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Abstract: Fatty Acid Desaturase 2 (FAD2) controls the conversion of oleic acids into linoleic acids.
Mutations in FAD2 not only increase the high-oleic content, but also repress the leaf growth. However,
the mechanism by which FAD2 regulates the growth pathway has not been elucidated in peanut
leaves with single-cell resolution. In this study, we isolated fad2 mutant leaf protoplast cells to perform
single-cell RNA sequencing. Approximately 24,988 individual cells with 10,249 expressed genes
were classified into five major cell types. A comparative analysis of 3495 differentially expressed
genes (DEGs) in distinct cell types demonstrated that fad2 inhibited the expression of the cytokinin
synthesis gene LOG in vascular cells, thereby repressing leaf growth. Further, pseudo-time trajectory
analysis indicated that fad2 repressed leaf cell differentiation, and cell-cycle evidence displayed
that fad2 perturbed the normal cell cycle to induce the majority of cells to drop into the S phase.
Additionally, important transcription factors were filtered from the DEG profiles that connected
the network involved in high-oleic acid accumulation (WRKY6), activated the hormone pathway
(WRKY23, ERF109), and potentially regulated leaf growth (ERF6, MYB102, WRKY30). Collectively,
our study describes different gene atlases in high-oleic and normal peanut seedling leaves, providing
novel biological insights to elucidate the molecular mechanism of the high-oleic peanut-associated
agronomic trait at the single-cell level.

Keywords: scRNA-seq; peanut leaf; FAD2; oleic acids; gene atlases

1. Introduction

Peanuts (Arachis hypogaea L.) are a commercial crop used for edible oil and high-quality
protein resources. The fatty acid (FA) composition of peanut seeds plays a decisive role
in their nutritional value, edible quality, storage, and processing performance [1]. Oleic
acid (OA, C18:1) and linoleic acid (LA, C18:2) are the main components of FA, accounting
for approximately 80% of peanut oil. In modern breeding practice, market orientation
anticipates the development of higher oleic acid (C18:1) varieties due to the antioxidant
ability and storage stability of oleic acid, leading to the broad utilization of the fatty acid
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desaturase 2 (FAD2) mutant as a donor in peanut breeding [2]. AhFAD2 converts OA into LA
by catalyzing the carbon dehydrogenation reaction, and mutation (fad2) results in peanut
seeds with OA content exceeding 70% of total oil. Recently, the consumption of a high-OA
diet has been proven to be associated with multiple health benefits [3]. Therefore, high OA
is one of the most important breeding objectives of peanuts at present.

Plant FA are essential components of seeds and membrane lipids. They provide
energy for various metabolic processes and participate in the development and stress
response as signaling molecule precursors [4]. Although fad2 induction increases the OA
composition, it has been found to negatively affect peanut growth by causing dwarfing
and reducing pod and seed size [5]. Moreover, the negative phenotype is also observed in
Arabidopsis, where the fad2 mutants displayed slightly delayed seed germination under cold
temperature [6], and fad2 was involved in the endoplasmic reticulum (ER) stress-induced
growth repression [7]. Additionally, FAD family members mediating polyunsaturated fatty
acids (PUFAs) are necessary for low-temperature survival, salt tolerance, and endoplasmic
reticulum (ER) stress tolerance, which indirectly regulates plant growth characteristics [8].
A few studies have reported that the member of FAD protein-induced PUFA content affects
plant development through cross-talk with the phytohormones pathway [9]. However, the
comprehensive mechanism of fad2 mutations regulating peanut growth and development
has not been broadly elucidated, and understanding this mechanism is crucial for the
application of FAD2 during high-OA breeding.

With the development of cell isolation and high-throughput sequencing technologies,
research on single-cell RNA sequencing (scRNA-seq) in plants has gradually increased [10].
Compared to the limitations of the traditional bulk transcriptome, scRNA-seq facilitates
the study of intercellular gene expression heterogeneity and promotes the discovery of
new cell types [11,12]. Recently, scRNA-seq was employed to define the developmental
trajectories of root cells in A. thaliana [13,14] and to decipher the transcriptome profile of rice
seedlings [15]. Although scRNA-seq has been successfully applied in these model plants,
its use in non-model plants, especially for demonstrating cell development heterogeneity,
is still limited.

High-OA peanuts have gained popularity among processing enterprises and con-
sumers due to their high chemical stability and diverse beneficial effects on health [16].
However, during the process of popularization, it was discovered that the growth and
development of peanut fad2 seedlings, particularly the leaves, were delayed compared with
normal peanuts. Since peanut leaves are critical for generating photosynthesis energy to
increase the pod yield, it is important to understand the underlying biological mechanisms
responsible for this delay. To address this, we developed a robust leaf individual cell
isolation method and performed scRNA-seq to explore the cellular and transcriptional
heterogeneity in high-OA peanut seedling leaf blades. Our study revealed that peanut fad2
mutation restricted the leaf growth and cell differentiation through the hormone pathway
at the single-cell resolution, providing novel biological insights into the molecular basis of
high-OA peanut-connected growth development.

2. Materials and Methods
2.1. Plant Material, Growth Conditions, and Phenotype Assays

In this study, the high-OA variety, Yueyou271 (OA content > 70% of total oil), and the
normal peanut, Yueyou43 (OA content > 45% of total oil), were investigated. Yueyou271
(with the fad2 allele) is a near-isogenic line generated from the progeny population of a
Yueyou43 hybrid with an fad2 donor, Kainong176 [2]. The first generation of the high-
oleic-acid peanut line (F1) continued to backcross with Yueyou43 (recurrent parent) to
BC8F2 generation, and the positive line was determined with a molecular marker assistant,
FAD2 sequencing analysis, and oleic acid content examination. The Yueyou271 contains a
similar genetic background to Yueyou43. The peanut seeds were sterilized in 1% sodium
hypochlorite (NaClO) for 15 min, washed three times with sterile water, and sown in sterile
soil. The seeds were grown in a growth chamber with a 14-h light (28 ◦C)/10-h dark (25 ◦C)



Cells 2023, 12, 2305 3 of 21

cycle. The seedling’s phenotypic traits for leaf length, width, and area were investigated on
days 3, 5, and 7 after sowing. The phenotypic data were recorded for 5 seedlings at each
time point.

2.2. Protoplast Isolation and scRNA-seq Library Construction

Single-cell suspensions of one-week-old peanut seedling leaves were prepared as
described previously [17]. Briefly, the leaf blade of one-week-old (7 days) peanut seedlings
was cut into 1–2 mm strips and transferred into 30 mL of cellulase and pectinase enzyme
solution (3% cellulose R–10, 0.3% pectinase, 1.5% macerozyme, 0.25% Bovine Serum Albu-
min, 5 mM MES, and 8% mannitol) isolate protoplasts. Protoplasts were then filtered with
a 40 µm nylon strainer. The protoplast activity was detected by trypan blue staining, and
then protoplast concentration and viable protoplast ratio were measured using a Countess®

II Automated Cell Counter (Thermo Fisher, Catalog Number AMQAX1000, Genedenovo
company sponsor, Guangzhou, China). Then, the single-cell suspension was adjusted to
the ideal concentration (≥1000 cells µL−1) in preparation for loading onto the chromium
controller of the 10× Genomics platform. Further, 10× Genomics 3′ scRNA-seq libraries
were constructed according to the user manual of the Chromium Single Cell 3′ Reagent Kit
v3. Approximately 2 × 104 isolated single cells were packed into gel bead-in-emulsions
(GEMs) oil droplets. Then, the collected protoplasts were lysed, and the RNA of the GEMs
droplet was reverse-transcribed into cDNA, followed by enzyme digestion, and PCR am-
plification. The constructed scRNA-seq libraries were sequenced with the paired-end mode
of the Illumina sequencing platform.

2.3. Data Analysis of scRNA-seq of Peanut

Cell Ranger (version 3.1.0) [18] was used to generate a single-cell gene expression
matrix and perform data quality statistics. Sequencing reads were aligned to the tetraploid
peanut genome (GCF_003086295 available at peanutbase.org accessed on 14 June 2023)
using the embedded STAR (Spliced Transcripts Alignment to a Reference) software [19].
Cell Ranger was then used to filter and correct barcodes and unique molecular identifiers
(UMIs); only uni-mapped reads that aligned to only one gene were used for UMI count-
ing. The cell barcodes with a total UMI count > 10% of the total UMI count of the 99th
percentile of the expected number of recovered cells were screened to generate a gene
expression matrix.

The Seurat R package (version 4.0.0) [20] was used for further cell filtration, normaliza-
tion, cell clustering, and marker gene identification. Seurat normalized the count matrices
after filtering the low-quality cells based on multiple quality control metrics to obtain highly
variable gene sets. Canonical correlation analysis was carried out to correct the batch effect
before merging data. Z-score normalization was performed on the merged data, followed
by principal component analysis (PCA) for dimensionality reduction. Cell clustering and
visualization were realized through nonlinear dimensionality reduction algorithms uni-
form manifold approximation and projection (UMAP) and t-distributed stochastic neighbor
embedding (t-SNE). Up-regulated genes were screened by a likelihood-ratio test when
comparing a single cluster to all other cells, of which the top five genes with the highest
log2FC value were selected as cluster-specific marker genes.

Differentially expressed genes (DEGs) in different cellular clusters were mapped
to GO terms in the Gene Ontology database (geneontology.org). Then, the GO terms
that were significantly enriched in DEGs compared to the background genome were
defined by a hypergeometric test. KEGG pathway enrichment analysis was used to identify
the significant biochemical metabolic pathways or signal transduction pathways that
are associated with DEGs. The expression profile and distribution of marker genes and
DEGs were represented using heatmap and bubble plots, respectively. The sequences of
DEGs were searched against the reference TAIR database (Arabidopsis genome) to obtain
homologs in Arabidopsis to perform protein–protein interaction analysis using the STRING
database [21] and Cytoscape (version 3.9.1) [22].

peanutbase.org
geneontology.org
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2.4. Marker Genes for Specific Cell-Type Validation

To identify the cell type, we first performed orthologous gene alignments of the
reported marker genes in Arabidopsis. The marker gene list was downloaded from previous
reports and three plant single-cell marker gene databases, including the PsctH [23], Plant
Cell Marker [24], and PlantscRNAdb [25]. Furthermore, using the Arabidopsis marker
genes as the query sequences, the homologous genes of the peanut were searched in
Peanutbase.org. The top score hits were selected and annotated as the corresponding
Arabidopsis cell type. This method determined the candidate marker genes, Wox, for the
primordium cell and FAMA for the guard cell.

Cell-specific tissue isolation was performed according to the previously described
method. Leaf were cut off mid-veins from blades as the vascular cells. The up-and-down
epidermis layers were removed using tweezers as a mixed epidermis population and the
mesophyll cells were isolated from the removed epidermis part by using a tweezer [26]. All
samples were frozen in liquid nitrogen for total mRNA extraction and reverse transcription.
RNA was extracted from each cell group to construct libraries by following the SMART-seq
protocol (SMART-Seq HT Kit, Takara, San Jose, CA, USA). The cDNA library served as
a template for detecting the gene expression level by applying conventional quantitative
PCR with the ABI step one plus system. The epidermal cell population was used as the
reference sample and the Ah18S was used as the internal reference control.

2.5. Pseudo-Time Trajectory Analysis

Pseudo-time trajectories were constructed by Monocle (version 3.0) [27] based on the
dynamic expression pattern of key genes. The cells were ordered on a tree-like structure
according to the changes of pseudo-time to simulate the cell differentiation relationship in
the development process. Key genes related to the development and differentiation process
were identified by analyzing the DEGs associated with the developmental trajectory, cell
differentiation state, and cell fate. In addition, partition-based graph abstraction (PAGA)
was used to arrange the low-dimensional projection positions of cells based on the similarity
and dynamic change characteristics of gene expression patterns, which reconciled clustering
and pseudotemporal ordering algorithms and allowed to infer complex cell trajectories [28].

2.6. RNA Velocity Analysis

RNA velocity analysis was performed by quantifying the spliced and unspliced reads
using the Python script velocyto.py on the Cell Ranger output. The calculation of RNA
velocity values for each gene in each cell and the embedding RNA velocity vector to low-
dimension space were performed with the R package velocyto.R v0.6 [29]. Velocity fields
were projected onto the UMAP embedding obtained in Seurat.

2.7. Cell Cycle Analysis

To perform the cell cycle analysis, the AddModuleScore function from Seurat was
used to compute each cell dropped into the genome duplication phase by recounting the
expression levels of cell cycle marker proteins in cell cycle analysis [30].

2.8. Phytohormones Uptake and Detection Assay

Leaf samples were collected at each time point, immediately frozen in liquid nitro-
gen, and ground into powder (30 Hz, 1 min). Powder (50 mg) for each sample was
weighed into a 2 mL plastic microtube and dissolved in 1 mL of modified Bieleski’s solvent
(methanol/water/formic acid = 15:4:1, v/v/v). A volume of 10 µL of internal standard
mixed solution (100 ng/mL) was added into the extract as internal standards (IS) for the
quantitation. The mixture was vortexed for 10 min, followed by centrifugation for 5 min
(12,000 r/min, and 4 ◦C). Then, the supernatant was transferred to clean plastic microtubes,
evaporated to dryness, dissolved in 100 µL 80% methanol (v/v), and filtered through
a 0.22 µm membrane filter. LC-MS/MS was used for the qualitative and quantitative
determination of phytohormone profiles. Each assay was performed in three replicates.
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2.9. Tissue Real-Time PCR Analysis

Briefly, 1 µg of total RNA was reversely transcribed into cDNA using a PrimeScript RT
Reagent Kit (Takara, Dalian, China) according to the manufacturer’s instructions. The PCR
reaction was conducted in a 20 µL reaction system using SYBR Premix ExTaq™ (TaKaRa,
Dalian, China) on an ABI StepOne Plus system. The relative expressions of target genes
were calculated by the 2−∆∆CT method [31]. Ah18S was selected as an internal control.
Each measurement was made with three biological replicates and data histograms with
means ± SE.

3. Results
3.1. FAD2 Mutant Negatively Regulated the Growth Phenotypes of Peanut Seedling Leaf

The growth and development of high-OA variety Yueyou271 and normal peanut
seedlings were compared under the same conditions and their phenotypic characteristics
were documented on day 3, 5, and 7 after sowing (Figure 1A). A marked retardation in leaf
growth was observed in the high-OA peanut Yueyou271, with its leaves tightly closed on
day 5 and partially expanded on day 7. However, the leaves of normal variety (Yueyou43)
were partially expanded on day 5 and almost completely expanded on day 7. Additionally,
the leaf size of Yueyou271 was smaller than that of the normal peanut within one week.
The results of the phenotypic investigation showed that the leaf length, width, and area
of the high-OA variety were significantly lower than those of the normal peanut during
the same period (Figure 1B–D). Therefore, the morphologic observations and phenotypic
statistics of peanut seedlings demonstrated that the high-OA peanut repressed the leaf
growth and development compared with the normal peanut.

Previous studies have demonstrated that the phytohormone pathway plays a critical
role in regulating various processes of plant growth and development, including the ex-
pansion of leaf cells. In light of this, we collected seedling leaves from two peanut varieties
to examine their phytohormone contents and observed that the levels of cytokinin, auxin,
and GA contents were significantly lowered, whereas the levels of JA were significantly
elevated in the high-OA peanut Yueyou271 compared to the normal peanut variety (Figure
S2). In particular, fad2 inducing the high-OA dramatically led to leaves failing to synthesize
the cis- or trans-Zeatin (cZ/tZ) with a normal level, and the contents of cytokinin deriva-
tives declined compared to the low-OA peanut (Figure 1E). Based on these findings, we
hypothesized that fad2 mutation may affect the phytohormone pathway, leading to the
negative regulation of leaf tissue development in high-OA peanuts (Figure 1F).

3.2. scRNA-seq Identified the Major Cell Clusters in High-OA and Normal Peanut Seedling Leaf

To investigate the association between transcriptional heterogeneity and delayed
leaf growth in the fad2 mutant, we performed single-cell transcriptome profiling using a
microfluidic technology platform (Figure 2A). We obtained two gene expression matrices of
10,691 genes across 13,692 cells for the high-OA peanut and 10,395 genes across 11,296 cells
for the normal peanut after aligning the raw sequencing data to the peanut genome and
filtering low-quality cells (Tables S2–S4). Data quality control showed that a median of
1489 UMIs and 1074 genes and 2507 UMIs and 1461 genes were distributed in each cell
of high-OA and normal peanuts (Figure S3A,B). Using Arabidopsis TFs as a reference,
we identified 2568 and 2629 putative TFs for high-OA and normal peanuts, respectively
(Tables S5–S7).
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adenosine; DHZR, Dihydrozeatin ribonucleoside. The asterisks indicate significant differences be-
tween the two varieties (T-test, * p < 0.05, ** p < 0.01). (F) A model representing the high-OA accu-
mulation mediated by fad2 mutation to repress the cytokinin pathway. 
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Figure 1. Phenotypic variations of peanut seedlings between high-OA cultivar Yueyou271 and normal-
OA cultivar Yueyou43. (A) The growth phenotype of seedlings of the two varieties on day 3, 5, and
7 after sowing. (B–D) Leaf area, stem length, leaf length, and width of seedlings of the two varieties
on day 3, day 5, and day 7 (n = 5). (E) Comparison of the cytokinin derivatives contents in seedling
leaves between Yueyou43 and Yueyou271. Histograms depict the mean ± SD of three biological
replicates. cZ, cis-Zeatin; tZ, trans-Zeatin; tZR, trans-Zeatin riboside; IPR, N6-isopentenyladenosine;
DHZR, Dihydrozeatin ribonucleoside. The asterisks indicate significant differences between the two
varieties (T-test, * p < 0.05, ** p < 0.01). (F) A model representing the high-OA accumulation mediated
by fad2 mutation to repress the cytokinin pathway.
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Figure 2. Construction of single-cell transcriptome atlas and annotation of peanut leaf clusters.
(A) An overview of the scRNA-seq workflow used. (B,C) Visualization of 12 cell clusters using
t-SNE plot; each dot indicates individual cells colored based on variety and cell clusters. (D) Bar
plot depicting distribution of cells from high-OA (Yueyou271) and normal peanut (Yueyou43) in the
12 clusters. (E) Violin plots showing the expression pattern of known marker genes across clusters.
(F–H) Circos plots consisted of 20 peanut chromosomes, representing the single-cell gene expression
pattern in the leaf cells of total high-OA and normal peanuts, respectively. The outer circle to inner
circle represents the cell clusters 0 to 11.

Following Z-score normalization and dimensionality reduction, ~25,000 cells from the
two peanut varieties were classified into 12 distinct clusters using the Louvain method and
subsequently visualized on t-SNE and UMAP plots (Figures 2B,C and S5). The number
of cells in each cluster ranged from 2 to 8225 for high-OA and from 85 to 2683 for normal
peanuts (Figure 2D; Table S1). Interestingly, few clusters were enriched or specifically found
in the two peanut varieties. The marker genes for each cluster were used to distinguish
and annotate the different cell clusters (Figure 2E). The cluster-wise expression abundances
of identified genes from the high-OA and normal peanut cells anchored onto the 20 peanut
chromosomes shows cluster- and variety-specific gene expression (Figures 2F–H and S4).
The clusters 0 and 2 were classified as epidermal cells based on the enrichment of marker
gene 4-COUMARATE COENZYME A LIGASE (4CL), which plays a key role in the phenyl-
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propanoid and lignin synthesis pathway [32]. Mesophyll cell clusters (clusters 1, 4, and 7)
were marked by the expression of RUBISCO BISPOSPHATE CARBOXYLASE SMALL
SUBUNIT (RBCS) involved in photosynthesis [33]. Vascular cells (clusters 3, 5, 6, and 11)
were characterized based on the expression of BIDIRECTIONAL SUGAR TRANSPORTER
(SWEET), which is specifically expressed in the phloem to mediate sucrose efflux [34].
The clusters 8 and 10 specifically expressed WUSCHEL-RELATED HOMEOVOX (WOX),
which is a marker of primordium cells [35]. The guard cells marker gene FAMA (FMA) was
exclusively expressed in cluster 9, which was clearly separated from other cell types on the
t-SNE plot [36,37]. Taken together, all cell clusters were classified into five major cell types
present in leaves, namely, mesophyll, epidermis, vascular, primordium, and guard cells,
indicating that the peanut leaf is composed of highly heterogeneous cells.

3.3. Identification of Important DEGs in Distinct Leaf Cell-Types Revealed fad2 Mutation
Repressed the Cytokinin Pathway

A total of 3495 significantly up-regulated DEGs were identified, which were dis-
tributed in the range of 106 to 2048 in distinct clusters (Figure 3A; Table S8). The top five
genes with the highest expression level in each cell cluster were selected and their expres-
sion profiles were visualized in a dot plot (Figure S9; Table S9). Vascular cells (clusters 3,
5, 6, and 11) had the largest percentage of elevated DEGs. Furthermore, KEGG pathway
enrichment analysis revealed that the cluster-specific DEGs were mostly involved in ribo-
some, carbon metabolism, and photosynthesis (Figure 3B). The 35 hormone DEGs related to
cytokinin, auxin, and gibberellin metabolism were largely cluster-specific DEGs (Figure 3D).
Meanwhile, 13 DEGs (Figure S10) were identified from the cell-cluster up-regulated DEGs
profile (Table S8), which were involved in the JA biosynthesis pathway to reflect the up-
regulated JA content in high-oleic peanuts. We further compared the expression profiles
of cluster-specific DEGs and all identified genes of the two varieties and found a total
of 804 core DEGs common to the two varieties (Figure 3C). Since transcription factors
(TFs) recognize specific DNA sequences to guide the gene expression, we focused on the
identification of critical TFs. We screened 32 TFs from the core DEGs and visualized their
expression profiles using a heatmap (Figure 3E). Additionally, interactive network analysis
of these 32 TFs showed that among these, 17 TFs consisted of protein–protein interaction
networks (Figure 3F), including LHY, COL2, and RVE8 responding to the photoperiod
pathway; ZAT11, WRKY family gene, NAC72, and BHLH35 being able to participate in
the JA, abscisic acid (ABA), and salicylic acid (SA) activated stress defense reaction; and
ERF17, NF-YA7, and GATA5 being capable of regulating the growth hormone (IAA, CTK,
GA) pathway. These TFs provide a gene resource to further validate their function in
the development and differentiation state of the distinct leaf cell types. Furthermore, to
determine the variation in gene expression in the two varieties, up-regulated DEGs and
down-regulated DEGs from each cell type were examined by intergroup expression differ-
ence analysis (Figure 3G; Table S10). Then, 1649 core DEGs across cell types were assessed
by comparing the above-mentioned DEGs, of which 65 TFs were subsequently selected
and their expression profiles were described in a heatmap (Figure 3H,I). The transcript
abundance of these 65 TFs displayed significant differences between the two varieties.

Furthermore, the core-DEG analysis revealed that four LONELY GUY (LOG) genes
showed a higher abundance in various cell types of the normal variety (Yueyou43) com-
pared to the high-OA peanut variety Yueyou271 (Figure 3J,K). LOGs exhibit phosphori-
bohydrolase activity, which directly converts the inactive cytokinin nucleotides, such as
cis-zeatin riboside 5′-monophosphate (cZRMP) and trans-zeatin riboside 5′-monophosphate
(tZRMP), into the active free-base form cZ and tZ [38,39]. The expression pattern of the four
LOG genes in distinct cell types demonstrated that they were most highly expressed in the
vascular cells (Figure 3L). To confirm these findings, we isolated the leaf veins and performed
traditional real-time PCR at the tissue level, which showed that the expression levels of the
four LOG genes were consistent with the scRNA-seq data (Figure S12A,B). As expected, the
cytokinin (cZ/tZ) contents of the leaf vein were reduced in high-OA peanuts (Figure S12C).
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These results support the idea that the down-regulation of the LOG gene expression of high-
OA peanuts causes a reduction of cytokinin content in vascular cells, ultimately leading to the
growth and development retardation of its seedling leaves (Figure 3M).
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Figure 3. scRNA-seq identifies differentially expressed genes (DEGs) in distinct leaf cell types. (A) The
number of DEGs identified in each cluster. (B) KEGG pathway enrichment analysis of all DEGs from all
clusters. (C) Venn diagram showing the 804 core DEGs across all clusters. (D,E) Expression matrix of
35 hormone signaling DEGs and 32 differentially expressed TFs in each cell cluster. (F) The interaction
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network of 32 differentially expressed TFs. (G) Bar plots illustrating the up- and down-regulated
DEGs in each cell type. (H) Venn diagram showing the 1649 core-DEGs across all cell types.
(I) Heatmap depicting the expression level of 65 hub-TFs in each cell type of the two varieties.
(J,K) The expression distribution of four LOG genes in all cell clusters, with the gray dots as back-
ground representing the cells with no expression of the given transcript. (L) Dot plots show the
expression pattern and distribution of four LOG genes in distinct cell types. (M) A putative model
illustrating that the down-regulation of LOG in Yueyou271 leads to a decrease in cytokinin content.

3.4. FAD2 Mutation Repressed the Cell Differentiation in Leaf Development Trajectory

High-OA peanut exhibited slower leaf development than normal seedlings, imply-
ing that fad2 probably affects the cell differentiation procedure. Therefore, pseudo-time
trajectory analysis was employed to investigate the transcriptional difference between the
high-OA and normal peanuts. This analysis showed that cells from high-OA peanuts col-
lectively gathered in the cell differentiation states 1–2, whereas cells from normal peanuts
were distributed in the total cell differentiation states 3–5 (Figure 4A). The cell sample dis-
tribution showed a differentiation dynamic deficient in high-OA cell trajectories compared
to normal peanuts, suggesting that fad2 mutation causing high-OA accumulation represses
the cell differentiation and development in peanut leaves. Furthermore, 11,914 core DEGs
were specifically involved in multiple biological pathways in the cell development trajec-
tory (Figure 4B,C; Tables S11–S13). A total of 520 important TFs were filtered from the
11,914 core DEGs, which provided potential transcriptional dynamics for cell differentiation
by participating in plant-pathogen, MAPK, and hormone signal pathways (Figure 4D,E).
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cell clusters. (B) Venn diagram showing the core DEGs from DEGs of cell differentiation trajectory,
cell differentiation states, and cell fate. (C) KEGG pathway enrichment analysis of 11,914 core DEGs
in leaf development trajectory. (D) Clustering and expression kinetics of 520 TFs in 11,914 core DEGs
along cell differentiation states of total leaf cell ontology. (E) KEGG pathway enrichment analysis
of 520 TFs in 11,914 core DEGs. (F,G) The cell ordering along the PAGA trajectory is presented by
samples and cell clusters. (H) Venn diagram showing the 1251 core DEGs across both cell trajectories
result. (I) Dot plots showing the expression pattern of 48 critical TFs in each cell cluster.

To unbiasedly estimate the effectiveness of pseudo-time trajectory, PAGA (partition-
based graph abstraction) was carried out to validate the correlation between distinct cell
clusters in the development trajectory map. The fad2 and normal peanut samples exhibited
significant differences in PAGA trajectory (Figure 4F,G). Additionally, 1251 DEGs were
screened by cross-comparing both cell trajectories, of which 48 critical TFs, consisting of
the interaction network, probably dedicated the transcription dynamic to distinct cell type
differentiation (Figures 4H,I and S16; Tables S14 and S15). In conclusion, the identification
of core DEGs provides a gene resource for illustrating the critical genes that modulate
different processes between high-OA and normal peanut cell differentiation.

3.5. High-OA Peanut Regulated Cell Development Features in Distinct Cell Type Trajectories

Mesophyll cells, the major group that carries out photosynthesis reaction due to their
enrichment with chloroplasts, develop earlier in the high-OA seedlings than in normal
seedlings. However, the FAD2 mutation directly repressed the mesophyll differentiation by
altering the cell distribution in the development trajectory map (Figure 5A). Meanwhile,
66 TFs were identified from the profile of 1773 DEGs profile, which showed expression
trends that drove the differences in mesophyll differentiation at cell states 2–3 (Figure 5B,C;
Tables S16–S18). In the primordium cell trajectory, the normal peanut cell originated
earlier than the high-OA seedling; fad2 mutation caused the primordium cell to lose the
proliferative dynamic; and 17 TFs were featured, regulating the cell differentiation state 1–2
at branch node 1 (Figure 5D–F; Tables S19–S21). Moreover, we isolated the leaf vein that
contained the vascular cells to examine the cytokinin content and this result suggested that
cytokinin (cis-Zeatin, trans-Zeatin) content declined in the high-OA peanut (Figure S12C).
The decrease in cytokinin content induced a repressed reaction of vascular differentiation in
the high-OA cell, and the majority of TFs were down-regulated in the expression matrix of
361 different TFs profiles during the high-OA vascular cell differentiation to states 1 and 7,
suggesting that the impact of the fad2-cytokinin module regulated cell ontology in vascular
cells more so than other cell groups (Figure 5G–I; Tables S22–S24). Finally, epidermis-guard
cells secrete the lipid molecules to cover the surface of the epidermis; due to the blocking
of oleic acid converts to linoleic acid, the PAGA trajectory of epidermis-guard shows a
noticeable difference of epidermis pavement cells developing into guard cells in high-OA
peanuts (Figure 5J). Furthermore, six TFs were characterized from the 380 DEGs profile,
which were involved in the ethylene and jasmonic acid (JA) pathways to regulate the
process of the epidermis transforming into guard cells (Figure 5K,L; Table S25). These
outcomes provide important biological insights into understanding how the fad2 mutation
causes high-OA repressed leaf growth at the level of subcellular types.
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Figure 5. Separate development trajectory of five cell types. (A) Cell differentiation state, sample, and
cell cluster distributions followed the pseudo-time trajectory of mesophyll development. (B,C) Clus-
tering and expression kinetics of 66 TFs in 1773 DEGs along cell differentiation states of the mesophyll
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cell group. (D) Cell differentiation state, sample, and cell cluster distributions followed the pseudo-
time trajectory of primordium development. (E,F) Clustering and expression kinetics of 17 TFs in
386 DEGs along cell differentiation states of the primordium cell group. (G) Cell differentiation state,
sample, and cell cluster distributions followed the pseudo-time trajectory of vascular development.
(H,I) Clustering and expression kinetics of 361 TFs in 5512 DEGs along cell differentiation states
of the vascular cells. (J) PAGA trajectory of differentiation from the epidermal to the guard cells.
(K) Expression tendency of 380 DEGs in PAGA trajectory. (L) Expression tendency of 6 TFs in
380 DEGs in the process of epidermis transforming into guard cells.

3.6. scRNA-seq Reveals That High-OA Accumulation Represses Leaf Cell Cycle Procedure

The FAD2 mutant significantly represses plant growth and development through
regulation of the cytokinin pathway, which synergistically regulates the growth progression
of cell cycle. Here, RNA velocity replicated that the gene transcription flow direction was
weak in high-OA peanuts, whereas the transcriptional profile of the normal seedling cells
showed a larger variation (diversity RNA flow arrows) (Figures 6A and S17). Furthermore,
cell cycle calling demonstrated that the number of cells which dropped into the cell dividing
phase was larger than the non-cycling cells (NC) in the high-OA sample; in particular, the
large proportion of cells dropping entirely into the S-phase in clusters 0 and 2 (epidermis),
4 (mesophyll), and 9 (guard cell) was greater than another cell cluster (Figure 6B,C). We next
investigated the numbers of DEGs and the biological pathway they are involved in during
phase G1 (569), G1S (770), S (497), G2M (690), M (652), and the non-cycling (870) phases
of the cell cycle (Figure 6D,E; Table S26). A total of 26 DEGs were classified into a new
marker group for future distinguishing leaf cell genome replication states, and 1113 DEGs
were obtained to simultaneously modulate the cell cycle and cell development trajectory
by involving in several pivotal metabolism pathways (Figure 6F–H). Finally, eight core
TFs were identified in the 1113 DEGs profile, with significantly upregulated expression
levels in high-OA peanut cells, potentially acting as downstream regulators to negatively
mediate the cell cycle reaction (Figures 6I and S18). This analysis provided a potential
pool of TFs for further investigation of the functional details of critical genes regulating
the cell cycle differences between high-OA and normal seedling leaves. Therefore, we
hypothesized that the fad2 mutant elevated the high OA content in the leaf blade, but
excessive accumulation of oleic acid causes biological stress that suppresses the normal cell
cycle procedure associated with plant growth.
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Figure 6. Cell cycle analysis provides important DEGs regulating cell cycle differences between the
high-OA and normal seedling leaves. (A) RNA velocity analysis of all cells. The number 0–11 indicates
the cell cluster 0–11 in the fad2 and normal peanut seedling leaf t-SNE map. (B) Cell cycle phase
distribution; NC indicates the non-cycling cell population. The scaleplate of out circular represents the
total cell number in each cell cycle phase. (C) The histogram plot shows the distribution of cells from
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respective cell cycle phases. (D) The histogram plot shows the DEGs in different cell cycle phases.
(E) GO enrichment analysis of DEGs in different cell cycle phases. (F) Newly identified genes
for distinguishing leaf cell genome replication states. (G) Venn diagram showing 1113 core DEGs
between cell-cycle-related DEGs, cell cluster DEGs, and cell development trajectory DEGs. (H) KEGG
pathway enrichment analysis of 1113 core DEGs. (I) Cell expression distribution of eight core TFs
identified from 1113 core DEGs.

4. Discussion

High-OA peanut oil is less prone to generating detrimental trans-fatty acids during
storage and food processing due to its higher oxidative and thermodynamic stability, meet-
ing the fast-increasing demand of consumers for nutritious and healthy edible oil [40].
Therefore, in addition to conventional breeding programs, some molecular breeding ap-
proaches such as RNA interference (RNAi), transcription activator-like effector nucleases
(TALENs), and CRISPR/Cas9 systems have been utilized to reduce the activity of the FAD2
genes and generate peanut lines with high-OA oil [5,41]. Although several efforts have
been made in the development of high-OA peanuts, little is known about the impact of
increased OA content in seeds on plant growth and development.

Recently, scRNA-seq has evolved as a technology, with a great potential to address
complex biological questions with higher precision as compared to bulk RNA-seq [42].
High-throughput scRNA-seq can accurately dissect cell composition information and cel-
lular heterogeneity with its high degree of resolution, providing new insights into plant
physiology and development. In this study, we present the scRNA-seq atlas of the leaf
blade of high-OA peanuts, which enabled us to explore its cellular and transcriptional
heterogeneity and reveal the mechanism of the FAD2-regulated growth pathway at the
single-cell resolution in peanut leaf development. Notably, the transcription factors interac-
tion network identified by scRNA-seq provided a potential gene resource for understanding
the difference in the metabolism pathway modulating cell development or differentiation
determining growth differences between high-oleic acid and normal peanut seedlings.
WRKY6 [43] regulates the fatty acid composition and lipid accumulation; ERF109 [44] and
WRKY23 [45] activate the growth hormone pathway; and ERF6 [46], MYB102 [47], and
WRKY30 [48] are potentially involved in leaf growth.

Fatty acid desaturase 2 (FAD2) is located in the endoplasmic reticulum and catalyzes
the delta-12 desaturation reaction, which is a crucial step in the production of polyun-
saturated fatty acids in oilseed crops. Understanding the regulation of the FAD2 gene is
important for comprehending fatty acid biosynthesis, plant development, and the essential
role it plays in biotic or abiotic stresses [49]. FAD2 not only regulates the conversion of
oleic acid (C18:1) into linoleic acid (C18:2), but also its mutant increases the content of
endogenous jasmonic acid (JA). However, evidences supports that the FAD protein in-
duced PUFA content variation has an influence on plant development by cross-talking
with the phytohormones pathway. Here, peanut FAD2 modulated the antagonism rela-
tionship between the cytokinin (CTK) and jasmonic acid, as cytokinin down-regulation is
mainly attributed to fad2 deficiency in the endoplasmic reticulum, which restricts cytokinin
biosynthesis. Furthermore, the peanut fad2 mutant sightly up-regulates the content of
linolenic acid (C18:3) by up-regulating the FAD7 (Fatty Acid Desaturase 7) expression level
that controls the plastid derived linoleic acid (C18:2) converts into linolenic acid (C18:3).
The plastid yielded linolenic acid (C18:3) is a precursor in the JA synthesis pathway, thereby
indirectly leading to an increase in the concentration of JA. Moreover, the expression levels
of plastid LOX (lipoxygenase) and peroxisome OPR3 (12-oxophytodienoic acid reductase 3)
were up-regulated in the fad2 mutant, indicating that high oleic acid probably improves the
JA content by modulating the FAD7-LOX-OPR3 tandem gene module (Figure 7). Next, the
increased JA negatively works on cell proliferation and prevents the cytokinin response,
and the inhibition of the JA biosynthesis enzyme will probably validate this hypothesis in
our next study. Conclusively, the hormone disruption induced by the FAD2 mutant reduces
peanut growth characteristics, which may provide a potential reference for deciphering
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the yield decrease caused by small seeds in actual high-oleic peanut cultivation. In future
breeding practice, artificial synthetized cytokinin enzymes’ coding sequencing can be in-
serted into the peanut genome with the genetic background of fad2 mutation. Like the gene
pyramiding of CYP735A (cytochrome P450) and LOG1 improves the endogenous cytokinin
content by transgenic-bio-technique-induced gene staking, this method may be able to
rescue the growth hormone decrease in high-oleic peanuts. Moreover, the application of
exogenous plant growth regulators with a suitable concentration of cytokinin probably
benefits the high-oleic peanut yield, increasing in the field cultivation management.
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Figure 7. Putative model of FAD2 mutant regulated the cytokinin pathway to repress the leaf cell
development in peanut leaf vascular tissue. DMAPP, dimethylallyl diphosphate; iPRMP, N(6)-
(Delta(2)-isopentenyl)adenosine-5′-monophosphate; cZRMP, cis-Zeatin riboside monophosphate;
tZRMP, trans-Zeatin riboside monophosphate; cZR, cis-Zeatin riboside; tZR, trans-Zeatin riboside; cZ,
cis-Zeatin; tZ, trans-Zeatin; 13-HPOT, 13-hydroperoxide of alpha-linolenic acid; 12,13-EOT, 12,13(S)-
epoxy-9(Z),11,15(Z)-octadecatrienoic acid; 12-OPDA, 12-oxophytodienoic acid; OPC8, 3-oxo-2-(2-
(Z)-pentenyl) cyclopentane-1-octanoic acid; JA, jasmonic acid; KAS1, 3-ketoacyl-acyl carrier protein
synthase 1; KAS2, 3-ketoacyl-acyl carrier protein synthase 2; FAB2, stearoyl-ACP desaturase 2; AOS,
allene oxide synthase; AOC, alleneoxide cyclase; ACX1, acyl-CoA oxidase1.

High oleic acid (fad2) represses the peanut seedling leaf development by reducing
the growth cytokinin and its derivatives contents; this reaction occurs in the vascular
cell with a lower expression level of cytokinin synthesis, restricting the enzyme LOG
through scRNA-seq identification, implying that fad2 may produce a negative effect on
peanut vascular system development to repress whole plant growth. Meanwhile, the cell
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development trajectory constructed using scRNA-seq data indicated that fad2 suppressed
cell differentiation, including the mesophyll and epidermis cell distributed limiting cell
differentiation states, which seemed to lose the differentiation dynamic in pseudotime
trajectory. Compared to conventional bulk RNA-seq, scRNA-seq analysis allows for the
identification of cell type-specific DEGs. The gene network constructed using the single-cell
data allows the identification of the critical biological pathway to elucidate the molecular
mechanism of high-oleic-peanut-associated agronomic traits.

The cell cycle is a series of events that take place in a cell as it grows and divides.
A cell spends most of its time in interphase, and during this time it grows, replicates its
chromosomes, and prepares for cell division. The cell then leaves interphase, undergoes
mitosis, and completes its division. The resulting cells enter their own interphase and
begin a new round of the cell cycle. In this study, scRNA-seq data suggested that the
majority of high-oleic peanut cells dropped into the S-phase during leaf growth. This
result provides a novel insight for exploring the FAD2 mutant’s control of high-oleic acid
accumulation, which may influence downstream DNA replication events. Therefore, cell
cycle disorders might play an intermediary role between high-oleic acids and eventual
morphological changes in growth. Additionally, scRNA-seq analysis of gene expression
patterns in high-/normal-oleic acid peanut seedlings has provided a gene resource for
further illustrating the homologous DEG-transcription-mediated cell cycle difference in the
fad2 mutant, especially the transcription factors that respond to hormone pathways and
modulate DNA-replication-related chromatin states.

Plant single-cell RNA-seq is a powerful platform that allows for the construction of cell
atlases with a single-cell resolution [50,51]. However, the current method of isolating single
cells from plant tissues depends on the cellulase-pectinase-based enzymatic degradation of
the cell wall to obtain protoplasts and is associated with a microfluidic platform to construct
the scRNA-seq library. The use of protoplasts as a biological material to describe the gene
expression atlas is challenging due to the presence of cellulose and lignin in the cell walls
that resist degradation [52]. To overcome the limitations of protoplast dissociation, an
alternate method has been proposed that utilizes single nuclei to obtain a transcriptional
profile, as transcription occurs in the nucleus and mRNA is exported into the cytoplasm
for translation [53,54]. scRNA-seq can be replaced by single-nucleus RNA sequencing
(snRNA-seq) to explore single-cell multi-omics research in future. Despite single-cell gene
expression, atlas has been established in high-oleic peanut leaves, whereas high-oleic
peanut pods and seeds are the most important tissues for harvest; therefore, illustrating the
fatty acid or protein synthesis gene expression patterns at single-cell resolution should be
listed in our schedule, and it is necessary to develop the snRNA-seq based on single-nuclei
isolation and fluorescent-activated cell sorter (FACS) in peanuts. With the development of
biotechnology, we anticipate incorporating various scRNA-seq/snRNA-seq-compatible
methodologies, particularly in combination with single-cell spatial transcriptomics, which
can overcome some of the limitations of traditional scRNA-seq by preserving in situ gene
expression profiling. Future studies will involve deeper coverage in single-cell multiomics
sequencing, which is based on the integration of individual-cell epigenetic landscapes for
instant scATAC-seq, scChIP-seq, scCUT&Tag, scATAC-seq, and transcription atlases in the
procedure of allopolyploid organ development. In the future, novel biotechnology at the
single-cell level can accelerate the advancement of plant single-cell sequencing and provide
insights into previously unexplored mechanisms of plant development.
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UMAP plot; Figure S6: The validation of scRNA-seq data of the five marker genes; Figure S7: Go
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data in distinct cell populations; Figure S13: The relative expression of the top ten DEGs in the whole
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of 1300 DEGs in PAGA trajectory; Figure S15: The relative expression of top ten DEGs in PAGA
trajectory; Figure S16: Interaction network of TFs constructed using Arabidopsis homologues of the
48 TFs in 1251 core DEGs profile; Figure S17: RNA velocity analysis of seedling leaf cells of high-OA
peanut and normal peanut; Figure S18: The validation of scRNA-seq data of the eight critical TFs
identified from 1113 core DEGs; Table S1: Cell number in each cell cluster; Table S2: All identified
genes; Table S3: All genes in fad2 peanut; Table S4: All genes in normal peanut; Table S5: All TF in both
sample; Table S6: All TF in fad2 peanut; Table S7: All TF in normal peanut; Table S8: All DEGs in each
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