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Abstract: Fetal alcohol spectrum disorders (FASD) are a set of abnormalities caused by prenatal
exposure to ethanol and are characterized by developmental defects in the brain that lead to various
overt and non-overt physiological abnormalities. Growing evidence suggests that in utero alcohol
exposure induces functional and structural abnormalities in gliogenesis and neuron–glia interactions,
suggesting a possible role of glial cell pathologies in the development of FASD. However, the
molecular mechanisms of neuron–glia interactions that lead to the development of FASD are not
clearly understood. In this review, we discuss glial cell pathologies with a particular emphasis on
microglia, primary resident immune cells in the brain. Additionally, we examine the involvement
of several neuroimmune molecules released by glial cells, their signaling pathways, and epigenetic
mechanisms responsible for FASD-related alteration in brain functions. Growing evidence suggests
that extracellular vesicles (EVs) play a crucial role in the communication between cells via transporting
bioactive cargo from one cell to the other. This review emphasizes the role of EVs in the context
of neuron–glia interactions during prenatal alcohol exposure. Finally, some potential applications
involving nutritional, pharmacological, cell-based, and exosome-based therapies in the treatment of
FASD are discussed.

Keywords: prenatal ethanol exposure; microglia; neuroinflammation; extracellular vesicles; neuronal
cell death

1. Introduction

The term fetal alcohol spectrum disorders (FASD) alludes to a group of neurodevelop-
mental disorders and birth defects associated with prenatal alcohol exposure (PAE). FASD
includes fetal alcohol syndrome (FAS), partial FAS (pFAS), alcohol-related neurodevel-
opmental disorder (ARND), alcohol-related birth defects (ARBD), and neurobehavioral
disorder associated with prenatal alcohol exposure (ND-PAE) [1,2]. It has been reported
that over six million children worldwide are born with FASD every year [3], of which
approximately 1.2 million are born with FAS. Further, the number of people with FASD
between the ages of 0 and 18 years is over 11 million, and the number of people between
ages 0 and 40 is more than 25 million. Individuals with FASD experience a variety of symp-
toms, including physical (craniofacial abnormalities), emotional, behavioral, self-regulation,
communication, and learning difficulties, many of which are related to altered fetal brain
development [4,5]. The brain regions that have been shown to be affected by FASD are the
cerebellum, cerebral cortex, caudate nucleus, corpus callosum, and hippocampal regions [6].
The hypothalamic–pituitary axis (HPA) has also been shown to be altered by PAE, which
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results in lifelong instability of the brain’s stress-response system [7–11]. The structural and
functional abnormalities of FASD have already been addressed in several reports; instead,
we will critically review the results of studies dealing with neuron–glia–immune interac-
tions, with a special focus on microglia during the pathogenesis of FASD. Additionally, we
will summarize the potential treatment and management strategies for FASD.

During recent years, developmental neurobiologists have identified that the neuron–
glial interaction not only contributes to neurogenesis but is also implicated in neurodevel-
opmental disorders [12,13]. Functionally, glial cells have been reported to support neurons,
maintain homeostasis, and form myelin in the developing brain [14,15]. However, dur-
ing pathological insults like PAE, the glial cell’s homeostatic function becomes altered,
resulting in dysregulated neuro–glia crosstalk and neuroinflammation [16]. Within the
central nervous system, glial cells comprise microglia, oligodendrocytes, astrocytes, and
ependymal cells [16]. Importantly, microglia represent almost 80% of all brain-resident
immune cells [17,18]. It has been reported that alcohol exposure during pregnancy affects
the morphology of glial cells (including all radial glia and other transient glial structures),
which induces a phenotypic shift and activates inflammatory signaling in the fetal brain.
The neuroinflammatory shifts in glial cell function are detrimental to neuron survival and
ultimately responsible for neuronal cell death [19,20]. Further, in developing brains, alcohol
exposure perturbs neural stem cell proliferation and differentiation [21]. Therefore, to better
understand FASD pathogenesis, we will emphasize neuron–glial–immune interactions in
more detail. Considering that FASD is a major problem in society and no known efficient
preventive measures (other than avoiding alcohol) or treatment strategies are available,
early intervention, therapeutic, and management strategies must be considered to mitigate
the effect of PAE and improve the life of the FASD population. This review also discusses
the current state of evidence related to potential therapeutic strategies for the treatment
of FASD.

2. Glial Cell Pathologies and Neuroimmune Crosstalk in Fetal Alcohol
Spectrum Disorder

Pathophysiological FASD includes damage to multiple regions of the brain, which are
interconnected to perform homeostatic brain functions. Neurogenesis, neuronal differentia-
tion, and neuronal apoptosis are the most studied mechanisms in animal models of FASD.
This review focuses on fetal alcohol effects on glial cell pathologies, including glia–neuron
interactions in the context of stress-axis functions (subjects with FASD often display a
stress hyper-response and anxiety behaviors [22]) and the involvement of epigenetic mech-
anisms in alcohol actions. The possible emerging role of sEV in glia–neuron interactions is
also discussed.

2.1. Microglia Pathology

Microglia are usually smaller in size compared to other glial cells and have phagocytic
properties, which allow them to engulf foreign particles and are considered the brain’s
first line of defense [23,24]. Resting microglia have long, highly branched processes and
a small cell body. In a normal physiological state, microglia (anti-inflammatory or M2)
have been reported to support neurons and maintain homeostasis [25]. Several studies
have shown that microglia modulate plasticity at the synapse by interacting with neu-
rons [26–28], confirming their physiological function. However, microglial physiological
states have been shown to be influenced by ethanol treatment, and microglia have been
reported to transform into an activated physiological state or pro-inflammatory M1 type,
wherein they depict an ameboid morphology, including hypertrophic cell body with short
and thick processes [29,30]. These activated microglia have been shown to express more
ionized calcium-binding adapter protein 1 (IBA-1), a cluster of differentiation molecule
11b (CD11b), and secrete several neurotoxic factors. It has been reported that animals fed
with an ethanol-containing diet had activated microglia in the cerebellum, hippocampus,
and cerebral cortex [31,32]. Other than these regions, studies from our laboratory have
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demonstrated that prenatal and postnatal ethanol exposures resulted in microglial acti-
vation in the hypothalamus [8,33–39]. These activated microglia have shown to increase
the release of pro-inflammatory molecules including interleukin-1β (IL-1β), tumor necro-
sis factor-alpha (TNF-α), nitrite, cyclooxygenase-2 (COX-2), and inducible nitric oxide
synthase (iNOS) through the activation of mitogen-activated protein kinase (MAPK) and
nuclear factor-kappa B (NF-κB) signaling pathways [40], and Toll-like receptors (TLRs) [41].
The Toll-like receptor (TLR)4 is the most studied member of the TLR family that responds
to inflammatory stimuli via mediating inflammatory signal transduction [42]. Interest-
ingly, it has been reported that the effects of ethanol exposure were mediated by TLR4s
present on the microglia membrane, as TLR4 knockout mice were not responsive to ethanol
effects. These results imply that TLR4 and downstream signaling pathways are crucial
for ethanol-induced activation of microglia [43,44]. Prenatal ethanol exposures also have
been shown to elevate mitochondrial reactive oxygen species (ROS) in cortical microglia,
suggesting another mechanism of immune activation in microglia [37,42,43]. Several other
mechanisms have also been reported for microglia–neuron interaction in in vitro FASD
models. Previous studies from our lab have shown that the conditioned media from
ethanol-treated microglia contain a high level of TNF-α that induces apoptosis in cultured
medio-basal hypothalamic neurons. In contrast, the adenosine 3′,5′-cyclic monophosphate
(cAMP), which is considered a growth factor, has been shown to reduce TNF-α secretion
by microglia and suppress the neurotoxic effects of ethanol [39]. Our laboratory further
demonstrated that ethanol induces apoptosis in cultured hypothalamic neurons primarily
through an increase in ROS and a decrease in antioxidant levels. During the developmental
period, brain-derived neurotrophic factor (BDNF) promotes neuronal growth and plasticity
by activating tyrosine kinase B (TrkB) and associated downstream signaling pathways,
while cAMP regulates cellular oxidative stress [35]. We have shown that ethanol reduces
the levels of cAMP and brain-derived neurotrophic factor (BDNF) in cultured neurons that,
eventually trigger neuronal apoptosis [35,37,39].

Microglial functions are also regulated through various neurotransmitter receptors. We
have found that ethanol alters the signaling of mu-opioid receptors (MOR) and delta-opioid
receptors (DOR) in microglia. This was revealed by the findings that MOR agonist [D-Ala
2, N-MePhe 4, Gly-ol]-enkephalin (DAMGO) elevated the release of pro-inflammatory
cell signaling proteins, while a DOR agonist [D-Pen2,5] enkephalin (DPDPE) increased
the secretion of anti-inflammatory cytokines and blocked the ability of ethanol to induce
microglial pro-inflammatory actions. In neonatal rat pups, alcohol feeding increased
the levels of microglial MOR protein and pro-inflammatory signaling molecules in the
hypothalamus, while naltrexone (non-specific MOR blocker) blocked the effects of alcohol.
Additionally, activation of MOR or DOR counteracted each other’s effects on hypothalamic
neurons [38].

Monocyte chemoattractant protein-1/chemokine receptor 2 (MCP-1/CCR2) signal-
ing has also been shown to be involved in ethanol-induced neurotoxicity involving the
microglia–neuron crosstalk [45–47]. Postnatal ethanol exposure in animal models of FASD
has been shown to trigger microglial activation with the elevated secretion of MCP-1, which
activates the MCP-1/CCR2 signaling pathway in neurons of the cerebellum and cortex,
causing neuronal death. These effects were abolished in MCP-1 and CCR2 knockout mice
or in mice treated with the MCP-1 synthesis inhibitor Bindarit or the CCR2 antagonist
RS504393, suggesting that MCP-1/CCR2 chemokine signaling plays an important role in
ethanol-induced microglial activation, neuroinflammation, and neuro-apoptosis [48].

Together, these studies show that alcohol exposure activates microglia, which then
release toxic factors that promote neuronal apoptosis (Figure 1). Nevertheless, neuron–glia–
immune interactions are extremely complex, and microglia are crucial but not the only glial
cells that are involved in neuroimmune interactions. Further down, we will discuss the
roles of other glial cells that participate in neuroimmune interactions.
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lar vesicles containing inflammatory molecules, including cytokines, chemokines, and miRNAs, 
which are detrimental to neurons associated with regulation of stress-axis function. Ethanol expo-
sure also alters oligodendrocyte functions, which has long-term effects on neuronal myelination, 
affecting synaptic plasticity. These events may result in FASD-associated cognitive, behavioral, and 
motor impairments. 
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termediate filament-III protein and a key structural element expressed in mature astro-
cytes and developing astrocytes, is one of the most commonly used astrocyte markers [52]. 
However, astrocytes may become hyperactive (A1 astrocytes) and undergo dramatic mor-
phological, molecular, and functional changes in certain circumstances such as inflamma-
tion, neurodegenerative disease, neurodevelopmental disease (including FASD) [53,54], 
and acute injury [55,56]. These A1 reactive astrocytes produce pro-inflammatory sub-
stances and neurotoxins that can cause neuronal death and disrupt brain homeostasis. 
According to recent reports, complement classical cascade component C3 is a powerful 
marker for A1 (only in neurodegenerative diseases or during brain injury), unlike anti-
inflammatory A2 and resting astrocytes [57,58]. Astrocytes secrete several crucial protein 
molecules that are involved in neuronal development, such as neurite outgrowth and syn-
aptogenesis [59]. Several studies have identified the involvement of astrocytes in the pre-
natal ethanol-altered development of surrounding neurons in the brain [60–63]. The inter-
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nance of BBB and the proper functions of the nervous system. Recent studies suggest that 
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Figure 1. A schematic diagram showing ethanol-induced alterations in glial cell functions. Early
ethanol exposure during development causes a shift from resting microglia and astrocytes to acti-
vated microglia and astrocyte phenotypes. These inflammatory glial phenotypes secrete extracellular
vesicles containing inflammatory molecules, including cytokines, chemokines, and miRNAs, which
are detrimental to neurons associated with regulation of stress-axis function. Ethanol exposure
also alters oligodendrocyte functions, which has long-term effects on neuronal myelination, af-
fecting synaptic plasticity. These events may result in FASD-associated cognitive, behavioral, and
motor impairments.

2.2. Astrocytes Pathology

In the early developing brain, astrocytes originate from a radial glial cell population
surrounding the ventricular zone, like neurons and oligodendrocytes [49,50]. During the
development of CNS, astrocytes have been shown to perform an integral role in trophic,
structural, and metabolic functions [50,51]. Glial fibrillary acidic protein (GFAP), the inter-
mediate filament-III protein and a key structural element expressed in mature astrocytes and
developing astrocytes, is one of the most commonly used astrocyte markers [52]. However,
astrocytes may become hyperactive (A1 astrocytes) and undergo dramatic morphological,
molecular, and functional changes in certain circumstances such as inflammation, neu-
rodegenerative disease, neurodevelopmental disease (including FASD) [53,54], and acute
injury [55,56]. These A1 reactive astrocytes produce pro-inflammatory substances and
neurotoxins that can cause neuronal death and disrupt brain homeostasis. According to
recent reports, complement classical cascade component C3 is a powerful marker for A1
(only in neurodegenerative diseases or during brain injury), unlike anti-inflammatory A2
and resting astrocytes [57,58]. Astrocytes secrete several crucial protein molecules that are
involved in neuronal development, such as neurite outgrowth and synaptogenesis [59].
Several studies have identified the involvement of astrocytes in the prenatal ethanol-altered
development of surrounding neurons in the brain [60–63]. The interaction between glial
cells (including astrocytes) and vasculature is critical for the maintenance of BBB and the
proper functions of the nervous system. Recent studies suggest that ethanol may trigger a
dysfunctional phenotype in brain endothelial cells, leading to impairment of cortical vascu-
lar network formation and endothelial cell-induced abnormalities in astrocyte functions
that could affect BBB establishment in the developing brain [63]. Thus, it is important to
understand how astrocyte functions are altered during alcohol exposure to determine the
exact neuron–glia–immune relationship.
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In cultured astrocytes, ethanol promotes the activation of pro-inflammatory inter-
leukin 1 receptor (IL-1R)-associated kinase, extracellular signal-regulated protein kinase
1/2 (ERK1/2), p38, and Jun N-terminal kinases (JNK) and the production of ROS [64–67].
Activated pro-inflammatory signaling pathways then increase the production of pro-
inflammatory molecules such as IL-1β, iNOS, and COX2 in cultured astrocytes [53,57].
A study has shown that ethanol-activated astrocytes stimulate microglia, which produce
inflammatory mediators in the brain that may contribute to FASD pathology [57]. Inflamma-
somes are an important component of the innate immune system and nucleotide-binding
protein. Leucin-rich containing family pyrin-domain-containing 3 (NLRP3) is the most
studied and well-characterized inflammasome. Aberrant activation of NLRP3 has been
linked to various degenerative diseases [68]. The activation of NLRP3 in astrocytes by
ethanol has been found to cause inflammation and neuronal death [44,69,70].

Together, these results indicate that ethanol exposures trigger pro-inflammatory signal-
ing pathways in astrocytes and that the bidirectional communications between astrocytes
and microglia further modulate CNS inflammation through the release of multiple cy-
tokines and inflammatory mediators.

2.3. Oligodendrocyte Pathology

The oligodendrocyte is the myelinating cell of the CNS [60]. In addition to producing
and maintaining myelin, oligodendrocytes maintain the structure and provide protection
to unsheathed axons. Oligodendrocyte precursor cells (OPCs) are produced around em-
bryonic day (ED)16 in rats and gestational age (GA) 5.5 weeks in humans. Maturation
and myelination begin during the second trimester, around 20 weeks of gestational age in
humans, and continue postnatally [71]. Therefore, first-trimester exposure to ethanol is
most likely to affect OPC function and differentiation [72]. A case–control study performed
in 20 alcohol-exposed fetuses from elective pregnancy terminations revealed cytokine
dysregulation (TNFα, MCP-1). Growth-regulated protein alpha (GROα) that inhibits mi-
gration of oligodendrocyte precursors was upregulated, while neuroprotective cytokine
insulin-like growth factor-1 (IGF-1) was downregulated [72]. In a mice model of FASD,
ethanol treatment from PD4–9 was found to diminish the expression of the myelin pro-
teolipid protein (PLP) gene, PLP1, associated with mature oligodendrocytes, along with
several genes expressed in OPCs [72]. In summary, developmental exposures to ethanol
are associated with delayed maturation of oligodendrocytes that may cause a long-lasting
effect on myelination in children and adolescents with FASD.

2.4. Neuron–Microglia Immune Interactions and Epigenetic Involvement in Pathophysiology
of FASD

Epigenetics entails the study of reversible genetic changes that are independent of
changes in the DNA sequence. The gene-regulatory epigenetic changes involve DNA
methylation, histone modification, and non-coding RNAs such as microRNA expres-
sions [73–76]. Epigenetics has been recognized to play an important role in the emergence
of a specific phenotype (M1 or M2) of microglia following an environmental challenge [73].
For example, upon stimulation with lipopolysaccharide (LPS), histone methyltransferase ac-
tivity is increased, leading to an increase in tri-methylation of histone H3 lysine 27 (H3K27)
and pro-inflammatory gene nuclear factor-κB (Nfkb1) levels in mouse microglia [64,65].
Also, the activation of TLR4 signaling by LPS is shown to increase tet methylcytosine
dioxygenase 2 (TET2) levels and stimulate the expression of pro-inflammatory cytokines
in mouse microglia [66]. TET2 has been shown to facilitate the oxidative conversion of
5-methylcytosine (5 mC) to 5-hydroxymetylcytosine (5 hmC) [77]. It should be noted
that the expression of epigenetic modifier genes Mecp2, Tet2, Dnmt1, and Dnmt3a are
altered in a variety of rodent models of FASD [8,78–84]. MicroRNAs (miRNAs or miRs)
are non-coding small single-stranded RNA containing 21–23 nucleotides. MiRNA post-
transcriptionally regulates gene expression via binding to 3′-UTR of target mRNA and
repressing its translation [85,86]. The expression of miR153 has also been shown to be
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decreased in mouse fetal cerebral cortical-derived neural progenitor cells exposed to
ethanol [71]. Also, the addition of an miR153 mimic to mouse microglia has been shown
to reduce the release of TNF-α [72]. Similar effects have been reported in zebrafish in
which exposure to ethanol from 4 to 24 h post-fertilization decreased the expression of
miR153c, a zebrafish homolog of miR153 [73]. Further, silencing of miR153c triggered
the phenotypes like those of zebrafish subjected to ethanol from 4 to 24 post-fertilization,
suggesting a distinct ethanol-induced change in miRNA expression both in zebrafish and
rodents. Thus, it could be predicted that the epigenetic dysregulation caused by exposure
to alcohol during development may induce neuroinflammation through polarization of
microglia into pro-inflammatory phenotypes (Figure 2).

Cells 2023, 12, x FOR PEER REVIEW 6 of 17 
 

 

that the expression of epigenetic modifier genes Mecp2, Tet2, Dnmt1, and Dnmt3a are 
altered in a variety of rodent models of FASD [8,78–84]. MicroRNAs (miRNAs or miRs) 
are non-coding small single-stranded RNA containing 21–23 nucleotides. MiRNA post-
transcriptionally regulates gene expression via binding to 3′-UTR of target mRNA and 
repressing its translation [85,86]. The expression of miR153 has also been shown to be 
decreased in mouse fetal cerebral cortical-derived neural progenitor cells exposed to eth-
anol [71]. Also, the addition of an miR153 mimic to mouse microglia has been shown to 
reduce the release of TNF-α [72]. Similar effects have been reported in zebrafish in which 
exposure to ethanol from 4 to 24 h post-fertilization decreased the expression of miR153c, 
a zebrafish homolog of miR153 [73]. Further, silencing of miR153c triggered the pheno-
types like those of zebrafish subjected to ethanol from 4 to 24 post-fertilization, suggesting 
a distinct ethanol-induced change in miRNA expression both in zebrafish and rodents. 
Thus, it could be predicted that the epigenetic dysregulation caused by exposure to alco-
hol during development may induce neuroinflammation through polarization of micro-
glia into pro-inflammatory phenotypes (Figure 2). 

 
Figure 2. A schematic diagram showing ethanol-induced changes in microglial cell functions. Early 
ethanol exposure during the developmental period causes phenotypic shift from resting microglia 
to activated microglia (M1). The most common signaling pathways that are upregulated during 
alcohol-induced microglial priming are TLR2/4, chemokine, cytokine, complement, MOR, NLRP3, 
NF-kB/TNF-α, and ROS signaling. The most common epigenetic alterations include decrease in 
DNMT1/3A, SIRT1, miR153, and MeCP2. All these altered signaling mechanisms trigger the release 
of neurotoxic factors from primed microglia and cause apoptotic death of neurons. 

An epigenetic mechanism may also participate in the development of microglial hy-
per-response [87,88]. We have recently shown that adult rats with neonatal alcohol pre-
exposure showed an exaggerated peripheral stress hormonal response to LPS due to a 
hyperactive microglia response involving Cd11b activation, TNF-α expression, and IL-6 
production. Interestingly, blocking microglia activation with minocycline treatment dur-
ing alcohol exposure reduced the microglial sensitivity to LPS in adult PAE rodent ani-
mals. Hyperactive microglia response to LPS in PAE animals was associated with in-
creased histone H3 acetyl lysine 9 (H3K9ac) enrichment at TNF-α and IL-6 promoter 

Figure 2. A schematic diagram showing ethanol-induced changes in microglial cell functions. Early
ethanol exposure during the developmental period causes phenotypic shift from resting microglia
to activated microglia (M1). The most common signaling pathways that are upregulated during
alcohol-induced microglial priming are TLR2/4, chemokine, cytokine, complement, MOR, NLRP3,
NF-kB/TNF-α, and ROS signaling. The most common epigenetic alterations include decrease in
DNMT1/3A, SIRT1, miR153, and MeCP2. All these altered signaling mechanisms trigger the release
of neurotoxic factors from primed microglia and cause apoptotic death of neurons.

An epigenetic mechanism may also participate in the development of microglial
hyper-response [87,88]. We have recently shown that adult rats with neonatal alcohol
pre-exposure showed an exaggerated peripheral stress hormonal response to LPS due
to a hyperactive microglia response involving Cd11b activation, TNF-α expression, and
IL-6 production. Interestingly, blocking microglia activation with minocycline treatment
during alcohol exposure reduced the microglial sensitivity to LPS in adult PAE rodent
animals. Hyperactive microglia response to LPS in PAE animals was associated with
increased histone H3 acetyl lysine 9 (H3K9ac) enrichment at TNF-α and IL-6 promoter
regions, suggesting a possible epigenetic mechanism for the long-term immune disruption
due to hypothalamic microglial priming [33].

It is evident from the data of these studies that alcohol-induced epigenetic abnormali-
ties can alter microglial activity to make them more neurotoxic. Further research may be
necessary to understand how other glial cells are epigenetically primed and interact with
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neurons during the pathogenesis of FASD, allowing for the development of novel therapies
to combat stress-related problems associated with FASD.

2.5. Extracellular Vesicles in Neuron–Glial Crosstalk

Extracellular vesicles (EVs) are membranous structures derived from the endosomal
system. They are present in biological fluids and are recognized as an alternative mecha-
nism for intercellular communication, as they allow the exchange of proteins, lipids, and
genetic information between cells. Several recent studies have demonstrated that EVs
released by alcohol-activated glial cells can harm nearby neurons by the transfer of neu-
rotoxic factors. The purpose of this section is to review recent advances in EV-mediated
neuron–glia interactions during alcohol exposure.

We have recently shown that exposure to ethanol during the developmental period
dysregulates the normal communication between microglia and POMC neurons for main-
taining homeostasis by releasing apoptotic factors that involve complement proteins C1q,
membrane attack complex (MAC), and reactive super-oxygen species (ROS), thereby caus-
ing POMC neuronal death [34]. As discussed earlier, POMC neurons known to regulate
stress functions are reported to be killed by developmental alcohol exposure due to the
activation of microglial immune cells in the brain. Briefly, in both in vivo and in vitro mod-
els, we found that ethanol-treated microglial exosomes (30–150 nm) show higher numbers
and increased ability to kill POMC neuronal populations. Proteomic analyses of exosomes
from cultured microglial cells revealed that ethanol treatment upregulated many proteins,
including several complement factors. Further, we have found that ethanol treatment
elevated the deposition of the complement protein C1q on β-endorphin neuronal cells in
both in vitro and in vivo models. We further demonstrated that C1q blockers prevented the
death of β-endorphin neurons by reducing the deposition of complement factors C3a/b,
C4, and or by blocking MAC/C5b9 formations [34]. These data suggest that exosomes play
an important role in microglia–neuron interaction. However, the question that remains to
be determined is whether EV-mediated inflammation is directional. A study by Crews et al.
found that alcohol treatment in organotypic brain slice (OBSC) cultures altered microvesicle
(MV) cargo and induced a unique immune gene signature in microglia [89]. These authors
found that MV-treated microglia showed an increase in TNF-α, IL-1β, purinergic 2 receptor
Y12 (P2RY12), CX3C motif chemokine receptor 1 (CX3CR1), and microglial presynaptic
gene C1q while showing a decrease in homeostatic gene type1 transmembrane protein
119 (Tmem119) and the phagocytic gene triggering receptor expressed on myeloid cells
2 (TREM2). On the contrary, microglia depletion prevented MVs’ pro-inflammatory
activity—demonstrating that MVs from the brain microenvironment can activate microglia
and that MVs mediate inflammation in a complex manner.

Similar to microglia, ethanol has been shown to promote the EVs secretion from
astrocytes by inducing the pro-inflammatory signaling pathways, including TLR4, NLRP3,
IL-1R, NF-κB, and caspase-1 (apoptotic marker) [67,90]. Several studies have found that
astrocyte-derived EVs were captured by cortical neurons, which results in neuronal death
due to an increase in ROS production and the expression of inflammation-related proteins
and miRNAs [90–92]. These data suggest that neurons and astrocytes may communicate
with each other, and ethanol may adversely affect this communication.

It is also important to know how ethanol exposure directly affects fetal neuronal
stem-cell-derived EVs [93–95]. Most neurons in the adult brain are generated by neural
stem cells (NSCs) during the first and second trimesters of pregnancy. It has been shown
that alcohol exposure during prenatal development results in compromised brain growth
during this crucial neurogenic period due to altered NSC expression of major neurogenic
miRNAs [95]. Interestingly, miRNA cargo is trafficked between cells by EVs in the NSC
microenvironment. The altered miRNA contents by ethanol exposure result in aberrant
neural progenitor growth and maturation [92]. These data suggest that EVs can circulate
bidirectionally between neurons and glia within the brain and play an important role in
the development of FASD by prenatal ethanol.
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3. Therapeutic Intervention Strategies for Fetal Alcohol Spectrum Disorders (FASD)

Structural changes in the brain are responsible for the learning and behavioral deficit
observed in children born with FADS, which they continue to experience throughout
their lives. Cognitive development is crucial for the social, recreational, and academic
participation of children. However, awareness of this fact is not a cure for a woman who
learns about their pregnancy and stops alcohol consumption during their first trimester.
Indeed, alcohol-induced damage has already been done [96]. There is no absolute care
to treat the negative effects of FASD. The early intervention and treatment strategies can
be helpful to improve cognitive and social abilities [97]. The discussed measures below
showed some potential to improve cognitive function in the FASD population (Figure 3).
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3.1. Nutritional Supplementation

FASD is a lifelong condition with neuroimmune, cognitive, and behavioral dysfunction.
Therefore, early nutritional intervention might provide benefits for neurodevelopmental
deficits. Choline is an essential micronutrient for neurological development and brain
function [98,99]. In a long-term study, FASD children with 2.5–5 years were followed for
approximately 7 years after the initial efficacy trial of choline supplementation. Follow-up
MRI scans and executive function tests with these children receiving choline supplementa-
tion showed better performance with several low-order executive functions (e.g., processing
speed) and higher white matter microstructure organization in the splenium of the corpus
callosum as compared to those in the placebo group [100,101]. In an animal study, Sprague–
Dawley rat pups received ethanol (5.25 g/kg/day) from PD 4–9 and choline chloride
(100 mg/kg/day) from PD 10–30—the hippocampus collected from these rats at PD 35
or PD 60 showed choline mitigated the long tasting effect of ethanol on inflammatory
tone via modulating the ratio of pro-to-anti-inflammatory cytokines [102,103]. In vitro
electrophysiology experiments at PD 30–35 in choline-supplemented juvenile males and
females from PD 10–30 showed a positive effect on hippocampal synaptic physiology that
may be attributed to choline-related improvement in cognitive function [104]. Prenatal
supplementation of choline (642 mg/L) in mice was found to prevent gross developmen-
tal abnormalities associated with prenatal alcohol (25%) exposure [105]. Additionally,
choline supplementation prevented prenatal alcohol-induced alteration in RZRβ and Id2
genes—implicated in pattering on the neocortex along with rescuing sensorimotor behavior
dysfunction [105].

3.2. Anti-Inflammatory and Pharmacological Agents

Several animal models of FASD have identified neuroinflammation as a hallmark of
FASD-associated neuropathological events [69]. Therefore, anti-inflammatory agents might
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be considered as a potential protective therapeutic option for FASD. Peroxisome proliferator-
activated receptors (PPARs) belong to the nuclear family of proteins. PPAR-γ agonists have
been studied to suppress the production of the IL-12 family of cytokines in in vitro cultured
microglia and astrocytes [106]. In vivo administration of PPAR-γ agonist 15-deoxy-∆12,14
prostaglandin J2 has also been found to be protective for Purkinje cell neurons via sup-
pressing microglia activation in a postnatal animal model of PAE [107]. Postnatal ethanol
exposure has been shown to reduce ω-3 polyunsaturated fatty acid docosahexaenoic acid
(DHA) in the developing brain, which is critical for synaptic plasticity and neuronal devel-
opment [108]. Thus, DHA, which is another PPAR-γ agonist, has been used in baby formula
and dietary supplements during pregnancy [109]. Postnatal DHA (10 g/kg in artificial
milk diet) supplementation in rats between PD11 and PD20 has been found to ameliorate
alcohol-induced behavioral deficit, suggesting the therapeutic potential of FASD [110].
However, the neuroinflammation suppressive effect of PPAR-γ agonist still needs to be
evaluated in in vivo models of FASD. The anti-inflammatory agent minocycline has been
evaluated to suppress microglial activation via blocking expression of pro-inflammatory
cytokines IL-6, MCP-1, CCR2, and GSK3β and protecting neurodegeneration in a postnatal
rat model of FASD [33,38,48,111]. Prenatal and lactational alcohol-exposed mice models
were used to investigate the preventive effects of curcumin on cognitive impairments.
Male mice treated with curcumin during the peri-adolescence period (PD 28–35) showed
improvement in anxiety and memory deficits when evaluated for behavior in adulthood
(PD60) [112]. Another anti-inflammatory agent, cannabidiol (CBD), was also reported to
ameliorate cognitive deficits in the PAE mice model and restore elevated levels of TNFα
and IL-6 in the hippocampus, thus suppressing ethanol-induced neuroinflammation [113].
Prenatal treatment with epigallocatechin-3-gallate in a mice model of FASD was shown to
rescue fetal growth restriction and suppressed alcohol-induced changes in placental angio-
genic factors while partially ameliorated neuronal nuclear antigen (NeuN), (doublecortin)
DCX, and GFAP levels [114].

Metformin is an approved first-line treatment drug for diabetes that has been studied
for its anti-inflammatory, antioxidant, and anti-apoptotic activity in animal models of FASD.
Metformin treatment was found to suppress ethanol-induced neuroinflammation and hip-
pocampal apoptotic death of neurons in adult male rats [115]. Inter-neuronopathy has been
identified to contribute significantly to the patho-etiology of FASD; specifically, in utero
ethanol exposure was found to potentiate the depolarizing activity of gamma-aminobutyric
acid (GABA) in GABAergic cortical interneurons in developing embryonic brain [116]. The
chloride importing Na+-K+-2Cl− isoform one cotransporter (NKCC1) plays a crucial role
in GABA-activated responses. Bumetanide, an antagonist of NKCC1 cotransporter, has
been found to mitigate the ethanol-induced inter-neuronopathy in the prefrontal cortex
and associated behavioral deficit in mice models of FASD [116]. These findings identify the
potential utility of NKCC1 (sodium/potassium/chloride cotransporter) as a pharmacologi-
cal target for early intervention and management of FASD. Calcium-activated potassium
channel Kcnn2 elevated expression in motor cortex neurons is implicated in deficit in motor
learning skills. Postnatal administration of Kcnn2 blocker tamapin (100 nM) in mice model
of FASD was reported to improve motor learning impairments [117]. Collectively, these
studies suggest the potential of anti-inflammatory agents in ameliorating ethanol-induced
neuroinflammation with the possibility of using it as a treatment for FASD. However, ex-
tensive animal and clinical research is required to determine the dose, therapeutic window,
and mechanistic insight for the effects of these anti-inflammatory agents.

3.3. Cell-Based Therapies

Clinically, FASD is attributed to the loss of neurons or neuronal function. Thus, neural
stem cells (NSCs) may be considered as a possible treatment for FASD [118]. Intravenous
transplantation of NSCs in rat models of PAE have been found to recover rats from alcohol-
induced brain damage to neural network and cognitive function [119]. Moreover, the
transplanted NSCs have been found to migrate wide areas of the brain and mitigate
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behavioral abnormalities in rat models [120]. Children with FASD are also prone to various
urinary and respiratory tract infections attributable to compromised natural killer (NK)
cell activity [121]. NK cells activity can be regulated by the neuroendocrine system, which
involves hypothalamic β-endorphin neurons [122]. β-endorphin neurons are reduced in
adult PAE rats. Therefore, previous studies from our laboratory explored the possibility of
transplantation of β-endorphin neurons in reducing the stress response as well as altered
immune functions in fetal exposed rats [22,123]. Studies from our laboratory showed that
in vitro differentiated β-endorphin neurons transplanted to the hypothalamus of ethanol-
exposed offspring produced β-endorphin-precursor peptide proopiomelanocortin (POMC),
reduced corticotropin-releasing hormone (CRH) neuronal response to immune stress,
and increased the cytolytic activity of NK cells [123–125]. These results are indicative of
retaining the biological functionality of transplanted β-endorphin neurons [126]. However,
there are still uncertainties about how transplanted NSCs or β-endorphin neurons exert
their neuroprotective effects. It is speculated that these transplanted neurons may integrate
with host tissue to promote endogenous neurogenesis or via secreting various trophic
factors [127]. Additional, future mechanistic investigation is required prior to the clinical
implementation of NSCs for cell therapy for FASD.

3.4. Small Extracellular Vesicles (Exosomes) as Predictive Biomarker and Therapeutic
Carrier Vesicles

Brain-derived exosomes (30–150 nm) have been studied in relation to ethanol exposure
and may be considered novel biomarkers to diagnose early FASD in fetuses [128,129].
For example, fetal brain-derived exosomes were obtained from the maternal blood of
10 mothers who consumed alcohol. Several brain-derived exosome markers were studied
in correlation with eye size in all 10 alcohol-exposed fetuses and their age-matched controls.
A strong correlation has been established between myelin basic protein (MBP) and eye
diameter, which might be considered as strong predictive biomarkers for the development
of FASD [130]. Exosome-derived RNA content was also studied in the amniotic fluid (AF)
in the rat fetal alcohol (FAE) exposure model. RNAseq analysis identified several AF-
exosome-miRNAs that were altered in response to maternal ethanol exposure. Significant
dysregulation was observed in miRNAs (miR-199a-3p, miR-214-3p, and let-7g) regulating
osteogenic differentiation in rat bone marrow stem cells [131]. Another study using the
sheep model of prenatal alcohol exposure suggests maternal–fetal miRNA transfer wherein
plasma circulatory miRNAs including miR-9, miR-15b, miR-19b, and miR-20a were found
specifically altered in both alcohol-fed pregnant ewe and newborn lamb [132]. These
studies signify the in utero exosomal transfer of ethanol effect on stem cell maintenance
and differentiation, including miRNA profile. It would be interesting to study if correcting
the altered level of exosome-derived miRNAs in amniotic fluid using miRNA mimics or
inhibitors can mitigate the detrimental effect of alcohol on development. Also, altered
exosome-miRNAs may be considered as early predictive biomarkers for the development
of FASD.

3.5. Outstanding Questions

(i) Early EV-based intervention strategies have the potential to mitigate FASD-associated
neurobehavioral abnormalities and need to be further investigated;

(ii) Early diagnosis of FASD using exosome-derived proteins or miRNAs as predictive
biomarkers will be helpful in devising early intervention strategies.

4. Summary

The development of FASD may involve complex interactions between CNS cells
in the fetal brain upon in utero alcohol exposure. Growing evidence suggests that the
altered activity of glial cells is one of the reasons for neuronal death during PAE. In this
review, we emphasized the alcohol-induced molecular and phenotypic changes in glial
cells. We discussed several mechanistic pathways that trigger the release of neurotoxic
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factors from microglia. Besides microglia, we have discussed the roles of astrocytes and
oligodendrocytes in neuronal cell function and synaptic activity. The emerging role of
exosomes has also been emphasized here. We discussed microglia-derived exosomes,
which are released upon ethanol exposure and found to contain apoptosis-inducing factors
responsible for the death of β-endorphin neurons, regulating body stress responses. We
also showed astroglia and neuron-derived exosomes play important roles in the etiology of
FASD. However, there are yet unexplored areas in glia–neuron interactions that need to be
addressed in the context of FASD.

Individuals with FASD can benefit from early intervention and management to im-
prove their cognitive function and quality of life. We have documented several explorative
therapeutic approaches for FASD. Nutritional supplementation, specifically choline, has
been suggested to have protective effects, while anti-inflammatory agents are shown to
reduce neuroinflammation and, thus, provide neuro-protection in animal models of FASD.
However, the clinical implication of these intervention strategies needs to be determined.
Cell-based therapies with transplantation of NSCs and in vitro differentiated β-endorphin
neurons have been found to improve the stress response in FASD, but understanding
the mechanisms for cell transplantation needs further research. Early diagnosis of FASD
might be helpful to devise effective preventive strategies to minimize abnormalities associ-
ated with FASD. Fetal-derived exosomes from maternal blood or amniotic fluid might be
considered a source of predictive biomarkers (protein, miRNAs, etc.) for FASD.
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