complexes with acetylated
autoantigens in unusual binding register, where the part of

peptide-binding groove is empty.
[73–75]

Abbreviations: AD, autoimmune disease; T1D, type 1 diabetes; Ins, insulin; CLIP, class II-associated invariant chain
peptide; MS, multiple sclerosis; MBP, myelin basic protein; TCR, T cell receptor; EAE, experimental autoimmune
encephalomyelitis.
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4. The Effect of MHC-II-Presented Self-Antigen Modifications on Autoreactive
TCR Recognition

Antigens processed for further presentation by MHC-II molecules can undergo various
posttranslational modifications (PTMs), including glycosylation, iodination, citrullination,
etc. (Figure 4). PTMs can either occur spontaneously or be induced by various enzymes.
Autoreactive T cell responses to modified self-antigens have been observed for many ADs.
Supposedly, the modified antigens (neoantigens) are either totally not present in the thymus
or their quantity is extremely low. These modifications presumably take place in peripheral
tissues and are absent when the antigen is presented by mTEC cells in the thymus, which
has been demonstrated for glycosylated type II collagen for the development of RA [76].
Although modified antigens are available in the thymus due to the presence of migratory
APCs, their quantity is probably insufficient for negative T cell selection in the thymus.
Thus, thyroglobulin, which is the autoantigen in patients with Hashimoto’s thyroiditis,
is present in the thymus in its nonmodified form, whereas the level of its iodinated form,
which seems to initiate the autoreactive T cell response, is extremely low in the thymus and
is insufficient for central tolerance to be established [77].
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Similar self-antigen with posttranslational modifications (iodination, acetylation, glycosylation,
citrullination, generation of hybrid peptides, etc.) exhibiting increased affinity for MHC-II molecules,
can appear in peripheral tissues. The resulting pMHC complexes can bind autoreactive T cells that
have not undergone negative selection in the thymus.

Citrullination of antigens is described for a number of ADs, especially for RA; the
positive charge of arginine is lost due to the conversion to citrulline, which ultimately alters
the epitope affinity to MHC-II and TCR [78]. The products of risk MHC-II alleles for RA
carry a consensus amino acid sequence in the antigen-binding groove, forming a positively
charged P4 pocket–shared epitope (SE), which binds the polar amino acid residues of
peptides at the P4 position (e.g., citrulline) and induces the activation of autoreactive T
cells [79,80]. In addition to hosting a polar-neutral citrulline residue, SE can itself serve as
the main contact zone for autoreactive TCRs and represent citrullinated fragments of the
fibrinogen autoantigen that directly interact with autoreactive TCRs via the P2-citrulline
residue [81]. Autoreactive T cells specific for citrullinated tenascin-C antigenic peptides,
presented by DR4 molecules, were revealed in RA patients [82]. Additionally, glycosy-
lation was reported to be responsible for the pathogenesis of RA. Analysis of the crystal
structure of the trimolecular complex of an autoreactive TCR and type II collagen (Col2)
neoantigen presented on DR4 has shown that lysine residues subjected to galactosylation
are the key sites for TCR recognition [83]. Furthermore, the autoreactive T cell response
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is dependent on the galactosylation of lysine in the Col2259–273 fragment at position 264.
Modified autoantigenic peptides also participate in T1D development. Several citrullinated
and transglutaminated GAD65 epitopes are recognized by autoreactive CD4+ T cells in T1D
preferentially to their unmodified form [84]. Autoreactive T cells specific for citrullinated
glucokinase epitopes are linked to T1D pathogenesis [85]. Another example of the modified
antigens impacting the pathogenesis of T1D is the generation of a disulfide bond. T cells
recognize insulin fragments presented on DR4 molecules in T1D upon the assembly of a
disulfide bridge between neighboring cysteine residues [86]. The citrullinated fragments
of MBP and myelin oligodendrocyte glycoprotein (MOG) cause EAE due to the activa-
tion of autoreactive T cells [87–89]. In EAE, acetylation of the MBP fragment elicits an
encephalitogenic T cell response [73–75].

Hybrid insulin peptides (HIPs) are identified as neoantigens involved in the pathogen-
esis of T1D [90]. HIPs are formed via a peptide bond formation between insulin fragments
and other secretory granule peptides. Mass spectrometry analysis of pancreatic islets
revealed the presence of HIPs in humans and mice [91]. The risk MHC-II molecules are
reported to present various HIPs. The HIPs formed by proinsulin C-peptide and chromo-
granin A or islet amyloid polypeptide 2 (IAPP2) were present on I-Ag7 molecules in the
NOD mouse pancreas and recognized by pathogenic T cells [92]. Autoreactive T cells are
able to recognize HIPs in the context of DQ2 and/or DQ8 and produce proinflammatory
cytokines during the development of T1D [93,94]. The fusion of proinsulin C peptide
and neuropeptide Y presented by DQ8+ and DR4+ B cells elicits an autoreactive T cell
response in T1D [95]. DR4 presents different HIPs and is recognized by effector memory T
cells [96]. The structures of trimolecular complexes of hybrid antigens formed by C-peptide
and IAPP2, which are presented on DQ8, have revealed that the TCRα chain interacts
exclusively with the C-peptide, while the TCR β chain interacts with IAPP2 only [97].

Multiple antigens with PTMs existing at the periphery cannot be inefficiently presented
on thymic APCs, which results in the abrogation of autoreactive T cell clonal deletion.
Concluding, PTM-modified antigens can be responsible for the induction of autoreactive T
cells and for developing autoimmunity.

5. The Effect of the Proinflammatory Environment on MHC-II Antigen Presentation
and Autoreactive T Cell Engagement

The generation and expansion of pathological T cells may be attributed to the increase
in MHC-II expression levels due to the proinflammatory environment induced by viral or
bacterial infections. The impacts of viral and bacterial infections on antigen presentation
are the proposed triggers of pathological CD4+ T cell expansion in ADs such as MS and
T1D [98–102]. Earlier, a proinflammatory environment was implicated in TCR-independent
bystander activation in different ADs [103,104]. Proinflammatory cytokine release and
bacterial antigen presence trigger the elevated synthesis of MHC-II molecules to maximize
the presentation of foreign antigens for an efficient CD4+ T cell response. High IFN-γ
levels increase the number of MHC-II molecules on professional and nonprofessional APCs,
thereby altering the composition of the MHC peptidome in the inflammatory area [105].
Additionally, APCs, activated in pathogenic conditions, express an increased number
of costimulatory molecules [106,107]. Therefore, rare self-antigen pMHC, which cannot
induce an autoreactive T cell response under normal conditions, might engage autoreactive
TCRs in a proinflammatory environment (Figure 5). Concluding, cytokines induced by the
inflammatory environment may potentially activate antigen-specific autoreactive T cells.
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Figure 5. The development of autoreactive CD4+ T cells in a proinflammatory environment. The
proinflammatory environment caused by viral or bacterial infection entails IFN-γ production, which
results in increased MHC-II and costimulatory molecule expression compared to normal conditions.
Therefore, rare self-antigens are present in a greater number, which can lead to the potential activation
of autoreactive T cells.

A correlation between the inflammatory milieu and elevated MHC-II levels has been
observed for several ADs. It was shown that MHC-II transcripts were upregulated by
proinflammatory cytokine expression in β-cells of T1D patients [108,109]. IFN-γ induces
the expression of I-Ag7 molecules on beta cells of NOD mice, leading to the emergence of
CD4+ autoreactive T cells and the promotion of T1D [110]. In addition, IFN-γ promotes
the expression of MHC-II on islet endothelial cells in NOD mice [111]. The transcription
factors responsible for the expression of MHC-II are elevated in MS lesions of human
brain tissue [112]. Aberrant MHC-II expression was also found on oligodendrocytes
in EAE mice and MS patients [113]. The expression of MHC-II in mouse joints led to
the development of severe erosive inflammatory polyarthritis [114]. Additionally, the
inflammatory environment promotes the expression of MHC-II molecules on hepatocytes
during autoimmune hepatitis and pMHC transfer via trogocytosis to interacting CD4+ T
cells, which further amplifies the autoimmune response [115].

The onset of autoimmunity often coincides with exposure to viral and bacterial infec-
tions. The T1D progression is probably linked with Coxsackievirus B, rotavirus, and other
viruses [116–118]. MS development correlates with several infections, such as Epstein–
Barr virus (EBV) and herpesvirus-6 [119–121]. The proinflammatory cytokines, potentially
induced by infections, may reshape the repertoire of antigens presented on MHC-II in
inflammation-affected sites. As previously discussed, some autoreactive T cells are char-
acterized by altered binding topology to the cognate pMHCs, which results in inefficient
clonal deletion of autoreactive T cells in the thymus. Therefore, autoreactive T cells mildly
engaging with pMHCs under homeostatic conditions might develop an autoimmune re-
sponse under inflammatory conditions due to the general expansion of pMHCs in the
inflamed area.

6. Molecular Mimicry between Self- and Foreign MHC-II Antigens May Lead to T
Cell-Mediated Autoimmunity

Molecular mimicry refers to a structural similarity between self and exogenous anti-
gens and potentially leads to autoimmunity [122–124]. The structural resemblance of
antigens might result in the occasional misactivation of T cells (Figure 6). Autoreactive
T cells from MS patients specific for MBP can cross-react with EBV nuclear antigen 1
(EBVNA1) [125,126]. Apparently, the virus-specific TCR was able to bind structurally
similar self-antigen fragments presented on MHC-II and initiate an autoreactive T cell
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response. The probability of MS development is significantly increased when EBV infection
is combined with the MHC-II risk allele HLA-DRB1*15:01. It was shown that CD4+ T cells
specific for DR15-presented EBV antigens could cross-react with MBP [127].
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Figure 6. The expansion of autoreactive CD4+ T cells due to the molecular mimicry between foreign
and self-antigens. The presentation of viral or bacterial antigenic peptides on MHC-II molecules,
structurally similar to self-antigens, may result in the expansion of CD4+ T cells, specific to exogenous
pMHC. Expanded CD4+ T cells, specific for foreign peptides, can bind the self-antigen pMHC, which
results in the development of autoimmunity.

Narcolepsy is a rare autoimmune chronic neurological disorder positively associated
with the HLA-DQB1*06:02 allele and characterized by targeting hypocretin neurons [128].
Cross-reactive T cells for hypocretin autoantigen (HCRTNH2) and flu HA (H1N1 2009
strain) antigens were shown to influence narcolepsy development [129]. T cell cross-
reactivity between viral epitope neuraminidase (NA175–189) and self-epitope protein-O-
mannosyltransferase 1 (POMT1675–689) is also involved in narcolepsy pathogenesis [130].

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is an au-
toimmune disease targeting myeloperoxidase (MPO). Autoreactive T cells specific for the
MPO409–428 cross-react with the 6PGD391–410 epitopes from Staphylococcus aureus [131]. Ex-
ogenous/self MHC-II antigen mimicry was also noted between streptococcal M protein
and human cardiac myosin in the pathogenesis of rheumatic heart disease [132]. A bacterial
L-asparaginase antigen fragment (L-ASNase67-81), mimicking a type II collagen epitope,
may be presented on DR4 and elicits a CD4+ T cell response in blood samples of RA
patients [133].

The gut microbiome potentially influences the development of various autoimmune
pathologies [134,135]. It was shown that carrying certain risk or protective MHC-II alle-
les correlates with the composition of the gut microbiome in patients with AD [136–138].
Supposedly, distinct foreign antigenic peptides structurally similar to self-epitopes might
cross-react with pathological T cells. Peptides from Lactobacillus reuteri mimic MOG anti-
genic fragments and elicit autoreactive T cell responses in an EAE model [139]. The DR53
(HLA-DRB4*01:03) molecule, presenting epitopes from Roseburia intestinalis, may bind
beta-2 glycoprotein I (b2GPI) antigenic peptide and activate autoreactive T cells in antiphos-
pholipid syndrome [140]. The antigenic peptide hprt4-18 from gut bacteria Parabacteroides
distasonis, which is structurally similar to the fragment insulin B:9–23, activates human and
NOD mouse insulin-specific T cells ex vivo [141,142].

Summarizing, bacterial and viral infections or gut microbiota composition seem to be
the possible triggers of AD development through the mechanism of molecular mimicry,
involving the recognition of structurally similar exogenous and endogenous antigenic
fragments presented by MHC-II by CD4+ T cells.
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7. The Role of Protective MHC-II Alleles in the Development of
Autoimmune Diseases

Certain MHC alleles provide so-called “protection” toward the development of
immune-related diseases due to peculiarities of antigen presentation, which affect the
engagement of T cells [143,144]. “Protective” allele means that the risk of AD initiation
in individuals carrying this allele is statistically lower than that for healthy donors, repre-
senting the average population [145–148]. Interestingly, the protein products of MHC-II
protective alleles often differ from the products of risk alleles only by several amino acid
residues localized in the TCR contact sites or near the key positions of the peptide-binding
groove [149]. Supposedly, the protective effect can be ensured due to the deletion of
autoreactive T cells in the thymus and/or induction of Treg cells (Figure 7A).

The expression of the I-E protective allele in NOD mice normally having the H-2g7

haplotype seems to prevent the development of T1D [150]. The protective effect of the
I-E allele is reasoned by the deletion of autoreactive T cells [151]. Autoreactive TCR (4.1
TCR), expressed in transgenic NOD mice, undergoes negative selection in mice with the
H-2g7/b, H-2g7/k, H-2g7/q, and H-2g7/nb1 haplotypes due to interaction with the products
of protective MHC-II alleles [152]. Nevertheless, some studies cast doubt on the theory of
deletion of autoreactive T cell clones as the only explanation for the protectivity of distinct
MHC-II alleles in the development of ADs [153,154]. ADs are often characterized by a
broadened repertoire of autoreactive T cells; therefore, protection against the development
of autoimmune pathology cannot be solely attributed to the negative selection of a limited
number of clones.

Tregs play a crucial role in maintaining peripheral tolerance and preventing ADs
and tissue damage by controlling T cell expansion [155,156]. Supposedly, Tregs attenuate
the immune response by engaging pMHCs encoded by protective alleles. However, the
exact molecular mechanisms, involved in the interaction between Treg TCRs and the
protective allele pMHC are still enigmatic. DR15 risk and DR1 protective molecules in
Goodpasture syndrome present the α3 chain of type IV collagen (α3135–145) antigen with
different binding registers [21]. Autoreactive T cells bound this self-antigen pMHC in
DR15-positive patients with Goodpasture syndrome, and immunization with this antigen
in DR15 humanized transgenic mice led to the development of the model disease. On
the other hand, DR1 presenting α3135–145 interacts with Tregs in healthy donors. The
DR1 humanized transgenic mice were similarly characterized by Treg differentiation and
resistance to disease development. Presumably, changes in the register of antigen binding
to the MHC-II molecules alter the antigen’s amino acid binding pattern, engaging TCR,
which results in the predetermination of the phenotype of bound T cells.

Tregs may also play a role in the protection toward T1D development [157]. The
protective (DQ6) T1D MHC-II molecules prevent the binding of islet-specific antigens
to predisposing (DQ8) MHC-II molecules by engaging epitopes in different binding reg-
isters [158]. The proposed “epitope stealing” mechanism mediated by DQ6 molecules
prevents the development of an autoreactive T cell response in T1D, elicited by autoantigen
presentation on DQ8 molecules. It is possible that the antigenic peptides, presented by
DQ6, promote the selection of Tregs in the thymus, which subsequently attenuates T1D
development at peripheral sites. Healthy donors with the DR15/DQ6 haplotype had a
higher level of T1D self-antigen-specific Tregs compared to those carrying neutral or risk
MHC-II alleles [27]. Protective MHC-II alleles are also involved in the shaping of the gut
microbial community and differentiation of Tregs. NOD mice, expressing the protective
MHC-II Eα gene, do not develop T1D due to the change in gut microbiome composition
and increased Treg proportions in the cecum [137].
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Figure 7. The role of protective MHC-II molecules in the suppression of autoreactive T cell develop-
ment. (A) Recognition of the self-antigen presented on the product of the protective allele by CD4+ T
cell results in negative selection or Treg development in the thymus. (B) The slow loading rate of
self-antigen on the MHC-II molecule of the protective allele results in the failure of pMHC complex
assembly on the surface of thymic or peripheral APCs.

Some studies revealed that autoreactive T cells can bind a number of antidiabetogenic
MHC-II molecules, but differentiation into Tregs occurs due to engaging pMHCs of pro-
tective alleles exclusively [159,160]. The interaction with several pMHC complexes can be
explained by TCR promiscuity and the unusual binding topology of some autoreactive
TCRs, which was discussed previously. Interestingly, the trimolecular complex formed
between Tregs and the proinsulin complex, presented by DR4 molecules, is characterized
by 180◦ reversed polarity docking of TCR compared to canonical binding [161]. Thus, the
TCRα and TCRβ chains interact with the α chain and β chain of the MHC-II molecule,
respectively, while opposite interactions take place upon canonical binding. There is a
limited number of reported crystal structures of trimolecular complexes of Tregs TCRs,
making it difficult to accurately determine whether this binding topology is typical for
most Tregs. However, canonical binding was revealed by analyzing the TCR structure of
neonatal Tregs binding Padi4 peptide in the complex with I-Ab [162]. The crystal structures
of trimolecular complexes of TCR and self-antigens presented by MHC-II protective alleles,
which could possibly elucidate the molecular mechanism of protectivity, have not yet been
reported.

The protective effect provided by MHC-II can also be related to the low rate of self-
antigen loading to MHC-II molecules (Figure 7B). Antigen binding to MHC-II is a time-
limited and competitive process controlled by nonclassical HLA molecules, as discussed
above. It has been demonstrated that the self-antigen fragment MBP151-164 may be presented
by the DR1 MHC-II allele, which is protective for patients with MS but is characterized
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by a slow loading rate in comparison with the exogenous peptide of influenza virus
hemagglutinin protein HA306–318 [22]. This kinetic discrimination is structurally reasoned
by decelerated docking of MBP residues in the P4 pocket. Taking into consideration the
additional DM editing and the presence of other exogenous antigens competing with MBP
peptide for DR1 in late endosomes, this fragment possibly cannot reach the surface of
APCs. Therefore, the self-antigen MBP peptide is not presented or underrepresented by
the protective MHC-II allele and does not elicit the possible autoreactive T cell response.
However, the hypothesis of kinetic discrimination of self-antigens binding to molecules
of protective MHC alleles needs additional clarification in terms of extended studies of
MHC-II alleles relevant to the variety of ADs.

8. Conclusions

In this review, we systematized the data about MHC-II self-antigen presentation as
an important pathway involved in the induction of the autoreactive CD4+ T cells. MHC-II
allele polymorphisms are responsible for the diversity of the T cell repertoire. Normally,
autoantigen-specific T cells are eliminated during negative selection in the thymus. How-
ever, pathologic autoreactive T cell clones can be expanded upon the development of ADs.
Autoreactive T cells seem to appear due to the breakdown in the mechanisms of central
tolerance in the thymus and may be activated as a result of interaction with pMHC carrying
self-antigen on APCs. Normally, self-antigens, characterized by high affinity to MHC-II,
are efficiently presented on APCs in the thymus and cause strong binding with the TCR
of CD4+ T cells leading to the elimination of autoreactive T cells by negative selection.
Self-antigens with low affinity for MHC-II molecules are limitedly presented in the thymus
because of preliminary antigen repertoire editing by nonclassical MHC-II molecules. Dur-
ing inflammation, the abundance of self-antigens could be increased in the periphery (for
example, in the inflammation locus), and low-affinity self-antigens can probably be loaded
on MHC-II molecules without HLA-DM catalysis. In addition, many autoreactive TCRs
have an unusual topology of binding to self-antigens presented on risk allele molecules,
which can also potentially explain why autoreactive T cells escape negative selection in
the thymus. The PTMs of autoantigens in peripheral tissue also may lead to recognition
by T cells which have not undergone negative selection in the thymus. Finally, viral or
bacterial infections might play a role in the development of ADs via the generation of a
special proinflammatory environment or molecular mimicry between self- and pathogen
antigens.

Here we have also discussed the presentation of self-antigens on protective MHC-II
allele products and its significance for the subsequent induction of CD4+ T cell response.
Summarizing, its protective role may be realized by the following scenarios: (i) deletion
of autoreactive T cell clones, specific to protective pMHC in the thymus, during negative
selection; (ii) induction of Treg development; and (iii) low rate loading of self-antigen on
the protective MHC-II molecules and its kinetic discrimination in the concurrence with
infection exogenous antigens.

Future determination of the etiology of ADs and steps toward targeted therapeutic
approaches require the identification of a broader repertoire of self-antigens capable of
binding presentation to the products of risk and protective MHC-II alleles along with the
identification of pathogenic TCRs connected with the recognition of auto-pMHC. On the
other hand, the basis of the thymic negative selection is directly linked with the MHC-II-
mediated presentation of self-antigens; therefore, balancing between central and peripheral
tolerance versus autoreactivity may be caused by thermodynamic and kinetic peculiarities
of the autoantigen loading on the MHC-II molecules. Elucidation of the molecular mecha-
nisms underlying the assembly of the autoreactive trimolecular pMHC-II-TCR complexes
and its further signaling may result in the elaboration of novel therapeutic modalities in
terms of the induction of the immunological tolerance [46,163–165], topological blockade of
the self-antigens [166–168], and specific depletion of the autoreactive T cell clones [169,170].
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