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Abstract: Sarcopenia is a debilitating skeletal muscle disease that accelerates in the last decades of
life and is characterized by marked deficits in muscle strength, mass, quality, and metabolic health.
The multifactorial causes of sarcopenia have proven difficult to treat and involve a complex interplay
between environmental factors and intrinsic age-associated changes. It is generally accepted that
sarcopenia results in a progressive loss of skeletal muscle function that exceeds the loss of mass,
indicating that while loss of muscle mass is important, loss of muscle quality is the primary defect
with advanced age. Furthermore, preclinical models have suggested that aged skeletal muscle
exhibits defects in cellular quality control such as the degradation of damaged mitochondria. Recent
evidence suggests that a dysregulation of proteostasis, an important regulator of cellular quality
control, is a significant contributor to the aging-associated declines in muscle quality, function, and
mass. Although skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) plays a critical
role in cellular control, including skeletal muscle hypertrophy, paradoxically, sustained activation of
mTORC1 recapitulates several characteristics of sarcopenia. Pharmaceutical inhibition of mTORC1
as well as caloric restriction significantly improves muscle quality in aged animals, however, the
mechanisms controlling cellular proteostasis are not fully known. This information is important
for developing effective therapeutic strategies that mitigate or prevent sarcopenia and associated
disability. This review identifies recent and historical understanding of the molecular mechanisms of
proteostasis driving age-associated muscle loss and suggests potential therapeutic interventions to
slow or prevent sarcopenia.

Keywords: sarcopenia; skeletal muscle; atrophy; mitochondria; autophagy; mitophagy; aging;
mTORC1; dynapenia; caloric restriction; muscle protein synthesis; ubiquitin proteasome; anabolic
resistance; rapamycin

1. Introduction

Skeletal muscle comprises over a third of total body mass in young adults [1] and is
a primary contributor to whole body metabolic rate and the overwhelming majority of
postprandial glucose absorption [2]. Diminished muscle mass is associated with aging,
and contributes to greater mortality and metabolic comorbidities [3,4]. Advancements in
medical care in the last century have allowed for a remarkable extension of the human
lifespan, despite the prevalence of chronic disease and disability in the last decades of life.
In recent years, there has been a greater focus on extending the number of years lived in
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good health and not just increasing the life span per se. This has required an increased
emphasis on the importance of muscle mass and quality in maintaining human health.

The concept of “healthy aging” and maintaining independence has been tied to opti-
mizing muscle mass and strength. While muscle mass is critically important to the quality
of life, aging is associated with a gradual reduction in muscle mass that plays a contrib-
utory role in the development of age-related diseases and disability [5,6]. Sarcopenia is
a loss of skeletal muscle mass, quality, and function that is independent of weight loss
and usually associated with aging. The European Working Group on Sarcopenia in Older
People (EWGSOP) defines sarcopenia as a muscle disease resulting from a combination of
low muscle mass and poor muscle function rooted in changes that accrue over a lifetime [7].
Loss of muscle mass has been shown to occur at a rate of 0.7–0.8% per year in the eighth
decade of life; however, the loss of strength vastly outpaces the loss of muscle mass [8–10].

Sarcopenia is usually, but not always [11–13], associated with advanced age. The
presence of low muscle mass and function associated with sarcopenia enhances the risk of
falls and fractures [14,15], limits mobility [16,17], and increases the risk of disability [18],
thus facilitating the necessity for long term assisted living [19]. Sarcopenia also represents a
large fiscal burden on global healthcare institutions and government reimbursed healthcare,
as patients with sarcopenia can incur larger healthcare cost [20,21]. While the disease
sequalae of sarcopenia have been well characterized, the incidence of sarcopenia is expected
to become more prominent with the ongoing demographic shift towards an older global
population. Indeed, World Health Organization (WHO) projections predict that 1 in
6 people will be over the age of 60 by 2030 [22]. Low muscle mass and function are also
central elements of frailty [23,24]. Frailty is an impaired resilience to disease that shares
considerable overlap with the clinical manifestations of sarcopenia including an enhanced
risk of mortality. Thus, understanding the mechanisms that regulate the loss of muscle
mass and function are important if we are to reduce the effects of sarcopenia and frailty.

Well-established contributors to sarcopenia include neuromuscular remodeling [25–27],
inflammation [28–30], apoptotic signaling [31–33], and alterations in the hormonal
milieu [34–36], as well as environmental changes including physical inactivity [27,37,38]
and nutritional inadequacies [39–41]. Proteostasis and cellular quality control mechanisms
have garnered attention as possible points of cellular dysregulation in aging-associated
disorders. Protein turnover is critical for tissue integrity, and requires a careful balance
between anabolic and catabolic processes. Degradation of misfolded and damaged proteins
is necessary to maintain proteome integrity and prevent organelle dysfunction and cellular
degeneration. Furthermore, inadequate protein synthesis can result in a failure to replace
degraded cellular components and compromised tissue maintenance. Initial lines of evi-
dence supported a role for diminished protein synthesis in response to anabolic stimuli as
a major contributor to sarcopenia. Although the mammalian target of rapamycin complex
1 (mTORC1) is critical for protein synthesis and skeletal muscle hypertrophy [42], recent
evidence indicates that chronic mTORC1 activity can contribute to deficient cellular quality
control and recapitulates several characteristics of sarcopenia including neuromuscular
remodeling [43]. Our understanding of how dysregulated protein synthesis and protein
degradation in aged skeletal muscle contributes to sarcopenia is incomplete. The present
review summarizes previous and recent findings regarding the roles of protein synthesis,
degradation, and cellular quality control mechanisms in sarcopenic muscle. Novel and
recent studies that describe the interplay between anabolic and catabolic pathways are
reviewed. Furthermore, we critically discuss the efficacy of caloric restriction as a treatment
for sarcopenia and highlight challenges regarding the putative contributors to proteostasis
dysfunction in the development of sarcopenia.

2. Skeletal Muscle Anabolism
2.1. Anabolic Signaling

Skeletal muscle retains remarkable plasticity by altering cellular size and contractile
properties in response to altered stimuli. Muscle fiber size is established as the aggregate
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result of competition between concomitant rates of anabolic muscle protein synthesis (MPS)
and catabolic muscle protein breakdown (MPB). Several anabolic stimuli can enhance
MPS, including exercise, dietary amino acids, growth factors, and hormones. Among
modulators of MPS, the serine/threonine kinase mammalian target of rapamycin (mTOR)
is a critical component of mTORC1 that acts as a central node of regulation (Figure 1).
Activation of mTORC1 is tightly regulated by the availability of nutrients and growth
factors. The release of insulin by pancreatic β-cells during feeding initiates a cascade of
signaling events in skeletal muscle that induces activation of the central effector of the
phosphoinositide 3-kinase (PI3K) pathway, Ser/Thr kinase AKT (Akt), also known as
protein kinase B (PKB). Insulin-mediated phosphorylation of Akt facilitates activation of
mTORC1 through phosphorylation and inactivation of the tuberous sclerosis complex 1/2
(TSC1/2) [44], which acts as a GTPase-activating protein (GAP) for Ras homolog enriched
in brain (Rheb) at the lysosomal surface and thereby prevents mTORC1 activation (Figure 1).
Upon insulin-mediated phosphorylation by Akt, TSC1/2 dissociates from the lysosome
and allows for Rheb activation of mTORC1 [45].
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Figure 1. Activation of mTORC1 by growth factors and amino acids. Activation of mTORC1 re-
quires the integration of extracellular and intracellular signals. Binding of insulin to the insulin re-
ceptor induces a cascade of signaling events that culminate in Akt-mediated inhibition of TSC1/2. 
Phosphorylation of TSC1/2 by Akt prevents TSC1/2 GAP activity towards RHEB, allowing for acti-
vation of mTORC1. In response to amino acid availability, CASTOR1 and Sestrin2 inhibition of GA-
TOR2 is relieved, allowing for GATOR2 inhibition of GATOR1. Inhibition of GATOR1 allows for 
Rag-mediated activation of mTORC1. Phosphorylation of p70S6K1, 4e-BP1- and eEF2 kinase by 
mTORC1 enhances protein translation initiation and elongation. Activated p70S6K1 can exert nega-
tive feedback on Akt via inhibition of the insulin signaling cascade. 

Figure 1. Activation of mTORC1 by growth factors and amino acids. Activation of mTORC1
requires the integration of extracellular and intracellular signals. Binding of insulin to the insulin
receptor induces a cascade of signaling events that culminate in Akt-mediated inhibition of TSC1/2.
Phosphorylation of TSC1/2 by Akt prevents TSC1/2 GAP activity towards RHEB, allowing for
activation of mTORC1. In response to amino acid availability, CASTOR1 and Sestrin2 inhibition of
GATOR2 is relieved, allowing for GATOR2 inhibition of GATOR1. Inhibition of GATOR1 allows
for Rag-mediated activation of mTORC1. Phosphorylation of p70S6K1, 4e-BP1- and eEF2 kinase by
mTORC1 enhances protein translation initiation and elongation. Activated p70S6K1 can exert negative
feedback on Akt via inhibition of the insulin signaling cascade.

In addition to prompting the release of insulin, feeding also replenishes intracellu-
lar nutrients that can induce mTORC1 activation, in particular amino acids. Cytosolic
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availability of leucine is a potent signal for mTORC1 activation in large part through
the leucine sensor Sestrin2. The availability of leucine reduces Sestrin2 activity, which
relieves inhibition of the protein complex GTPase-activating protein activity toward Rags
2 (GATOR2) [46,47]. Uninhibited GATOR2 antagonizes the action of GTPase-activating
protein activity toward Rags-1 (GATOR1), thereby relieving GATOR1 GAP activity on
Rag guanosine triphosphatases [46] and allowing for their recruitment of mTORC1 to
the lysosome in close proximity to Rheb. Activation of mTORC1 is also highly sensitive
to arginine, which similarly to leucine, can relieve inhibition of GATOR2 through a cy-
tosolic arginine sensor for mTORC1 subunit 1 (CASTOR1) dependent mechanism [48,49]
(Figure 1). As such, a lysosome localized coincidence detector regulates cellular protein
synthesis via mTORC1 by integrating extracellular growth signals with the intracellular
nutrient status. Activation of mTORC1 inhibits degradative processes such as autophagy
and stimulates mRNA translation in part through phosphorylation of targets eukaryotic
translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1), Eukaryotic elongation
factor 2 (eEF2) kinase, and p70 ribosomal protein S6 kinase (p70S6K1). Phosphorylation of
4E-BP1 by mTORC1 results in the disassociation of 4E-BP1 from eIF4E and allows for the
formation of the translation initiation complex at the 5′ end of mRNA to facilitate recruit-
ment of the ribosomal machinery and cap dependent mRNA translation [50]. mTORC1 also
increases protein synthesis through its enhancement of translation elongation via inhibitory
phosphorylation of eEF2 kinase [51]. Activation of p70S6K by mTORC1 also boosts protein
synthesis through augmentations in ribosomal biogenesis [52], translation initiation [53],
and elongation [54].

2.2. Skeletal Muscle Anabolic Resistance
2.2.1. Amino Acid Induced MPS

Muscle atrophy occurs when myocytes have reduced protein accretion that results in
reduced cellular size as the aggregate result of competition between reduced concomitant
rates of MPS and increased MPB. Anabolic resistance refers to a blunted capacity to en-
hance MPS in response to an anabolic stimulus. Associations between aging and anabolic
resistance have been under investigation for decades and have indicated that a perturbed
skeletal muscle anabolic response to a nutritional stimulus exists in aged individuals [55,56].
While basal skeletal muscle fractional synthetic rates have been shown to be similar be-
tween young and aged individuals [56–59], the sensitivity and responsiveness of MPS have
been reported to be reduced in the elderly in response to hyperaminoacidemia [56,57,60].
This suggests that senescent muscle may require a relatively high concentration of amino
acids [61] to mount an adequate anabolic response. While the precise mechanism(s) that
regulate the blunting of MPS in response to feeding in aging is/are not clear, a likely
contributor is the reduction in physical activity that typically occurs with aging [62]. It
is known that reduced physical activity can diminish the protein synthetic response to
feeding [63] and this may play a large role the development of sarcopenia.

While there is significant support for an aging-suppression of MPS, not all studies
have observed a blunted maximal MPS response to high doses of amino acids with elevated
ages [64,65]. Furthermore, the concept that aging induces a reduced anabolic response
to amino acid intake has also recently been challenged [66]. Nevertheless, while not a
universal finding, the majority of studies support a role for attenuated MPS as a potential
contributor to sarcopenia in aging.

2.2.2. MPS and Sarcopenic Obesity

The co-occurrence of age-related muscle loss and obesity, termed sarcopenic obesity,
is a growing health concern. Sarcopenic obesity enhances the risk of developing type
2 diabetes mellitus and insulin resistance [37,67]. The elderly exhibit greater intramuscular
lipid deposition than younger body mass and fat mass matched control subjects [68].
Aged animals also exhibit exacerbated insulin resistance when fed an obesogenic diet,
which is concomitant with greater susceptibility to the accumulation of intramyocellular
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lipids [69,70]. Importantly, both lipid infusions and obesity have been shown to reduce the
MPS response to amino acid and protein stimulation [71–73]. Investigations regarding the
impact of coincident obesity and aging on the skeletal muscle protein synthetic response
to protein ingestion have revealed that myofibrillar fractional synthetic rate is enhanced
in young lean subjects and, to a significantly lesser degree, old lean subjects. However,
old obese subjects fail to enhance post prandial myofibrillar fractional synthetic rate,
indicating that obesity further dampens aging associated anabolic resistance to feeding [74].
Interestingly, while it is generally agreed upon that muscle loss with aging occurs at the
expense of fast twitch type II fibers, it is not well understood if post prandial protein
synthesis exhibits a fiber type specific deficit in aged muscle or how obesity may modulate
this relationship. However, evidence exists to suggest that age-associated muscle atrophy
may not be as restricted solely to fast twitch fibers, as was once thought to be the case in
sarcopenia [75].

2.2.3. Gastrointestinal–Muscle Axis

Recent observations have linked the gut-muscle axis as a potential contributor and ther-
apeutic target for aging associated anabolic resistance. While still in its infancy, several stud-
ies in rodents have linked alterations to the gut microbiota to aging and sarcopenia [76,77].
Indeed, the gut microbiome appears to have a major impact on skeletal muscle. For ex-
ample, germ-free mice that are microbiologically sterile exhibit reduced skeletal muscle
mass alongside diminished gene expression for oxidative metabolism. Importantly, these
deficits are partially reversed by microbiota transplant from pathogen free mice [78]. Fur-
thermore, gnotobiotic mice, which are germ-free mice transplanted with a known microbe,
have demonstrated a causal link between specific microbes and skeletal muscle function.
Gnotobiotic mice exhibited enhanced physical function both in the untrained state and after
4 weeks of exercise training when compared to germ-free mice, indicating an important
role for gut microorganisms in physical function and exercise adaptations [79]. While mech-
anistic investigations regarding the interaction between gut microbes and skeletal muscle
anabolism are sparse, analysis of the gastrointestinal microbiome of chickens revealed
significant differences in microbe composition between chickens with low- and high-feed
conversion ratios [80], a measure of the ratio of feed consumed to weight gained. These
data imply that the gut microbiome composition can modulate the nutritive value of food
consumed and the degree of anabolic growth.

2.2.4. Microbiome and Inflammation in Sarcopenia

It is interesting to note that a greater proportion of germ-free mice survived to old age
than pathogen-free mice that are housed under standard laboratory conditions, which
present with a more pronounced inflammatory state and enhanced gut permeability
with increased age [81]. Germ free mice co-housed with aged pathogen-free mice ex-
hibited a greater degree of intestinal permeability and circulating tumor necrosis factor α
(TNFα) than mice that were co-housed with young pathogen free mice. This suggests that
microbiome-associated changes with aging can influence the systemic inflammation of the
host animal. Aging is also associated with reduced colonic mucosal barrier thickness [82]
and a greater circulating concentrations of lipopolysaccharide [83]. Thus, it is possible
that changes in the microbiome or gut health may be involved in heightened systemic
inflammation associated with aging. The relationship between sarcopenia, aging, and
chronic low-grade inflammation is well established and multiple lines of evidence have
shown that chronic inflammation is deleterious to skeletal muscle health and increases
protein turnover. Thus, alterations in the microbiome or gut function provide an attractive
and plausible link to aging, inflammation, and skeletal muscle health.

It is important to note that while skeletal muscle is modulated by the microbiome,
the gut microbiome can be modified by diet, antibiotics, and dietary supplements. The
human microbiota has been reported to be similar between young and aged humans
but there are larger differences between the young and the very old [84]. Furthermore,
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a study of long-term care and community dwelling seniors found that the diversity of
the gut microbiome was significantly lower in individuals under long-term care when
compared to similarly aged community dwelling seniors [85], highlighting the importance
of considering environmental factors such as diet that may differ between individuals when
investigating age-associated dysbiosis. These studies suggest that diet and age can affect
skeletal muscle health both directly through the dietary supply of nutrients and indirectly
through the dietary effect on the microbiome at any age. It is possible that alterations to the
gut microbiome may also partly be due to environmental factors associated with frailty and
sarcopenia in adults that may exhibit physical inactivity, alterations in diet, and consume
medications for existing comorbidities.

2.3. Aging and Skeletal Muscle Recovery from Disuse

Skeletal muscle necessitates contractile and neural stimuli to maintain tissue in-
tegrity [86,87]. Extended periods of disuse such as bed rest, limb immobilization, and
spaceflight can rapidly produce deficits in muscle mass. Muscle disuse induces a loss of
contractile function leading to muscle atrophy, mitochondrial impairments, and functional
decline [88,89]. The elderly are prone to sequential periods of disuse, due to more frequent
falls and hospitalization than younger healthy subjects. In addition, the elderly exhibit poor
regeneration of muscle tissue after an injury or disuse as compared to young subjects or
animal models [90–92], which can potentially hasten the trajectory towards sarcopenia after
repeated bouts of bed rest or immobilization. It is generally accepted that skeletal muscle
atrophy during disuse occurs due to reductions in MPS and a heightened MPB [93], thereby
compromising tissue maintenance. Importantly, aged animals show marked atrophy af-
ter disuse [94–98] and delayed restoration of contractile tissue [94,99–101], mitochondrial
function, and dysfunctionalβ-oxidation after disuse compared to young animals [102]. Tem-
poral assessments of the genetic response to hypertrophic stimuli have revealed metabolic
gene expression to be perturbed by aging [103], which may play into the impaired response
to reloading. Peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α/β-
knockout mice have delayed force output recovery after disuse, indicating a crucial role for
mitochondria in the functional recovery of skeletal muscle [104]. While protein ubiquitina-
tion and the expression of atrogenes muscle-specific RING finger protein 1 (MuRF1) and
Atrogin1 are enhanced in aged animals during recovery after hindlimb suspension, proteo-
some activity and autophagic flux in some muscles are only enhanced in young animals
in the reloading phase [105,106]. The accumulation of ubiquitinated proteins and reduced
proteasomal activity in combination with an elevation of endoplasmic reticulum (ER) stress
markers suggests dysregulated proteostasis in old animals [105], which could feasibly con-
tribute to inadequate regeneration after disuse in geriatric muscle. Both protein synthesis
and protein degradation are ATP-dependent processes. Thus, skeletal muscle remodeling
is dependent upon adequate mitochondria number and function to supply ATP for protein
synthesis and degradation. It has been estimated that the energetic cost of protein synthesis
amounts to about 20% of basal ATP produced by oxidative phosphorylation [107,108].
While humans typically have enough fuel stores to sustain metabolic processes for several
days to weeks, energy production is constrained by the rate of mitochondrial bioenergetics.
While disuse impairs mitochondrial function [102,109], mitochondrial adaptations to exer-
cise and activity increase mitochondrial number and function [110] and provide an optimal
environment for muscle repair. Furthermore, muscle reloading in young animals reverses
disuse-induced mitochondrial dysfunction [102,109]. In addition, both voluntary wheel
running and a cocktail of mitochondrial targeted nutrients improve muscle regeneration
after disuse [109,111], suggesting the restoration of mitochondrial function may facilitate
tissue regrowth.

Regulators of mitochondrial volume and function are suppressed during muscle
disuse as energy demands and contractile activity diminish. However, it is unclear if
mitochondrial impairments during recovery may contribute to age-associated regenerative
defects in skeletal muscle and contribute to sarcopenia. It is important to note that some
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studies have found that the amount of atrophy that occurs during disuse is not exacerbated
by age [106,112] and the absolute extent of atrophy during disuse is sometimes more
pronounced in young muscle [113], although this may not always be the case during short
term periods of disuse [114]. This may be due in part because muscles in aged adult animals
or humans are sarcopenic and have a smaller muscle mass and therefore have less protein
to lose during disuse even if the rate of muscle loss is the same in young and old animals.

Another possibility is that the rate of MPS after disuse may be altered with aging.
This is supported by observations that the larger muscles in young animals exhibit a
more pronounced drop in MPS during disuse when compared to smaller muscles in aged
animals [106]. When MPS was measured during recovery from disuse in aged animals, it
was found that the rate of MPS was not diminished in 28-month-old when compared to
24-month-old rats, and in some muscles was significantly elevated with older age [106].
Furthermore, MPS was found to be elevated in old but not young rats during reloading
despite blunted recovery [105]. If MPS is not impaired with aging, yet protein accretion
is impaired in older hosts, then it is possible that geriatric muscle has a reduced ability to
coordinate processes of protein synthesis, protein folding, and degradation of contractile
tissue during reloading. A dysregulation of protein assembly in aging would ultimately
compromise muscle remodeling and the reacquisition of muscle mass and this could
contribute to sarcopenia if muscle mass and function are not restored after disuse.

2.4. Sarcopenia and mTORC1 Signaling

Although mTORC1 is an important regulator of muscle growth, recent evidence
has implicated that sustained mTORC1 activation may be a potential contributor to age-
associated myopathy (Figure 2). Despite reported insensitivity of MPS to external stimuli
in aging, there are several reports suggesting that geriatric skeletal muscle exhibits signs of
greater basal mTORC1 activity [43,115–119].

How alterations in senescent muscle drive greater basal mTORC1 activity or how
sustained mTORC1 activity may differ between young and aged muscle have yet to be
determined. Nevertheless, several studies have provided some clues to how mTORC1
could be elevated in aged muscle. For example, data from a transgenic mouse model
that allows for the muscle-specific inducible expression of activated Akt has shown that
activation of Akt (and presumably also mTORC1) for three weeks, results in greater muscle
mass in young [120] and old (24 months) mice [115]. However, in contrast to young mice,
old mice exhibited a reduction in force production when normalized to muscle mass (lower
specific force), which was concomitant with morphological signs of fiber degeneration
and immune cell infiltration [115]. These data imply that the chronic activation of the
same anabolic signaling pathways (i.e., mTORC1) can produce very different effects in
aged and young muscle. In a separate study, acute activation of mTORC1 in skeletal
muscle by shRNA knockdown of TSC produced fiber hypertrophy [121], while sustained
mTORC1 activation by genetic skeletal muscle TSC1-knockout, diminished muscle size
and reduced total lean mass [121–123]. Indeed, inactivation of mTORC1 by muscle specific
regulatory associated protein of mTOR (RAPTOR)-knockout also produces skeletal muscle
atrophy [124]. Taken together, it appears that the proper balance of mTORC1 is required
for optimal muscle health because both chronic loss and hyperactivation of mTORC1 can
be deleterious for maintenance of skeletal muscle mass. The proposed model of mTORC1
dysregulation in aging leading to muscle atrophy is shown in Figure 2.

There is a complex regulation of muscle mass in aging because inhibition of chronically
active mTORC1 with either rapamycin or low dose rapalogs attenuates aging-associated
loss of muscle function and muscle mass in some, but not all, muscles [43,117,125]. Mecha-
nistically, it is possible that hyperactivity of mTORC1 may negatively impact neuromuscular
junction function, as both skeletal muscle specific TSC1-knockout mice and aged mice ex-
hibit morphological alterations that are characteristic of neuromuscular junction instability.
Importantly, neuromuscular deficits in mTORC1 hyperactive muscle and in aged mice are
both partially reversed by mTORC1 inhibition via rapamycin administration [43]. Dysfunc-
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tion of the motor neuron is a known contributor to the development of sarcopenia [126].
These findings support the idea that sustained mTORC1 activation in geriatric muscle
can contribute to neuromuscular junction instability (Figure 2) and subsequently muscle
atrophy and functional deficits, which may be partially reversed by rapamycin treatment.
While rapamycin has been shown to produce favorable effects on sarcopenic muscle, it re-
mains unclear if similarly inhibiting mTORC1 during reloading after disuse would enhance
recovery and ameliorate ER stress in aged muscle (Figure 2).
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3. Skeletal Muscle Catabolism
3.1. The Ubiquitin Proteasome System
3.1.1. Ubiquitin Proteasome Degradation of Cellular Proteins

Protein turnover is critical for cellular quality control under both basal and physiologi-
cally stressful conditions to maintain the integrity of the proteome. Degradation of cellular
proteins occurs primarily through the ubiquitin proteasome system (UPS), autophagy, and
to a lesser extent the Ca2+ dependent calpain system and caspase-3 [127,128]. Inadequate
protein and organellar degradation can result in the accumulation of misfolded protein
aggregates and dysfunctional cellular organelles. The primary component of the UPS is the
26S proteasome which is comprised of a core proteolytic 20S complex and the regulatory
19S complex capping one end of the 20S, although both ends of the core 20S can be capped
to form the 30S proteasome [129]. The 19S regulatory particle is involved in the process
of substrate engagement and subsequent ATP-dependent processive translocation and
unfolding of the target polypeptide into the degradative 20S barrel subunit [130]. Proteins
marked for degradation are recognized by the 26S proteasome through the presence of
conjugated polyubiquitin tails.

Ubiquitination of damaged or misfolded proteins is a complex and highly regulated
process involving a molecular hierarchy of enzymes involved in ubiquitin activation,
conjugation, and ligation (reviewed in [130,131]). Briefly, conjugation of ubiquitin is first
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initiated by the ubiquitin-activating enzyme (E1), an ATP-dependent process that that
results in a high energy thioester bond between E1 and ubiquitin. Secondly, there is the
transfer of the ubiquitin-thioester to a ubiquitin conjugating protein (E2), which is followed
by the conjugation of ubiquitin by E3 ubiquitin ligases to target proteins. While protein
ubiquitination also serves other important non-proteasomal degradation roles such as,
alterations of protein localization and function, these roles will not be covered in this
review.

Relative to the small number of proteins within the human E1 (n = 2) and E2 (n = ~40)
family, there are hundreds of different E3 ubiquitin ligases that confer specificity to the
UPS, allowing for tight control of substrate ubiquitination [131]. Activation of the UPS
has been implicated as a contributor to skeletal muscle atrophy under several patho-
logical conditions including aging-induced sarcopenia [132,133], type 1 diabetes [134],
muscle disuse [135–139], and fasting [138,140]. The two best-characterized E3 ubiquitin
ligases implicated in skeletal muscle atrophy are Atrogin1 and MuRF1 [137]. Atrogin1
has been shown to mediate degradation of myogenic factors Myogenic Differentiation 1
(MyoD1) [141,142], myogenin [143], and eukaryotic translation initiation factor 3 subunit
F (eIF3-f) [144]. Additionally, both Atrogin1 and MuRF1 have been shown to interact
with sarcomeric proteins [145–147]. Furthermore, MuRF1 has also been implicated in the
regulation of acetylcholine receptors at the neuromuscular junction [148]. Expression of
atrogenes Atrogin1 and MuRF1 is regulated by Forkhead box O (FoxO) transcription factor
translocation into the nucleus [138,149,150], although FoxO has also been shown to regulate
autophagy [151]. Importantly, Akt can prevent FoxO nuclear localization [150], while
FoxO activity is enhanced by energy deprivation through AMP-activated protein kinase
(AMPK) [152,153].

3.1.2. The Ubiquitin Proteasome System in Sarcopenia

Given the ubiquitous FoxO-mediated expression of Atrogin1 and MuRF1 in a range of
atrophic conditions, the expression of Atrogin1 and MuRF1 has often been used as a proxy
measure for protein breakdown in skeletal muscle. However, it is important to note that
enhanced expression of Atrogin1 and MuRF1, and even enhanced protein ubiquitination,
is not synonymous with enhanced proteasome activity. Indeed, muscles from aged rats
subjected to hindlimb unloading followed by reloading exhibit greater Atrogin1 and MuRF1
gene expression alongside elevated protein ubiquitination as compared to young adult
animals; however, proteasome activity was generally unchanged or reduced throughout
unloading and reloading in the older rodents [105]. These responses differed from muscles
in young adult animals and the responses can even differ between muscles of older animals.
This may represent a mismatch between ubiquitination and proteosome activity in geriatric
muscle and potentially impaired UPS function during skeletal muscle reloading with
aging [132,133].

The UPS system is tightly regulated to ensure proper protein turnover which is nec-
essary to maintain a high quality of the muscle protein. Loss of protein quality control
mechanisms is a hallmark of aging and a decline in protein turnover and the function of
the UPS has long been thought to contribute to age-related cellular dysfunction [154]. The
ability to rapidly degrade proteins in molecular signaling pathways is critical to avoid
aberrant signaling and maintain proteome stability. Indeed, while overactivation of the UPS
results in skeletal muscle atrophy, inadequate proteasome function in the skeletal muscle of
Rpt3-knockout mice severely retards growth, resulting in reduced muscle mass, function,
and signs of fiber degeneration concomitant with enhanced expression of Atrogin1, MuRF1,
and protein ubiquitination [155]. The elevation in atrogene expression and protein ubiquiti-
nation may indicate a compensatory effort to ramp up protein degradation in the absence
of adequate proteostasis. Similarly, MuRF1 and MuRF3 double-knockout mice exhibit my-
ofiber protein aggregates, ultrastructural abnormalities, Z-line streaming, and pronounced
functional deficits despite greater muscle mass [156]. Somewhat counterintuitively, MuRF1
null mice that are significantly protected from denervation induced atrophy also display
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a greater enhancement of skeletal muscle proteasome activity than wild type mice [157].
Similarly, while wildtype mice present a reduction in proteasome activity by 24 months
of age, MuRF1 null mice exhibit enhanced proteasome activity and preserved skeletal
muscle mass and fiber cross sectional area. Aged wildtype mice also showed signs of
enhanced ER stress with age, which was attenuated in MuRF1 null mice [158]. Interestingly,
despite a preservation of muscle mass, old MuRF1 null mice presented functional deficits
in nerve-stimulated muscle force production when compared to age-matched wildtype
mice. Given the role of MuRF1 in acetylcholine receptor regulation [148], it is possible that
the observed defect may originate from inadequate neuromuscular remodeling.

Whether skeletal muscle UPS activity is enhanced or diminished with aging is con-
troversial, with several studies pointing towards an increase [159–161], whereas others
report a decrease of UPS activity in geriatric muscles [158,162,163]. Despite this lack of
consensus, recent evidence has provided a surprising connection between elevated skeletal
muscle mTORC1 signaling and activation of degradation pathways including the UPS
system. Kaiser et al. [164] observed that mTORC1 hyperactivation in skeletal muscle
of TSC1 null mice (a mouse model that recapitulates several characteristics of an aged
phenotype), is concomitant with marked increases in several components of the UPS.
Skeletal muscle from TSC1-knockout mice exhibit greater expression of several atrogenes
and components of the 26S proteasome that is reversed by acute 3-day treatment with
rapamycin. Remarkably, transcriptomic changes observed in muscles from TSC1-knockout
mice after rapamycin treatment were highly similar to those observed in 30-month-old
rapamycin treated mice [43,164]. Hyperactivation of mTORC1 in skeletal muscle of TSC1
muscle-knockout mice was concomitant with enhanced protein abundance of Nuclear Fac-
tor Erythroid 2-Like 1 (NRF1); a potent positive regulator of proteasomal gene expression.
Knocking down NRF1 expression via shRNA reduced proteasomal protein abundance
and catalytic activity, however this was insufficient to rescue muscle mass in TSC1 skeletal
muscle-knockout mice [164].

Importantly, greater mTORC1 activity can impede AKT activation through p70S6K1-
mediated phosphorylation of Insulin receptor substrate 1 (IRS-1) [165], thereby inhibiting
downstream AKT activation. To test whether inhibition of AKT by hyperactive mTORC1
in TSC1-knockout mice was responsible for the apparent muscle atrophy, TSC1 muscle-
knockout mice were bred with mutant AKT-TG mice that express a tamoxifen inducible
form of active AKT. In line with AKT’s role as a negative regulator of FoxO and atrogene
expression, AKT activation induced muscle growth in TSC1-knockout muscle. These data
indicate that AKT-mediated suppression of FoxO targets, but not suppression of NRF1
and proteasomal gene expression, rescues muscle atrophy in the background of mTORC1
hyperactivation. As aging mice have been reported to have chronically high levels of
mTORC1, as discussed above, the reversal of the suppression of AKT-regulated UPS by
mTORC1 may provide a potential target for therapeutic reduction of sarcopenia in aging.
However, simply increasing AKT may not be an adequate approach for treating sarcopenia
because despite enhanced muscle size, sustained hyperactivation of AKT was reported to
produce vacuolated fibers that are characteristic of late onset myopathy during mTORC1
hyperactivation. Nevertheless, the elegant work of Kaiser et al. [164] showed that proteaso-
mal upregulation is an attempt to maintain proteostasis during mTORC1 hyperactivation
(and diminished autophagy) and inhibition of FoxO-mediated gene expression results in
early onset myopathy.

3.2. Autophagy and Mitophagy
3.2.1. Autophagy and Mitophagy Signaling

Similar to the UPS, autophagic degradation represents another major arm of protein
quality control, to ensure cellular clearance of defective proteins and organelles as well as to
recycle substrates during nutrient scarcity. A basal level of autophagy is important for cel-
lular homeostasis, and the autophagic machinery is responsive to several stimuli including
fasting [166,167] and exercise [168]. However, autophagy is elevated in response to oxida-
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tive stress [169], ER stress [170], and to pathological states such as cancer cachexia [171].
There exist three well-characterized types of autophagy which include microautophagy,
chaperone-mediated autophagy, and macroautophagy. Macroautophagy primarily man-
ages the clearance of cellular organelles and protein aggregates via engulfment by the
autophagosome and degradation in lytic compartments through fusion with the lysosome.
For the purposes of this review, macroautophagy will be referred to as autophagy (Figure 3).
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Figure 3. Autophagy and mitophagy pathways. Autophagy induction is negatively regulated by
mTORC1 signaling through direct inhibition of ULK1 activity. During periods of nutrient deprivation,
mTORC1 activity is blunted, thereby releasing inhibition of the ULK1 initiation complex. Addition-
ally, activation of AMPK under conditions of energetic stress directly facilitates ULK1 activation.
Recruitment of the Beclin-VPS34 core complex to the ER facilitates LC3 lipidation and autophagosome
membrane expansion. Loss of mitochondrial ∆ψm triggers OMM PINK1 accumulation and Parkin
recruitment, which results in polyubiquitination and sequestration of damaged mitochondria in
autophagosomes for lysosomal degradation.

The initiation of autophagy and autophagosome biogenesis is largely regulated by unc-
51 like autophagy activating kinase 1 (ULK1) and to a lesser extent its paralog unc-51 like
autophagy activating kinase 2 (ULK2). ULK1 is a serine/threonine kinase that is the core
component of the initiation complex alongside autophagy related (ATG)13, Focal adhesion
kinase family-interacting protein of 200 kDa (FIP200), and ATG101 [172–175]. During nu-
trient deprivation, autophagy is rapidly stimulated to allow for bulk degradation to supply
provisions of amino acids for continued synthesis. Autophagy is negatively regulated by
mTORC1 during nutritional and energetic surplus (Figure 3). However, amino acid insuffi-
ciency relieves mTORC1-mediated inhibitory phosphorylation of ULK1 and ATG13 [175],
enhancing autophagy. Importantly, cellular energy status is also conveyed to the initiation
complex through the energy sensor AMPK, which can inhibit mTORC1 or directly activate
ULK1 via phosphorylation [176]. Apart from direct inhibitory phosphorylation of ULK1,
mTORC1 also regulates ULK1 stability through inhibition of autophagy/Beclin 1 regulator
(AMBRA1). AMBRA1 acts to facilitate TNF receptor associated factor 6 (TRAF6)-mediated
ubiquitination of ULK1 and subsequent protein stabilization [177]. Upon ULK1 activation,
ULK1 phosphorylates AMBRA1 and allows for the localization of the BECLIN 1-VPS34 core
complex to autophagosome initiation sites primarily at the ER [178]. In addition to inducing
the translocation of the BECLIN 1-VPS34 core complex, ULK1 also activates BECLIN 1
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(Figure 3) and stimulates VPS34 class III phosphatidylinositol 3-kinase activity [179]. Pro-
duction of phosphatidylinositol 3-phosphate at the site of phagophore initiation is a critical
step that engages the WD-repeat protein interacting with phosphoinositides (WIPI) family
of proteins which serve as effectors that recruit several ATG proteins and subsequently
LC3 lipidation [180]. Lipidation of LC3 via conjugation to phosphatidylethanolamine
plays a critical role in autophagosome formation through expansion of the isolation mem-
brane [126,181–183].

While excessive autophagy can contribute to atrophy [151], in recent years selective
autophagy of mitochondria, termed mitophagy, has gained attention as a necessary and
critical quality control step for skeletal muscle health (Figure 3). Mitochondrial dysfunc-
tion that results in the loss of the mitochondrial membrane potential (∆ψm) triggers a
cascade of events that culminate in sequestration and autophagic clearance of damaged
mitochondria. Under normal conditions, the serine/threonine kinase PTEN induced kinase
1 (PINK1) is sequestered within the mitochondrion [184] and its degradation depends on
intact ∆ψm [185]. Upon mitochondrial damage and membrane depolarization, PINK1 is
stabilized and accumulates in the outer mitochondrial membrane (OMM) [184–186] where
it recruits the ubiquitin ligase Parkin (Figure 3). Parkin is normally cytosolic and inactive
under control conditions [185]. Upon mitochondrial localization, Parkin is activated and
decorates OMM proteins with polyubiquitin chains [187] (Figure 3), thereby promoting
mitophagy through interactions with autophagy adapter proteins [188,189].

Investigations regarding whether skeletal muscle autophagy is reduced or enhanced
with age have reached mixed conclusions [190–195]. While the consensus is that autophagy
is blunted with aging, evidence for altered autophagy has primarily relied on the quan-
tification of basal protein abundance of several autophagy effectors. However, changes
to the abundance of autophagy regulators such as LC3-I/LC3-II do not accurately reflect
autophagic flux within the tissue and instead represent a fixed snapshot in time of a
highly dynamic process. Indeed, the LC3-I/LC3-II content may be enhanced due to greater
LC3 lipidation or diminished lysosomal degradation. Autophagy can be more accurately
estimated using autophagy inhibitors such as colchicine, allowing for measurements of
accumulated autophagy effectors as an output for autophagy flux [196].

3.2.2. Defective Autophagy Impairs Skeletal Muscle Function and Mass

Measurements of autophagy flux have shown a trend for enhanced basal autophagy in
aged muscle [105,193,197]. Nonetheless, it is intriguing that two effective interventions for miti-
gation of sarcopenia and aging, namely caloric restriction [198] and exercise [168,195,199,200],
are known to stimulate skeletal muscle autophagy. Additionally, reducing autophagy
in skeletal muscle recapitulates several aspects of sarcopenia. For example, autophagy
deficient skeletal muscle of ATG7-knockout mice exhibit signs of myopathy alongside
compromised skeletal muscle mass and function [201]. Skeletal muscle specific knockout
of ATG7 in aged mice similarly reduces muscle mass and produces signs of neuromuscular
junction dysfunction [195].

Skeletal muscle AMPK-knockout mice also have defective autophagy and exhibit
age-related muscle dysfunction associated with signs of fiber degeneration, diminished
force production, and greater mitochondrial size and Parkin accumulation at 18 months of
age [202]. These data imply that relative to age matched wild types, reduced autophagy
in skeletal muscle of AMPK-knockout mice results in impaired muscle function and mi-
tochondrial clearance, which manifests as myopathy in an age-dependent manner [202].
Additionally, evidence from the literature indicates that enhancing autophagy ameliorates
the aging phenotype. While activation of AMPK is known to inhibit mTORC1 and protein
synthesis, it is interesting to note that muscle atrophy in obese sarcopenic rats was amelio-
rated by resveratrol, which was also found to prevent myotube atrophy in vitro partially
via the PKA/LKB1/AMPK pathway [203].

Skeletal muscle expression of FoxO in drosophila enhances autophagy and delays the
aging associated accumulation of protein aggregates in skeletal muscle [204]. In contrast,
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skeletal muscle FoxO1/3/4 triple-knockout mice exhibit spared muscle mass and preserved
specific force, a functional measure of muscle quality, during aging without apparent
signs of muscle degeneration, despite dramatically greater fiber central nucleation [205].
While autophagy flux was not compared in aged control and triple-knockout mice, young
triple-knockout mice did not present an apparent defect in muscle autophagy. Thus, the
preservation of skeletal muscle mass and function in FoxO triple-knockout mice may be
due to an observed conservation of mitochondrial function without apparent changes to
the autophagy machinery.

3.2.3. mTORC1 and Autophagy

One potential mechanism by which autophagy may be impaired in aged skeletal
muscle is via sustained activation of mTORC1. Comparisons of autophagy and mTORC1
signaling in skeletal muscle of mice that are freely fed revealed little difference between
young and old animals. However, upon fasting, skeletal muscle from young mice dis-
played diminished phosphorylation of AKT and the mTORC1 targets p70S6K1, ribosomal
protein S6 (RPS6), and 4E-BP1. Notably, fasting-induced changes were absent in aged mice.
Furthermore, mTORC1 phosphorylation of ULK1 (Ser757) was reduced by fasting in young
but not aged mice [116]. Mirroring the sustained mTORC1 activity and reduced autophagic
signaling that has been reported in aged animals, skeletal muscle TSC1-knockout animals
exhibit impaired autophagy that is concomitant with late onset myopathy, both of which
are reversed by rapamycin treatment [206]. Indeed, the enhanced UPS activity present
in skeletal muscle TSC1-knockout mice may be an attempt to compensate for impaired
autophagic clearance [180]. A recent study by Crombie et al. [207] revealed a previously
unknown aspect of mTORC1 regulation of autophagy in skeletal muscle. Interestingly,
activation of 4E-BP1 but not inhibition of p70S6K1 ameliorates the sarcopenic phenotype of
skeletal muscle TSC1-knockout mice [207]. Despite reduced MPS with both p70S6K1 inhibi-
tion and 4E-BP1 activation, only activation of 4E-BP1 in TSC1-knockout muscle improved
muscle size, function, and the induction of autophagy by fasting despite no change in
ULK1 phosphorylation. TSC1 muscle-knockout mice exhibited greater protein aggregates
and histological indications of accumulated mitochondria and lipofuscin; characteristic of
blunted mitophagy and lysosome function. Importantly, activation of 4E-BP1 ameliorated
signs of mitochondrial and lysosomal dysfunction present with mTORC1 hyperactiva-
tion, suggesting a critical role for 4E-BP1 modulation of autophagy that is independent of
mTORC1-mediated ULK1 phosphorylation.

3.2.4. Autophagy and Mitochondrial Dysfunction

It is well established that mitochondrial dysfunction is a core characteristic of sar-
copenia [126]. Whether aged skeletal muscle mitochondria exhibit a bioenergetic defect is
debated, as respiration measured in isolated mitochondria produce a pronounced age asso-
ciated defect that is less apparent in in situ preparations that maintain mitochondria in their
native cellular environment [208]. This apparent discrepancy may be due to greater fragility
of aged mitochondria that impairs their resilience to standard isolation procedures, thereby
exacerbating respirometric defects [208,209]. Nonetheless, a greater susceptibility to apop-
tosis is a well-documented characteristic of mitochondria from aged muscle [126,210] which
may be secondary to impaired mitophagy [210,211]. Additionally, while mitochondrial
respiration is contingent on physical activity status in aged adults, sensitivity of mitochon-
dria to permeability transition is enhanced by old age regardless of activity status [27],
indicating that perturbations to mitochondrial health and apoptotic susceptibility exists in
aged skeletal muscle independent of intrinsic bioenergetic capacity. While mitochondrial
bioenergetic defects in aged skeletal muscle are not a universal finding, it is important to
recognize that high-resolution respirometry, often used to measure mitochondrial function,
commonly employs substrate-uncoupler-inhibitor-titration (SUIT) protocols that measure
mitochondrial respiration in the presence of kinetically saturating concentrations of ADP
that are several-fold higher than physiological ADP concentrations. Indeed, when tested at
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physiologically relevant ADP concentrations, in situ preparations of human aged skeletal
muscle exhibit a respirometric defect and a higher Km for ADP when compared to young
muscle [212], suggesting impaired ADP sensitivity in mitochondria from aged muscle.
High-fat-diet feeding, which results in obesity and impairs mitochondrial health [213],
also induces skeletal muscle respirometric defects at submaximal but not maximal ADP
concentrations in rodents, despite the greater abundance of mitochondrial proteins [214].
Interestingly, in a murine model of sarcopenic obesity, mitochondrial uncoupling enhanced
markers of mitophagy and improved skeletal muscle mass and function [215]. These data
imply that the removal of dysfunctional mitochondria is critical for improving muscle
function during sarcopenic obesity. Given that mitochondria exhibit a high spare capacity
for ATP production during repeated muscle contraction, it is unclear if marginal reductions
in bioenergetic function would perturb cellular homeostasis or produce an energetic defect
at rest. However, the potential for greater reactive oxygen species production can induce
damage to mitochondrial components for which there may be insufficient mitophagy to
mitigate in aged muscle.

3.2.5. Ca2+ Dysregulation in Sarcopenia

Oxidative stress produced by the accumulation of dysfunctional mitochondria can
also damage cellular structures that are near the damaged mitochondria. Indeed, in muscle,
mitochondria share an intimate role with the ER/sarcoplasmic reticulum (SR) and influence
Ca2+ homeostasis. Skeletal muscle function relies heavily on the propagation of signals
from the neuromuscular junction to the transverse tubules to the SR, a specialized portion
of the ER in striated muscle that mediates the release of Ca2+ ions through the ryanodine
receptor to initiate muscle contraction. Disruption of Ca2+ handling by the SR can lead
to elevated cytosolic Ca2+ and in turn, exacerbates mitochondrial reactive oxygen species
(ROS) production. Oxidation of the ryanodine receptor is greater in aged than in young
muscle, which can result in Ca2+ “leakage” from the SR into the cytoplasm [216]. Muscles
from mice expressing a mutated form of the ryanodine receptor that enhances SR Ca2+

leakage present similar contractile deficits as aged mice [216]. In agreement with these find-
ings, Delrio-Lorenzo et al. [217] found that skeletal muscle SR Ca2+ concentration decreases
with age in drosophila melanogaster. Furthermore, the decrease of Ca2+ concentration was
closely correlated with reduced physical function and not observed in neurons, highlighting
a tissue specific dysregulation of Ca2+ homeostasis [217]. In addition to dysfunction at
the ryanodine receptor, sarcopenia is also associated with reduced sarcoplasmic reticulum
Ca2+ ATPase (SERCA) pump activity [218]. The SERCA pump is important for reuptake of
Ca2+ from the cytosol to the SR at the end of an electrically evoked stimulus. Interestingly,
treatment of aged mice with the allosteric SERCA activator CDN1163 improved indices of
muscle function and attenuated mitochondrial dysfunction [218]. Furthermore, CuZnSOD
deficient (Sod1-/-) mice, a model of premature aging, also exhibited reduced SERCA pump
activity and skeletal muscle contractile deficits that are rescued by CDN1163 treatment [219].
Taken together, it appears that oxidative stress during advanced age perturbs SERCA pump
function and elevates cytosolic skeletal muscle Ca2+, which can amplify mitochondrial
dysfunction and contribute to declines in contractile function.

In addition to dysfunctional Ca2+ reuptake, there is evidence that store-operated
Ca2+ entry (SOCE) is inefficient in sarcopenic muscle and may contribute to declines in
skeletal muscle performance. SOCE is critical to maintain intracellular Ca2+ homeostasis as
ER/SR Ca2+ stores are depleted. In brief, reductions in ER/SR Ca2+ are sensed by the Ca2+

sensor stromal interaction molecule 1 (STIM1), which resides on the ER/SR membrane
and in response to Ca2+ depletion aggregates to ER/SR locales proximal to the plasma
membrane [220]. STIM1 interacts with the plasma membrane channel Orai Ca2+ release-
activated Ca2+ modulator 1 (Orai1) [221], which facilitates extracellular Ca2+ entry into
the ER/SR. Indeed, the importance of SOCE for skeletal muscle health is apparent in mice
with STIM1 haploinsufficiency, which exhibit markedly greater muscle fatigability [222].
Furthermore, mice that express a dominant negative form of Orai1 display both reduced
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skeletal muscle mass as well as enhanced susceptibility to fatigue during repeated muscle
contraction [223]. Investigations regarding the relevance of SOCE to aging-associated
functional deficits have revealed that skeletal muscle SOCE function is reduced in aged
animals despite sustained STIM1 and Orai1 mRNA expression [224,225], although this has
been challenged [226]. During ex vivo contractility assays, it was revealed that inhibition
of SOCE reduces contractile activity in skeletal muscle from young but not aged animals,
an effect that was most prominent at high frequency stimulation [225]. These data suggest
that there exists a lack of SOCE contribution to contractile function at high intensities
in geriatric muscle. Interestingly, aged skeletal muscle was shown to contain reduced
abundance of the synaptophysin-related membrane protein Mitsugumin 29 (MG29) that
regulates SR and transverse tubule contact sites [227]. A lack of MG29 has been shown to
reduce skeletal muscle contractile function [228] as well as compromise SOCE [224]. These
findings reveal that in addition to enhanced Ca2+ leakage from the ER/SR, inadequate
SOCE may contribute to a dysregulation of Ca2+ homeostasis that compromises function in
aged skeletal muscle.

4. Therapeutics for the Treatment of Sarcopenia

The evidence for non-pharmacological approaches to mitigating or preventing sarcope-
nia suggests that both exercise [229,230] and to a lesser extent caloric restriction [231–233] re-
duce age-associated muscle quality decline, although there exist concerns that a hypocaloric
diet may also reduce lean mass [234,235]. Furthermore, although combined caloric restric-
tion and exercise may yield the most benefit, attrition to lifestyle intervention may not be a
practical solution for some individuals suffering from comorbidities or mobility impair-
ments. Thus, pharmacological agents that mimic the benefits gained from routine exercise,
caloric restriction, or dietary interventions are attractive therapeutic targets to prevent or
mitigate sarcopenia (Figure 4).

4.1. Branched-Chain Amino Acid Supplementation

Branched-chain amino acids (BCAAs) play a crucial role as both signaling molecules
and substrates for protein synthesis. Low blood levels of BCAAs are associated with sar-
copenia and reduced physical function [236]. Ingestion of BCAAs was shown to enhance
early post prandial myofibrillar protein synthesis in older males (~70 years old) [237].
Among the three BCAAs (leucine, valine, and isoleucine), leucine is considered to be the
primary modulator of muscle anabolism. Analysis of dietary leucine intake and mus-
cle mass have revealed that leucine intake is correlated to the preservation of lean mass
over the course of 6 years in older (>65 years) but not younger subjects [238]. Addition-
ally, Devries et al. [239] found that the acute induction of MPS in healthy older women
(65–75 years) that ingested either 10 g of milk or 25 g of whey protein isolate was similar
when leucine content was matched. These data reveal that the BCAA content of a meal is a
primary determinant of the anabolic response to feeding. However, it is necessary to keep
in mind that the consumption of BCAAs without dietary inclusion of other essential amino
acids may not be as beneficial, as protein synthesis requires both anabolic signaling and
adequate availability of other amino acids [240]. Nonetheless, short term supplementation
of BCAAs in combination with other amino acids for 5 weeks revealed positive effects on
sarcopenic parameters in elderly patients. However, the reported benefits were lost after
12 weeks of discontinuation [241]. Taken together, the available literature suggests that
greater BCAA consumption, particularly that of leucine, in combination with adequate
protein intake may be effective at preserving muscle mass in elderly individuals.



Cells 2023, 12, 249 16 of 30Cells 2023, 12, 249 16 of 29 
 

 

 
Figure 4. Potential therapeutic interventions to treat sarcopenia. Calorie restriction, rapamycin, 
and rapalogs can enhance skeletal muscle quality through inhibition of mTORC1 signaling and en-
hancement of autophagy and cellular quality control mechanisms. Administration of BAM15 and 
urolithin A improves muscle mass and quality in sarcopenic obesity through depolarization of mi-
tochondria and subsequent mitophagic clearance, thereby dynamically maintaining the health of 
the mitochondrial pool. Testosterone and SARMs improve skeletal muscle mass through androgen 
receptor (AR)-mediated mechanisms, while finasteride is used to diminish androgenic signaling by 
inhibiting dihydrotestosterone (DHT) production. Antibodies used to target both myostatin 
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thereby reducing catabolic gene expression and facilitating skeletal muscle anabolism. 

4.1. Branched-Chain Amino Acid Supplementation 
Branched-chain amino acids (BCAAs) play a crucial role as both signaling molecules 

and substrates for protein synthesis. Low blood levels of BCAAs are associated with sar-
copenia and reduced physical function [236]. Ingestion of BCAAs was shown to enhance 
early post prandial myofibrillar protein synthesis in older males (~70 years old) [237]. 
Among the three BCAAs (leucine, valine, and isoleucine), leucine is considered to be the 
primary modulator of muscle anabolism. Analysis of dietary leucine intake and muscle 
mass have revealed that leucine intake is correlated to the preservation of lean mass over 
the course of 6 years in older (>65 years) but not younger subjects [238]. Additionally, 
Devries et al. [239] found that the acute induction of MPS in healthy older women (65–75 
years) that ingested either 10 g of milk or 25 g of whey protein isolate was similar when 
leucine content was matched. These data reveal that the BCAA content of a meal is a pri-
mary determinant of the anabolic response to feeding. However, it is necessary to keep in 
mind that the consumption of BCAAs without dietary inclusion of other essential amino 
acids may not be as beneficial, as protein synthesis requires both anabolic signaling and 
adequate availability of other amino acids [240]. Nonetheless, short term supplementation 
of BCAAs in combination with other amino acids for 5 weeks revealed positive effects on 
sarcopenic parameters in elderly patients. However, the reported benefits were lost after 

Figure 4. Potential therapeutic interventions to treat sarcopenia. Calorie restriction, rapamycin,
and rapalogs can enhance skeletal muscle quality through inhibition of mTORC1 signaling and
enhancement of autophagy and cellular quality control mechanisms. Administration of BAM15
and urolithin A improves muscle mass and quality in sarcopenic obesity through depolarization of
mitochondria and subsequent mitophagic clearance, thereby dynamically maintaining the health of
the mitochondrial pool. Testosterone and SARMs improve skeletal muscle mass through androgen
receptor (AR)-mediated mechanisms, while finasteride is used to diminish androgenic signaling by
inhibiting dihydrotestosterone (DHT) production. Antibodies used to target both myostatin (MSTN)
or the activin type II receptor inhibit myostatin-mediated signaling upstream of SMAD2/3, thereby
reducing catabolic gene expression and facilitating skeletal muscle anabolism.

4.2. Rapamycin, Rapalogs, and Calorie Restriction

Recently, interest has grown over the use of mTORC1 inhibitors and calorie restriction
mimetics as a potential treatment for sarcopenia. Indeed, the use of rapamycin and rapalogs
have proven to be beneficial in ameliorating age-associated skeletal muscle defects in
preclinical models [43,117,122]. Interestingly, while rapamycin is considered to act through
a similar mechanism as calorie restriction, a recent study by Ham et al. [125] has revealed
that rapamycin improves aging-associated skeletal muscle outcomes through mechanisms
that are separate from caloric restriction. Rapamycin treatment tended to reverse age
related gene expression patterns which were often augmented by caloric restriction in old
animals, indicating divergent regulation of gene expression between the two interventions.
Caloric restriction has been shown to reduce muscle fiber central nucleation and p62
protein accumulation in skeletal muscle TSC1-knockout mice, without altering Sqstm1
gene expression, autophagic flux, or diminishing mTORC1 activation [125]. These data
indicate that caloric restriction can improve muscle degeneration through mechanisms that
are independent of mTORC1 suppression. However, it is worth noting that improvements
in skeletal muscle mass after caloric restriction were largely only positive when muscle
mass was normalized to body mass, which tended to be significantly lower in aged calorie
restricted mice. After caloric restriction, absolute mass of several hindlimb muscles in
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old mice were the same or diminished when compared to ad libitum fed old mice, which
was also mirrored in fiber cross sectional area [125]. Furthermore, absolute force tended
to be similar or lower in aged calorie restricted mice when compared to aged ad libitum
mice, while specific force tended to improve [125]. These results suggest that while calorie
restriction may negatively affect absolute muscle mass, relative muscle mass and quality
may be improved during aging (Figure 4).

4.3. Mitochondrial Uncouplers

Indeed, mTORC1 inhibitors are not the only pharmaceutical agents with alleged bene-
fits for aging associated muscle defects. Dietary supplementation with the mitochondrial
uncoupler BAM15 induced markers of mitophagy and improved muscle mass in a murine
model of sarcopenic obesity [215]. Administration of BAM15 reduced both ER stress and
apoptotic signaling in the skeletal muscle of sarcopenic obese mice. Interestingly, while
mTORC1 activation was not diminished there was a marked upregulation of AMPK phos-
phorylation concomitant with greater mitochondrial volume. Similar to BAM15, in vitro
administration of urolithin A to the myoblast line of C2C12 cells reduces ∆ψm and en-
hances mitophagy. When given to aged mice on either a chow or a high-fat diet, dietary
administration of urolithin A potently enhanced skeletal muscle physical function with-
out changes to body mass. Improvements in physical function were concomitant with
enhanced AMPK phosphorylation and greater abundance of markers of autophagy and
mitophagy [242]. These data provide evidence that enhancing mitophagy to maintain
the health of the skeletal muscle mitochondrial pool is advantageous for treatment of
sarcopenic obesity (Figure 4).

4.4. Androgens and SARMs

Given the association between sarcopenia and hypogonadism, targeting of the andro-
gen receptor via selective androgen receptor modulators (SARMs) and testosterone has
been investigated as viable therapeutics for sarcopenia. The administration of exogenous
testosterone, while known to substantially enhance skeletal muscle mass [243], is also
associated with adverse outcomes regarding prostate health [244]. Co-administration of
testosterone and the type II 5α-reductase inhibitor finasteride to older men (60–80 yrs.
old) results in significant enhancements in skeletal muscle mass as well as strength with-
out adverse outcomes in prostate size, indicating that androgen receptor activation in
combination with type II 5α-reductase inhibitors may be a viable strategy to improve
sarcopenia [245]. Activation of the androgen receptor using nonsteroidal SARMs has sev-
eral benefits over testosterone due to their tissue selective anabolic properties. In female
patients with sarcopenia, administration of the SARM MK-0773 for 6 months produced
significant enhancements in lean body mass but failed to significantly improve physical
function over placebo [246]. In contrast, the SARM GTx-024 improved both lean body mass
and functional outcomes in healthy older men and women, which was concomitant with
favorable metabolic indices (Figure 4).

4.5. Myostatin Inhibitors

Notably, there have also been several drug candidates produced to target myostatin,
a potent negative regulator of skeletal muscle mass. Administration of the human mono-
clonal antibody REGN1033 to target myostatin in mice enhanced both muscle mass and
force production and prevented muscle atrophy induced by limb immobilization. Treat-
ment of aged mice with REGN1033 led to significantly increased muscle mass and force
production without a loss in specific force, indicating a preservation of muscle quality [247].
Subcutaneous injections of the anti-myostatin antibody LY2495655 were tested in humans
aged 75 and older who had a fall within the previous year and exhibited low muscle
strength to determine how LY2495655 would alter appendicular lean mass and physical
function [248]. The results indicated that LY2495655 treatment improved appendicular
lean mass and physical performance measures as objective measures that heavily relied
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on power generation. Like antibodies that bind and neutralize myostatin, monoclonal
antibodies that bind type II activin receptors and thus prevent myostatin associated sig-
naling have also shown promise. For example, in a 24-week, randomized, double-blind,
placebo-controlled study, the use of the type II activin receptor antagonist bimagrumab
in sarcopenic community-living men and women aged 65 and older resulted in a greater
accrual of lean body mass and appendicular lean mass than placebo [249]. The greater
accrual of lean body mass and muscle volume were evident in as short as two weeks of
treatment [249]. Additionally, while bimagrumab treatment did not improve six-minute
walk distance between groups, there was a significant improvement in six-minute walk
distance in the slowest walkers after bimagrumab treatment when compared to placebo
controls. This suggests that bimagrumab treatment improved functional outcomes in those
with the largest deficits in mobility based physical function. Additional work is needed to
optimize bimagrumab, or other compounds that block type II activin receptors and eval-
uate muscle function, mobility, and muscle mass after long term treatment in the elderly.
However, the initial data after acute administration suggest that this might be a beneficial
approach for reducing sarcopenia (Figure 4).

4.6. Present Challenges and Future Direction

Currently, there are no approved drugs for the treatment of sarcopenia. Recent and
past findings have shown that a finely tuned balance between anabolic and catabolic
processes is required to maintain adequate muscle quality and mass in older ages. Questions
remain regarding the appropriate degree of caloric restriction to combat age related muscle
dysfunction. An important variable to consider when interpreting the impact of caloric
restriction is to differentiate between the benefit of an energy deficit vs. the maintenance
of a reduced body weight. A perpetual caloric deficit would result in a chronic loss of
body mass and exacerbate sarcopenia. Thus, organisms adapt to reduced caloric intake
via weight loss and energy sparing processes to reach an equilibrium between calorie
expenditure and calorie intake. It is unclear how much of the purported benefit of calorie
restriction is due to an incurred energy deficit vs. the maintenance of a healthier lower body
weight (primarily reduced fat mass). Additionally, caloric restriction is difficult to execute
consistently and effectively in a clinical setting. It is possible that regimens consisting
of interspersed periods of caloric restriction with isocaloric diets may activate cellular
pathways that confer protection against sarcopenia without compromising absolute skeletal
muscle mass. Furthermore, while extensive lifestyle modification may not be a practical
and viable option for elderly patients, small amounts of physical activity may improve
autophagy/mitophagy and be augmented pharmaceutically to allow for even a greater
benefit on muscle quality. A combination of exercise that is coupled with supplementation
with the polyphenol resveratrol has also been shown to augment exercise adaptations in
older men and women to offset sarcopenia [250]. This suggests that the benefit incurred
from physical activity can be pharmaceutically amplified. Future research should elucidate
interactions between pharmaceutical agents with exercise and/or dietary manipulation as
potential avenues to combat sarcopenia.

5. Conclusions

The primary cause of cellular dysregulation that contributes to sarcopenia develop-
ment remains elusive. However, recent findings implicate dysregulated proteostasis as an
important characteristic of skeletal muscle in aged hosts that may contribute to muscle at-
rophy and functional decline leading to sarcopenia. Additionally, given the multi-factorial
aspect of sarcopenia, effective treatment will likely be best achieved by addressing multiple
pathways that contribute to the loss of muscle function and mass with aging. Furthering
our understanding of the causes and consequence of dysfunctional proteostasis in aged
skeletal muscle will allow for the development of targeted treatments to ameliorate one of
the most debilitating geriatric conditions.
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