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Abstract: Bronchodilators and anti-inflammatory agents are the mainstream treatments in chronic
obstructive and pulmonary disease (COPD) and asthma. The combination of β2 adrenergic receptor
(β2AR) agonists and muscarinic antagonists shows superior bronchoprotective effects compared to
these agents individually. Navafenterol (AZD8871) is a single-molecule, dual pharmacology agent
combining muscarinic antagonist and β2AR agonist functions, currently in development as a COPD
therapeutic. In precision-cut human lung slices (hPCLS), we investigated the bronchoprotective
effect of navafenterol against two non-muscarinic contractile agonists, histamine and thromboxane
A2 (TxA2) analog (U46619). Navafenterol pre-treatment significantly attenuated histamine-induced
bronchoconstriction and β2AR antagonist propranolol reversed this inhibitory effect. TxA2 analog-
induced bronchoconstriction was attenuated by navafenterol pre-treatment, albeit to a lesser mag-
nitude than that of histamine-induced bronchoconstriction. Propranolol completely reversed the
inhibitory effect of navafenterol on TxA2 analog-induced bronchoconstriction. In the presence of
histamine or TxA2 analog, navafenterol exhibits bronchoprotective effect in human airways and it is
primarily mediated by β2AR agonism of navafenterol.

Keywords: human airways; asthma; navafenterol; muscarinic antagonist and β2AR agonist; human
precision-cut lung slice

1. Introduction

Asthma and COPD are chronic airway disorders characterized by airway hyperre-
sponsiveness, inflammation and remodeling. Bronchodilators are the critical components
of the therapeutic management of asthma and COPD. In COPD, the combination of a
long-acting muscarinic antagonist (LAMA) and a long-acting β2 adrenergic agonist (LABA)
elicited bronchodilation superior to that by monotherapy with either of these agents [1,2].
Several small, single molecules with dual action—muscarinic antagonism and β2 adren-
ergic agonism (MABA)—have been developed in the past [3–5]. Navafenterol (AZD8871,
LAS191351) is an inhaled MABA currently in development for the treatment of COPD. In a
phase IIa clinical trial (NCT02971293), once daily administration of navafenterol showed
significant and clinically meaningful improvements in lung function-related end points
in moderate to severe COPD patients compared with placebo [6]. In a further phase IIa
clinical trial (NCT03645434), navafenterol demonstrated improved lung function and a
reduction in COPD-related symptoms, similar to the established LAMA/LABA fixed dose
combination umeclidinium/vilanterol in patients with moderate to severe COPD. Previous
ex vivo studies used human bronchi and guinea pig trachea stimulated by electrical filed
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stimulation (EFS) to functionally dissect the muscarinic antagonism from the β2 adrenergic
agonism of navafenterol [7]. In this study, we used precision-cut human lung slices (hPCLS)
to functionally dissect the β2 adrenergic agonism of navafenterol. Compared to in vivo
animal models and ex vivo studies using animal lung tissue, hPCLS yield physiologically
relevant findings with translational significance. Instead of EFS stimulation, we used two
physiologically relevant contractile agonists (histamine and a thromboxane A2 analog) in
the presence of the β adrenergic blocker propranolol to functionally isolate the β2 adren-
ergic agonism of navafenterol. Since navafenterol is a known muscarinic antagonist, we
used non-muscarinic contractile agonists to examine the β2AR agonism of this drug. With
a focus on β2AR agonism, our findings advance the pharmacological characterization
of navafenterol using a physiologically relevant ex vivo platform and supplement other
preclinical studies on this investigative drug.

2. Materials and Methods
2.1. Human Precision-Cut Lung Slices (hPCLS)

Precision-cut lung slices were prepared from normal human donor lungs (n = 6) as
previously described [8]. These samples are exempt from the IRB approval requirement
since they are de-identified human tissue. Donor demographics are listed in Table 1.

Table 1. Characteristics of human lung donors (n = 6). Qualitative and quantitative characteristics
of 6 lung donors used in the study are listed. In total, 5 donors were used in each histamine and
thromboxane experiment (4 donors were used in both experiments). The cause of mortality for these
donors ranged from head trauma to cerebrovascular disease with no reported lung pathology.

Mean Age (SD) 38.8 (8.7)

Sex
M 04

F 02

Race

Caucasian 03

Black 02

Hispanic 01

BMI, Kgm−2 (SD) 32.5 (8.3)

2.2. Reagents

Navafenterol was provided by AstraZeneca. Propranolol HCl, diluent DMSO, his-
tamine dihydrochloride and thromboxane A2 analog (U46619) were obtained from Sigma
Aldrich (St. Louis, MO, USA). HAM/F-12 cell culture medium, PBS and media supplements
were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

2.3. Reconstitution of Reagents and Exposure Protocol

Navafenterol (10 mM) was reconstituted in DMSO and stored at −20 ◦C. Propra-
nolol HCl (10 mM) and histamine dihydrochloride (10 mM) were freshly prepared in
sterile HAM/F-12 cell culture medium without serum. Thromboxane A2 analog (U46619,
10 mg/mL, 28.5 mM) was supplied in methyl acetate and stored at −20 ◦C. Ten-fold serial
dilutions of U46619 or histamine were prepared in HAM/F-12 cell culture medium without
serum. Slices were treated with 0.1% DMSO or navafenterol (3, 10, 30, 100 and 300 nM)
for 1 h.

2.4. Generation of Concentration Response Curves

Following exposure to navafenterol or vehicle, slices were exposed to incremental
concentrations of histamine (10−10 M to 10−4 M) or U46619 (10−10 M to 10−5 M). Slices
were incubated in each concentration for 5 min in the continued presence of navafenterol
or vehicle. In a subset, 10 µM propranolol was co-incubated with each concentration of
the contractile agonist to block β2AR. The airway lumens were captured and analyzed
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using Image J as previously described [8]. Briefly, the airway lumen images were captured
after incubation with each concentration using an inverted light microscope-linked camera
(40× magnification). The luminal areas were measured in each airway with Image J.
The change in airway lumen area was calculated as the percentage of baseline area of
each airway (percentage bronchoconstriction. Figure S1 shows representative images of
histamine-induced bronchoconstriction from a single donor).

2.5. Sample Size and Data Analysis

Human PCLS from at least 5 independent lung donors (donor characteristics are
provided in Table 1) were used in each experiment. From each donor, 3 slices (technical
replicates) were used for each treatment. The mean or mean± SEM of each experimen-
tal condition are presented in the graph. The means were statistically compared using
GraphPad Prism 9.0, with one-way ANOVA and Dunnett’s test for multigroup compar-
isons or unpaired, two-tailed Student’s t-test for two-group comparisons. The means were
considered significantly different if p < 0.05.

3. Results
3.1. Effect of Navafenterol on Histamine-Induced Bronchoconstriction

Navafenterol (3–300 nM) attenuated histamine-induced bronchoconstriction in a
concentration-dependent manner (Figure 1A,B). In the presence of the β2AR blocker pro-
pranolol (10 µM), navafenterol had little effect on histamine-induced bronchoconstriction
at lower (30 and 100 nM) concentrations (Figure 1C,D). However, the highest concentration
(300 nM) of navafenterol still attenuated histamine-induced bronchoconstriction in the
presence of propranolol. The potency of histamine (p[EC]50) was not significantly different
in the presence or absence of propranolol (Figure 1E). In slices treated with navafenterol
(30 and 100 nM), propranolol increased the potency of histamine compared to the slices
not treated with propranolol (Figure 1E). With or without propranolol, histamine-induced
maximal contraction (Emax) was not significantly different in the presence of navafenterol
(Figure 1F).
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Figure 1. Effect of navafenterol (Nav) on histamine-induced bronchoconstriction. (A,B) Navafen-
terol attenuates histamine-induced bronchoconstriction in a concentration-dependent manner
(n = 5 donors, p < 0.0001, one-way ANOVA, all conditions compared to Veh). (C,D) In the presence of
propranolol (10 µM), the inhibitory effect of navafenterol on histamine-induced bronchoconstriction
is reversed, except at the highest (300 nM) concentration (n = 5 donors, p < 0.05, one-way ANOVA, all
conditions compared to Veh). (E) Propranolol has little effect on histamine potency at the baseline
(Veh), while significantly increasing histamine potency in navafenterol-treated airways (n = 3 to
5 donors, * p = 0.0003, ** p < 0.0001, NS- not significant, compared to Veh without propranolol (black
bar); NS under black line: not significant compared to Veh with propranolol (white bar); one-way
ANOVA with Tukey’s multi-group comparison test. Data points for E were obtained from B and D).
(F) Maximal contraction (Emax) showed a reduced trend in the presence of 100 nM Navafenterol and
the absence of propranolol (n = 3 to 5 donors, one-way ANOVA with Tukey’s multiple comparison
test, none of the groups were statistically significant).

3.2. Effect of Navafenterol on Thromboxane-Induced Bronchoconstriction

Our findings show that navafenterol had H1 receptor antagonism at the highest concen-
tration. To functionally isolate the β2AR agonism of navafenterol, we measured the effect
of navafenterol on thromboxane A2 analog-induced bronchoconstriction. Navafenterol
attenuated thromboxane-induced bronchoconstriction only at the highest concentration
(300 nM) (Figure 2A,). Blocking of β2AR by propranolol completely reversed the inhibitory
effect of navafenterol (Figure 2C,D). Thromboxane A2 analog-induced bronchoconstriction
at the baseline conditions was not affected by propranolol. However, in the presence
of navafenterol, propranolol slightly enhanced the potency of thromboxane (Figure 2E).
Navafenterol had little effect on thromboxane-induced maximal bronchoconstriction (Emax)
in the presence or absence of propranolol (Figure 2F).
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Figure 2. Effect of navafenterol (Nav) on thromboxane-induced bronchoconstriction. (A,B) The high-
est concentration of navafenterol (300 nM) attenuates TxA2-induced bronchoconstriction (n = 5 donors,
p < 0.05, one-way ANOVA, all conditions compared to Veh). (C,D) In the presence of propranolol
(10 µM), the inhibitory effect of navafenterol on TxA2-induced bronchoconstriction is reversed (n = 3
to 5 donors, p < 0.05, one-way ANOVA, all conditions compared to Veh). (E) Propranolol has
little effect on TxA2 potency at the baseline (Veh) while significantly increasing TxA2 potency in
navafenterol-treated airways (n = 3 to 5 donors, p < 0.05, unpaired Student’s t-test comparing each
pair as indicated in the graph). (F) Navafenterol has little effect on TxA2-induced maximal contraction
(Emax) in the presence or absence of propranolol (n = 3 to 5 donors, one-way ANOVA with Tukey’s
multi-group comparison test).
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4. Discussion

Navafenterol is a novel, single-molecule, dual pharmacology bronchodilator com-
bining muscarinic (M3) cholinergic receptor antagonist and β2AR agonist functions [7].
Previous pharmacological characterizations of navafenterol were performed in isolated
human bronchi and guinea pig tracheal rings using electrical field stimulation (EFS). Stud-
ies also focused on guinea pig and canine models to assess the bronchoprotective and
off-target effects of navafenterol. The objective of the current study is to functionally disso-
ciate the β2AR agonism of navafenterol from its reported antagonism towards histamine
(H1) receptors.

Human PCLS is an innovative ex vivo platform to characterize investigational drugs,
toxicants and infectious agents. The direct physiological measurements from small airways
in hPCLS have immense physiological and translational values compared to other pre-
clinical models. The current study is yet another piece of evidence that demonstrates the
application of hPCLS in the pharmacological characterization of a drug targeting distinct
receptors in human airways.

A number of investigational drugs with combined muscarinic antagonist and β2
adrenergic agonist activities have been developed [3,5,9]. These small molecules are
combined antagonist and agonist entities connected by a chemical linker with the structure
of the linker influencing the balance between muscarinic antagonist and β2AR agonist
functions. In isolated human bronchi, navafenterol showed more dominant muscarinic
antagonism than β2AR agonism compared to batefenterol (GSK961081), another MABA [7].
The same study identified navafenterol to have moderate affinity for histamine H1 receptors
(IC50 = 85 nM, p[IC]50 = 7.1). Our findings support this observation by showing that 300
nM of navafenterol retains the inhibitory effect on bronchoconstriction in the presence of
propranolol with a similar measure of compound affinity (pA2) of 7.5 (Table 2).

Table 2. Potency (p[EC]50) of histamine in the presence or absence of propranolol and navafenterol.
The p[EC]50 values from histamine cumulative concentration–response curves were used to calculate
pA2 values for navafenterol in the presence of propranolol-induced β2AR blockade. Compared to
vehicle control, the p[EC]50 of histamine in the presence of 300 nM navafenterol was significantly
decreased (* p < 0.05, one-way ANOVA with Dunnett’s multiple comparison test, n = 4 donors). This
was used to determine a pA2 value for navafenterol at the histamine receptor of 7.5.

Treatment
DMSO 0.1%

p[EC]50

Histamine p[EC]50 in the Presence of Propranolol

30 nM
Navafenterol

100 nM
Navafenterol

300 nM
Navafenterol

Mean ± SEM 7.25 ± 0.43 6.95 ± 0.09 6.69 ± 0.20 * 6.16 ± 0.16

Thromboxane is one of the several prostanoids with roles in airway inflammation
and hyperresponsiveness (reviewed in [10]). Acting through thromboxane prostanoid
(TP) receptors, TxA2 signals through Gαq/11, mobilizing cytosolic Ca2+ and eliciting bron-
choconstriction. Thromboxane A2 analog-induced bronchoconstriction was used to fur-
ther demonstrate the β2AR agonism of navafenterol. In contrast to histamine-induced
bronchoconstriction, the inhibitory effect of navafenterol on TxA2 analog-induced airway
narrowing was modest, showing significant inhibition only at the highest concentration of
the drug. However, the complete reversal of that navafenterol inhibition in the presence of
propranolol suggests that thromboxane prostanoid (TP) receptors are not antagonized by
navafenterol.

In summary, we have functionally distinguished the histamine antagonism of navafen-
terol from its β2AR agonism using two distinct contractile agonists in human small airways.
These findings demonstrate that the bronchoprotective effect of navafenterol in human
small airways is primarily mediated through β2AR agonism (summarized in Figure 3).
Further studies are required to determine if the H1 antagonism seen with navafenterol
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may contribute to a therapeutically meaningful bronchoprotective effect in diseases where
histamine may play a role.
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