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Abstract: Prion diseases are neurodegenerative disorders that are progressive, incurable, and deadly.
The prion consists of PrPSc, the misfolded pathogenic isoform of the cellular prion protein (PrPC).
PrPC is involved in a variety of physiological functions, including cellular proliferation, adhesion,
differentiation, and neural development. Prion protein is expressed on the membrane surface of
a variety of stem cells (SCs), where it plays an important role in the pluripotency and self-renewal
matrix, as well as in SC differentiation. SCs have been found to multiply the pathogenic form of
the prion protein, implying their potential as an in vitro model for prion diseases. Furthermore,
due to their capability to self-renew, differentiate, immunomodulate, and regenerate tissue, SCs
are prospective cell treatments in many neurodegenerative conditions, including prion diseases.
Regenerative medicine has become a new revolution in disease treatment in recent years, particularly
with the introduction of SC therapy. Here, we review the data demonstrating prion diseases’ biology
and molecular mechanism. SC biology, therapeutic potential, and its role in understanding prion
disease mechanisms are highlighted. Moreover, we summarize preclinical studies that use SCs in
prion diseases.
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1. Introduction

The normal physiological cell-surface prion protein (PrPC) is highly expressed in
a variety of tissues in mammalian species [1,2]. During the early embryogenesis stage, PrPC

plays an important role in neural development and adult neurogenesis as well [3]. Lopes
and his colleagues showed that PrPC stimulates polarization in synapse development in em-
bryonic hippocampal neuron cultures [4]. PrPC has been involved in a variety of functions
including signal transduction [5], cell adhesion, and antiapoptosis activity [6], neuronal
differentiation, neurite outgrowth [7], and proliferation and neuronal differentiation of
stem cells (SCs) [8,9]. On the other hand, PrPC also undergoes a conformational conversion
into a misfolded β-sheet-rich structure known as PrP scrapie (PrPSc). It has been reviewed
that once aggregates of PrPSc deposit within brain tissue, they induce the neuropathological
characteristics of prion diseases, or transmissible spongiform encephalopathies (TSEs),
including vacuolization (spongiosis), neuronal death, and PrPSc deposits [10].

Scrapie, which affects sheep and goats, was the first prion disease discovered in ani-
mals. Later, cattle were diagnosed with prion disease (bovine spongiform encephalopathy;
BSE); deer, elk, and moose (chronic wasting disease; CWD), minks (transmissible mink
encephalopathy), and felines (feline spongiform encephalopathy) can manifest forms of the
disease [11]. In humans, most cases occur sporadically due to the spontaneous misfolding
of PrPC into PrPSc. An example of sporadic human prion disease is sporadic Creutzfeldt–
Jakob disease (CJD). Jeong and Kim reviewed the examples of the genetic forms of human
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prion disease including fatal familial insomnia, Gerstmann–Sträussler–Scheinker disease
(GSS), and familial CJD [12]. Due to the potential transmission between other species and
humans, the scientific community has placed a particular emphasis on prion diseases.

No potential therapeutic agents or treatments are available for prion diseases, except
those available for the inhibition of PrPSc accumulation and to decrease the conversion of
PrPC into PrPSc [13,14]. Unfortunately, when delivered at the late stage of the disease, these
drugs have not shown in vivo efficacy [15]. Therefore, it is important to develop treatments
that target prion propagation and pathogenesis. Moreover, although prion research has
greatly progressed over the last few decades, many unanswered concerns remain regarding
prion replication processes, cell toxicity, genetic susceptibility variations associated with
prion strains, and the nature of prion strains. SCs are self-renewing multilineage differ-
entiated cells that can be isolated from various sources of tissues including bone marrow
(BM), adipose tissue, brain, blood, dental pulp, synovial fluids, and other tissues [16,17]. In
addition to their significant regenerative and immunomodulatory activities, SCs are also
being utilized as essential cell models to understand the mechanism of several diseases.
Neural SCs (NSCs) comprise a promising key subset of SCs currently being employed as
a potential therapy for prion diseases. Thus, SCs might be a good cell model to understand
the mechanism of prion disease and as a promising therapy as well. In this paper, we first
discuss the molecular biology of prion disease. In addition, we highlight the proposed
roles of SCs as a potential in vitro model for prion diseases and their promising therapeutic
application for prion diseases.

2. Molecular Biology and Pathogenesis of Prion Diseases

It has been concluded that prion diseases are deadly, transmissible, and irreversible
neurodegenerative disorders triggered by aberrant aggregated prion proteins in a wide
variety of hosts (Figure 1) [18,19].
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Figure 1. Cause and host diversity of prion diseases. Created with BioRender.com (accessed on 27
September 2023).

TSE is subdivided into CJD and kuru for humans, scrapie for sheep, and BSE for
cattle [18]. Prion disorders can be sporadic, inherited, or acquired and are transmissible
within and between mammalian species [20]. There have been numerous cases of variants
of CJD resulting from the transmission of BSE to humans [21]. The suffering of millions of
animals from BSE causes major food crises worldwide. The cellular-host-encoded prion
protein is an alpha-helical neuronal glycoprotein [22]. However, the role of PrPC has not
been entirely elucidated. Nevertheless, Westergard et al., 2007 reviewed that PrPC has
important physiological functions regarding cellular proliferation, adhesion, differentiation,
neural development, and immune response due to its location on the cell membrane [23].
Additionally, PrPC has a multimolecular signaling pathway in the neuronal differentiation
process [9,24]. The globular C-terminus, which contains three alpha-helices and two short
ß-strands, in addition to the unstructured N-terminus, is one of the two principal domains
in PrPC. PrPC is found in different cells such as neurons, glial cells, lymphocytes, and
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follicular dendritic cells [25–27]. PrPC is mostly prevalent in brain tissue, although it is also
detected in the heart, skeletal muscle, and kidney, while it is barely detected in the liver [2].

PrPC undergoes a conformational change in prion diseases, resulting in a misfolded,
beta-sheet-rich, and aggregation-prone variant (known as PrPSc) (Figure 1), which is a par-
tially protease-resistant isoform [18,19]. A characteristic feature of prion diseases is the
formation of the aberrant isoform PrPSc of the host-encoded PrPC in the central nervous
system. It has been concluded that PrPSc aggregates deposit and propagate inside the brain,
eventually resulting in prion disease pathologies such as neuronal vacuolation, significant
apoptosis, neuroinflammation, and neurotoxicity, all of which cause neurodegenerative dis-
orders [28–30]. The normal isoform PrPC is protease-sensitive (PrPSen), but the pathological
isoform PrPSc is somewhat protease-resistant (also known as PrPres). PrPSc is an infectious
agent without nucleic acid and contains only an abnormal conformer of PrPC, known
as the ‘protein only hypothesis’, which affects the prion propagation and infectivity [19].
Therefore, detection of the protease-resistant core of PrPSc on immunoblotting assay serves
as an accurate molecular marker and aids in the diagnosis of the presence of the infectious
agent [31,32]. The immunoblotting procedure is used and validated for the detection of
protease-resistant PrPSc [33,34].

PrPSc serves as a conformational template, attracting PrPC for subsequent conversion,
and this process is self-replicating. Prions primarily, if not entirely, have a damaging effect
on the central nervous system [30,35]. In prion disorders, the conversion response is critical
for neurotoxicity [35]. However, the underlying cause of neurotoxicity remains unknown.
PrPC is necessary for prion development, as it has been reported that PrPC-deficient animals
are resistant to prions [36]. Moreover, it has been demonstrated that transplanting neural
tissue overexpressing PrPC into the brain of PrP-lacking mice produces excessive levels of
PrPSc and induces prion-like disease characteristics [37]. Furthermore, neurotoxicity was
reversed when the endogenous neuronal PrPC was depleted in established prion-infected
mice [38]. Taken together, these studies suggest that misfolded PrPC elicits neurotoxicity
and neurodegeneration. Therefore, strategies aimed at restoring normal function and pro-
moting neuroregeneration should be pursued for therapeutic advancements. Unfortunately,
no therapies with confirmed advantages against prion diseases are currently available.

3. Current Therapeutic Strategies for Prion Diseases

Treating prion disorders is an incredibly difficult task. There are currently no treat-
ments available for prion disorders [39]. Since the disease proceeds rapidly and is always
deadly, there is an urgent need for medicines that target prion pathogenesis. The finding
that misfolded proteins are implicated in other neurodegenerative disorders is favorably
influencing the field of prion drug research [40]. Effective treatment for prion diseases
should either prevent the formation of misfolded proteins or mitigate the development of
neurotoxic effects. In this section, we briefly summarize the advancements that have led to
improvements in the drug development process for prion disorders.

3.1. Target PrPC

One approach to combating prion diseases is to target PrPC. Numerous PrPC-targeting
therapies have been developed. The utilization of the adult-onset model of PrPC depletion
has provided support for the concept of the efficacy of approaches targeting PrPC [38].
This transgene-modulated elimination of neuronal PrPC during developed prion infection
allowed the animals to remain without symptoms for an extended period and resulted in
the reversal of early spongiform alterations. Anti-PrP monoclonal antibodies, for example,
have been shown to block the integration of PrPC into pathogenic spreading prions in
prion-infected cultured cells, resulting in PrPSc removal [41]. However, this technique may
not be enough for treating patients whose prion disease has already developed to the extent
of showing neuropathological effects.
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3.2. Inhibit the Conversion of PrPC to PrPSc

Because the conversion of PrPC to PrPSc is essential for prion pathogenesis, drugs
that target this pathway are attractive treatment prospects for prion diseases [42]. Many
elements of prion conversion might be studied, for example, compounds such as polysul-
fated polyanionic, polyamine, tetrapyrroles, polyene antibiotics, tetracyclic, tricyclic, and
peptides [43]. Nevertheless, these drugs have minimal therapeutic impact on disease pro-
gression in vivo, poor bioavailability, and need further clinical trials [43]. Moreover, they
have only been demonstrated to slow disease development when given prophylactically
around the time of prion inoculation and when the infection is limited to the lymphoreticu-
lar system [44]. An effective and sensitive prion infectivity bioassay is needed for clinical
diagnostics and to validate the anti-prion substances. Real-time-quaking-induced conver-
sion (RT-QuIC) has recently emerged as a very sensitive technique for detecting PrPSc [45].
RT-QuIC is an in vitro amplification assay that enables the real-time monitoring of the ag-
gregation activity of misfolded prion proteins [45,46]. It serves as a prescreening assay for
substances that potentially prevent the aggregation development of the PrPC to PrPSc such
as doxycycline, carnosic acid, acridine, dextran sulfate sodium, tannic acid, curcumin, and
poly(propylene imine) glycodendrimers [47–50]. Moreover, the RT-QuIC assay currently
provides a validated diagnostic tool for human patients [51]. Different review opinions
stated the capability of the small molecule theragnostic to combine imaging and treatment
at the same time, presenting great promise to treat and diagnose in vivo prion diseases
through its ability to bind with PrPC and consequently prevent prion conversion [52–54].

3.3. Clearance of PrPSc

It is commonly known that PrPSc aggregation in the brain induces neuronal cell death.
As a result, treatments that either increase PrPSc clearance or inhibit its toxicity might be
potentially beneficial [55]. While there is no change in PrPSc levels, therapeutics that sup-
press the unfolded protein response result in clinical improvements. Quercetin, a flavonoid
molecule of the polyphenol group, has been discovered to break down prion fibrils in vitro
in the battle against prion fibrils. Quercetin-like molecules bind to prion fibrils and reduce
the β-strand content by transforming certain β-strands into loop and helical structures,
causing the fibril structure to disaggregate [56]. Our study recently showed that clonidine-
treated prion-infected mice displayed a significant clearance of accumulated PrPSc by
stimulating the glymphatic system, the brain’s perivascular waste-clearing mechanism [33].
However, clonidine did not completely cure the prion-infected mice.

4. Mesenchymal SCs (MSCs)

Hoang et al., 2022 reviewed that MSCs have unique abilities such as self-renewal,
differentiation capability, immunomodulation, and migration to injured tissue, making
them excellent candidates for the treatment of musculoskeletal, neurological, eye, oral, and
systemic disorders [57]. Embryonic SCs (ESCs), induced pluripotent SCs (iPSCs), and adult
MSCs are the three major types of SCs used for treatment purposes (Figure 2).

The pluripotent capacity and ethical concerns (use of germ cells) are a major challenge
for ESCs (reviewed by Lo and Parham) [58]. iPSCs do not exist in nature, but they are
reprogrammed in culture by the necessary expression of factors essential for managing
the crucial properties of ESCs [59]. However, genetic mutations, tumorigenesis, immuno-
genicity, and epigenetic abnormalities are the major concerns of the iPSC type [60]. The
third type of SCs is adult MSCs, which are isolated from numerous types of adult organs
and tissues such as BM, adipose tissue, dental pulp, brain, cartilage, synovial fluid, blood,
and other sources [61,62]. Friedenstein and his colleagues pioneered the use of MSCs [63].
Since then, significant advances have been made in describing them. MSCs are now a hot
topic in cell therapy and bioengineering research. They are found in high numbers in
BM, adipose tissues, umbilical cord, peripheral blood, synovial fluid, dental tissues, and
placental tissues. MSCs can be grown in various undifferentiated phases to develop into
highly specialized cells that produce secretory substances, enhancing tissue regeneration in
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the body. In recent years, extensive research has been undertaken on the extraction and
characterization of MSCs derived from diverse sources. However, it has been concluded
that their characterization is still a topic of discussion [64].
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Considerable progress has been made in characterizing adult MSCs. According to
the International Society for Cellular Therapy, the minimum criteria for identifying MSCs
are (1) adhesion to the culture dish, (2) ability to form colony units, (3) trilineage differen-
tiation into adipogenesis, chondrogenesis, and osteogenesis, and (4) positive expression
of cell surface markers CD105, CD90, CD73, major histocompatibility complex (MHC)
class I and negative expression of CD34, CD45, and MHC II [65]. MSCs do not express
MHC II so they are less susceptible to attack by immune cells [66]. Considerable efforts
have been made to regulate the microenvironment of SCs in vitro through factors such as
seeding density, passage number, coating surfaces, and three-dimensional scaffolds [67].
Furthermore, various approaches, including preconditioning with biological agents and
cytokines, genetic alteration, and hypoxia application have been proposed to enhance MSC
characteristics [17,68].

Despite the relevance of MSCs in regenerative medicine, their usage is not without
complications. Earlier research has reviewed that MSCs are very heterogeneous, comprising
cells with various multipotent characteristics [69]. There is still a shortage of understanding
of the molecular process involved in the identification and isolation of MSCs. The immune
system perceives MSCs as invading cells, leading to immunological rejection in specific
types and procedures of MSCs. Additionally, the impact of the inflamed environment on
their differentiation potential still needs to be extensively investigated [70]. Nevertheless,
SC transplantation is already being used to treat a variety of diseases and disorders.

5. Regenerative Potential of MSCs

Hoogduijn and Dor 2013 concluded that BM and adipose tissue MSCs are the generally
well-known adult sources; they are also the most generally used for clinical applications
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due to the less invasive collection, relative abundance inside the body, and excellent tissue
regeneration capabilities [71]. The properties of MSCs vary depending on the tissue from
which they are collected. Adipose tissue-derived MSCs (AdMSCs) demonstrate a high
proliferative capacity and resistance to the effects of aging [72], while BM-derived- MSCs
(BM-MSCs) exhibit high osteogenesis and low proliferation with age [73]. Another impor-
tant source is NSCs, which are self-renewing multipotent cells in the nervous system that
can differentiate into neurons, astrocytes, and oligodendrocytes. Maldonado-Soto et al.,
2014 reviewed that cultured NSCs have contributed to understanding the mechanisms
underlying the formation of neurons and glia [74]. The distinctions among diverse popula-
tions and sources of human MSCs have been highlighted, including their biological features,
surface marker expression, proliferation and differentiation capacity, immune-modulatory
properties, and variances in the extracellular microenvironment [75]. Previously, it was
thought that MSCs had therapeutic potential due to their capacity for differentiation. How-
ever, new research has concluded that MSCs provide biological and regenerative benefits
through the release of paracrine factors [76–78] (Figure 3).
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Figure 3. Strategies enhancing the therapeutic efficacy of mesenchymal stem cells (MSCs) include
tissue regeneration, release of biologically active molecules, and mediation of immunomodulation
including indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), transforming growth factor-
β (TGF-β), interleukin 10 (IL 10), and tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and
interferon-gamma. Created with BioRender.com (accessed on 20 July 2023).

These paracrine factors play an important role in cell-to-cell communication, regulating
cell proliferation and adhesion, and exhibiting immunomodulatory activities [79]. Due to
the interaction between MSCs and immune cells, MSCs play a role for clinical purposes.
MSCs exhibit immunomodulatory mechanisms through the secretion of factors such as
IDO, prostaglandin E2, transforming growth factor-β, and human leukocyte antigen G5,
which interact with immune cells including B and T cells, dendritic cells, and macrophages
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(reviewed by Gao et al., 2016) [80] (Figure 3). MSCs possess immunoregulatory properties
derived from their interactions with immune cells in both the innate and adaptive immune
systems. They can decrease CD8+ T cell proliferation and cytokine production [81], and
increase the percentage of functionally induced CD4+CD25+Foxp3+ regulatory T cells and
IL-10 secretion [82]. Therefore, MSCs are a potential treatment for progressive multiple
sclerosis by inhibiting the proliferation and cytotoxicity of Natural Killer cells and increasing
the production of regulatory T cells [83]. In addition to their immunomodulatory processes,
MSCs release biologically active molecules such as growth factors, cytokines, chemokines,
and exosomes (Figure 3). These paracrine factors are vital in suppressing cell apoptosis
and fibrosis, promoting tissue healing, and stimulating wound remodeling [84]. Zayed
and Iohara reviewed the different types of mature MSC release molecules such as TGF,
hepatocyte growth factor, IDO, vascular endothelial growth factor, insulin-like growth
factor, fibroblast growth factor, macrophage colony-stimulating factor, and cytokines (IL-6,
-8, -10) [85].

Recent research has shown that the paracrine factors indicated above are released
in MSC-derived extracellular vesicles (EVs). EVs serve as essential paracrine regulators
of MSCs that exist in cell supernatants and play an important role in cell signaling. EVs
are classified into four types based on their diameter: exosomes, microvesicles, apoptotic
bodies (formed following cell death), and endosomes [86]. These EVs can encapsulate
and transport various bioactive molecules including proteins, lipids, nucleic acids, and
organelles to contact cells [87]. Exosomes and microvesicles appear to have essential roles
as EV mediators in a wide range of physiological processes. The EV-mediated cellular
communication between MSCs and a variety of target cells, including macrophages, mi-
croglia, chondrocytes, articular chondrocytes, endothelial cells, fibroblasts, pericytes, NSCs,
neurons, hepatic stellate cells, and podocytes, demonstrates MSC-EVs’ therapeutic poten-
tial in immune modulation and tissue repair [88]. Moreover, while EVs and MSCs have
similar therapeutic benefits, EVs have a safety profile superior to that of MSCs due to their
lack of cellular content, decreased immunogenicity, and capacity to pass the blood–brain
barrier as reviewed by Gowen et al., 2020 [89]. Several clinical trials have been conducted
to evaluate MSC-derived EVs for the treatment of lung and kidney fibrosis, spinal cord
injuries, skin injuries, osteoarthritis, and type 1 diabetes [86]. Considering all the benefits
and activities mentioned above, MSCs are concluded to represent a promising cell-based
treatment option for many tissue disorders [16,90–92].

6. MSCs as a Cell Model for Prion Diseases

Prion bioassays in murine mice are commonly utilized to study prion diseases [93].
These costly and time-consuming animal trials, however, are impractical for evaluating
various substances possibly effective for anti-prion therapy, particularly in humans. It
has become obvious, in particular, that anti-prion substances discovered using mouse
prions do not display efficacy against human prion strains, since the desired drugs must
be capable of crossing the blood–brain barrier [94]. The inadequate recapitulation of other
features of human prion disease and the limited lifespan that prevents the development of
a phenotype are among the challenges of using animal models [93]. Thus, more models
are anticipated to be developed to handle the increasingly complicated concerns of prion
biology. As a result, accurate in vitro paradigms for investigating prion propagation are
needed to test potential therapies in a high-throughput manner [95]. Cell culture has long
been employed as an effective tool for molecular biology research, and it continues to
provide vital insights into processes. However, the current cell culture models for human
prion disease are not of sufficient quality, leading to limitations in exploring anti-prion
drugs for clinical application [13]. Prion strain-specific therapeutic effects, the emergence
of drug-resistant prion strains after long-term treatment, and the difficulties of reproducing
human prions in cultured cells are all obstacles [96–100]. A more likely explanation of
the difficulty of propagating human prions in cultured cells is that human prions have
a peculiar feature that makes them difficult to replicate in cultured cells [101,102]. Addi-
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tionally, chromosomal abnormalities and genomic instability can give rise to cancers driven
by aberrant gene expression. Hence, it is important to employ cell lines with consistent
cellular phenotypes and chromosomal stability. To better understand the biological charac-
teristics and therapeutic potential of different therapies, neural cell lines were employed as
a cellular model for prion disease [103,104]. N2a neuroblastoma cells are the most cultured
cell line used for the propagation of prion diseases [105]. GT1 is hypothalamic, and CAD5
catecholaminergic cells have become popular models in prion diseases as well [96]. Prion
strains can potentially infect non-neuronal cells such as fibroblast cell lines (NIH-3T3, L929,
and skeletal myoblasts cells) [106,107]. The microglial cell line MG20 was employed to
investigate the mechanism of the host immune reaction in prion infection [108]. In ad-
dition, genetically engineered cells such as N2a#58, RK13, and NpL2 have been utilized
to explore prion diseases [99,109,110]. Nevertheless, significant drawbacks of employing
mouse cell lines for prion infection have been mentioned, including the cytotoxic effects
associated with prion propagation and cell death after active prion propagation in primary
neurons [111].

MSCs offer significant benefits over other cell lines as a cellular model for prion
diseases. The following are the key benefits of using MSCs as a cell model in studying
cellular and molecular biology.

1. Because SCs are derived from healthy tissues, they constantly exhibit normal physio-
logical conditions.

2. The genomes of SCs are devoid of aberrations and can be exceptionally durable [112].
3. SCs can differentiate into a variety of cell types.
4. SCs can produce organoids, which allow cellular processes to be investigated in the

context of differentiated tissue.

It has been demonstrated that BM-MSCs express PrPC, which decreases with the
subsequent passage [113]. PrPres accumulation in MSCs of experimentally infected mice
might lead to prion manifestations in the brain [114]. The presence of PrPres in BM-MSCs
collected from CJD patients was discovered in the same study, and it was suggested as an
alternate means of diagnosis. Lyahyai and his colleagues demonstrated that MSCs from
ovine peripheral blood have been isolated and characterized, expressing SC markers and
differentiating into adipogenesis, osteogenesis, chondrogenesis, and neurogenesis [115].
According to the findings, MSCs can express the cellular prion protein gene (PRNP),
which is increased during neurogenesis. Taken together, the influence of prion infection
in monolayer-cultured ovine BM-MSCs and BM-MSC-derived spheroids was evaluated,
demonstrating that MSCs could maintain the infection in neurogenic conditions, making
this model potentially useful for prion studies [116]. Moreover, García-Mendívil and his
colleagues studied the potential of ovine MSCs to be infected by natural scrapie and
replicate PrPSc, showing sustained levels of PrPSc postinoculation [117]. Neurons and
astrocytes derived from SCs offer a promising approach to creating a cell culture model
of prion infection and replication [118]. Krejciova and his colleagues demonstrated that
astrocytes derived from human iPSCs could sustain the propagation of prions isolated from
CJD patients’ brain samples [118]. Therefore, MSCs are suitable cell models for establishing
in vitro systems to study prion infectivity and propagation.

7. Modulation of Hematopoietic Stem/Progenitor Cell Fate by Prion Disease

We recently reported that BM-conserved hematopoietic cells differentially express
PrPC, and the expression of PrPC gradually increases depending on more immature
hematopoietic cells [119] (Figure 4).
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Figure 4. A simplified schema of the proposed model. At 5 months post-injection, PrPC-positive HSCs
in ME7-infected middle-aged mice show cell-autonomous apoptosis. At 7 months post-injection, both
PrPC-negative and -positive HSCs in ME7-infected old-aged mice become senescent due to selective
deterioration of the BM microenvironment with aged phenotypes of increased adipogenesis and
osteoclastogenesis via a non-cell-autonomous mechanism.

Hematopoietic SCs (HSCs, phenotypically defined as CD150+CD48-Lineage−Sca-1+c-
Kit+ cells) express approximately 65% of PrPC protein, which is higher than the expression
in Lin−Sca-1+c-Kit+ (LSK) cells (~48%), Lin−Sca-1−c-Kit+ cells (~18%) and Lin− cells
(~17%). PrPC-positive LSK cells and HSCs go through apoptotic cell death in the BM
of ME7-infected middle-aged mice via elevating mitochondrial ROS, Annexin V, p-JNK,
and Caspase 3 levels in a cell-autonomous mechanism. MSCs express around 48% of
PrPC protein in the BM of ME7-infected mice and display cell senescence by upregulating
senescence-related markers such as SA-β-gal activity and p16 in a cell-autonomous mecha-
nism. ME7-infection-caused senescence of MSCs renders the BM microenvironment aged.
The preferentially aged BM microenvironment by ME7 infection causes both PrPC-positive
and negative HSCs to become senescent by upregulating the levels of senescence-related
factors such as mitochondrial ROS, p-p38, p16, and SA-β-gal activity through a non-
cell-autonomous-manner in infected old-aged mice. The identification of hematological
abnormalities in prion disease can aid in the finding of hints to improved survival in
prion-infected individuals. Furthermore, the result raises concerns about the therapeutic
use of BM cells from early prion-infected persons who do not have prion disease-related
symptoms in cancer patients who require BM-conserved HSC transplantation.

8. MSCs as a Potential Therapy for Prion Diseases

The most common neurological disorders include neurodegenerative diseases and
injury to the central or peripheral nervous system. Mahar and Cavalli 2018 concluded that
after neuronal cells have been damaged, it is difficult for them to regain their functions [120].
MSCs have been reviewed as possible therapeutic agents for neurodegenerative disorders
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such as stroke [121], Alzheimer’s disease (AD) [122], Parkinson’s disease (PD) [123], sclero-
sis, and injuries of the spinal cord [124]. Because of the abovementioned potential activities
of MSCs, MSC transplantation into brain lesions improves functional impairments and ex-
hibits neuroprotective action. Several registered clinical trials on ClinicalTrials.gov(accessed
16th August 2023) employ MSCs to treat various neurological issues in individuals with
AD, PD, and spinal cord injury [125].

Prion disease is one of the neurological disorders for which MSCs can be a promising
cell-based therapy (Table 1).

Table 1. Preclinical trials of mesenchymal stem cell (MSCs) therapy for the management of prion
diseases.

Preclinical Study Cell Source Species Outcome Reference

Effect of transplantation of
bone marrow-derived
mesenchymal stem cells on
mice infected with prions.

Immortalized human
bone marrow-derived
MSCs

Mice infected with
Obihiro/Chandler
scrapie strain

Prolonged survival time
Produced trophic factors
and differentiated into
neuronal lineages

[126]

The therapeutic effect of
autologous compact
bone-derived mesenchymal
stem cell transplantation on
prion disease.

Autologous compact
bone-derived MSCs

Mice infected with
Obihiro/Chandler
scrapie strain

Enhanced microglial
activation
MSCs migrate to
brain lesions

[127]

Stem cell therapy extends
incubation and survival time
in prion-infected mice in a time
window–dependent manner.

Fetal NSCs RML strains of
mouse-adapted prions

Increased incubation
(20.1%) and survival
times (13.6%)
Reduction in the number
of astrocytes

[128]

Intranasally delivered
mesenchymal stromal cells
decrease glial inflammation
early in prion disease.

Adipose-derived MSCs RML strains of
mouse-adapted prions

Decreased vacuolization
Promoting a quiescent
state in hippocampal
microglia
Decrease in
reactive astrocytes

[129]

RML: Rocky Mountain Laboratories.

Song and his colleagues conducted the first investigation of MSCs as a possible therapy
for prion diseases in 2009, evaluating the potential effect of immortalized xenogeneic human
BM-MSCs (hBM-MSCs) in prion-infected mice. MSCs could spread to brain lesion areas
and extend the lifespan of infected mice. In the same study, hBM-MSCs differentiated
into neural cells in response to prion infection lesions and produced a variety of trophic
factors [126]. The mechanism of migration of MSCs to the brain lesions caused by prion
propagation was elucidated, implying the involvement of CCR3, CCR5, CXCR3, and
CXCR4 in MSC functions after chemotactic migration [130]. In another investigation, the
same group extracted autologous compact bone-derived MSCs (CB-MSCs) from the femur
and tibia to treat prion-infected mice. Using an in vitro migration experiment, the CB-
MSCs migrated to brain extracts from Chandler-strain-infected animals. Moreover, MSC
implantation could reduce body weight loss and increase microglial activation [127].

Hay and his colleagues reported that the exposure of glia and BV2 microglial cell
line to prion infection in an in vitro model when co-culturing with AdMSCs resulted in
a substantial reduction in inflammatory cytokine mRNA and markers for reactive astrocytes
and activated microglia [131]. In a prion-infected mouse model, Hay and his colleagues
recently evaluated the utility of intranasally administered adipose-derived MSCs (AdMSCs).
When activated with tumor necrosis factor-alpha or prion-infected brain homogenates,
AdMSCs promote anti-inflammatory genes and growth factors. Mice given AdMSCs had
less vacuolization across the brain, and inflammasome signaling genes were downregulated
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in the hippocampus. AdMSC therapy altered the quantity and shape of the microglia, and
animals had fewer reactive astrocytes [129].

9. NSCs as a Potential Therapy for Prion Diseases

NSCs are self-renewing multipotent cells in the nervous system that create neurons,
astrocytes, and oligodendrocytes. NSCs can be obtained from PSCs, ESCs, or iPSCs [132].
It has been reported that transplanted NSCs are a promising therapy for neurological
disorders by several mechanisms, such as releasing neurotrophic factors, inhibiting neu-
roinflammation, improved neuronal plasticity, and cell repair [133]. As aforementioned,
the physiological form of PrP positively regulates the endogenous early stage of neurogen-
esis or adult neurogenesis [134]. However, increasing the expression of PrPC can lead to
increased conversion into PrPSc, resulting in prion propagation in the brain tissue.

As a new cell culture model for prion disease, fetal NSCs, and adult multipotent
progenitor cells could be the basis of a cell model for prion diseases as reviewed by
Milhavet et al., 2006 [135]. Moreover, Relaño-Ginès and his colleagues demonstrated that
PrPSc accumulated and replicated in NSCs isolated from prion-infected mice [136]. Such
cells are potentially a cell therapy for prion diseases as well. The use of fetal NSCs (fN-
SCs) as a potential late-stage therapy for TSEs has been reported, demonstrating that the
transplanting of fNSCs derived from prion-resistant knockout (koPrP) induces larger num-
bers of neurons and prolonged survival rate [137]. Another study showed the impacts
of transplanting fNSCs, isolated from wildtype PrP or knockout PrP, into prion-infected
animals on the development of the clinical signs. A significant result was indicated by
increased incubation (20.1%) and survival times (13.6%). Furthermore, these temporal
delays were linked to a decrease in the amount of astrocytes in areas around the NSC
injection sites [128].

10. Conclusions

Despite significant advances in research in recent years, a therapy that stops or may
delay the first signs of prion diseases or even reduces their course is still unavailable. Due
to the several unique pathways that may cause prion diseases, treatment options for the
disease are becoming increasingly diverse. Using SCs as a treatment approach is promising
due to their capacity to regenerate damaged cells and improve clinical outcomes. SCs gen-
erated from BM and other SCs have been utilized as transplants to repair damaged neural
cells in the brains of prion-induced mice. While certain outcomes have proved encouraging
in terms of boosting mouse life, the timing of disease onset and SC transplantation is critical
to achieving successful results. As a result, the usefulness of SCs has not yet been proven
in prion diseases; the type of SC and the source employed in research must be considered.
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