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Abstract: Preclinical studies have shown that chronic alcohol abuse leads to alterations in the
gastrointestinal microbiota that are associated with behavior changes, physiological alterations, and
immunological effects. However, such studies have been limited in their ability to evaluate the
direct effects of alcohol-associated dysbiosis. To address this, we developed a humanized alcohol-
microbiota mouse model to systematically evaluate the immunological effects of chronic alcohol abuse
mediated by intestinal dysbiosis. Germ-free mice were colonized with human fecal microbiota from
individuals with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to
produce human alcohol-associated microbiota or human control-microbiota F1 progenies. F1 offspring
colonized with fecal microbiota from individuals with high AUDIT scores had increased susceptibility
to Klebsiella pneumoniae and Streptococcus pneumoniae pneumonia, as determined by increased mortality
rates, pulmonary bacterial burden, and post-infection lung damage. These findings highlight the
importance of considering both the direct effects of alcohol and alcohol-induced dysbiosis when
investigating the mechanisms behind alcohol-related disorders and treatment strategies.
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1. Introduction

Numerous preclinical studies have demonstrated that the intestinal microbiota plays
an important role in regulating the behavioral outcomes and tissue injury associated with
chronic alcohol use. Changes in the gastrointestinal microbiota metabolic function and
composition due to alcohol consumption are associated with (1) behavior consequences,
(2) physiological alterations, and (3) immunological effects [1–7]. However, these studies
are limited in their ability to assess the direct effects of alcohol-associated dysbiosis in-
dependent of the direct effects of alcohol, as they rely either on association studies or on
manipulating the microbiota with antibiotics, which is known to have off-target effects [8].
As such, there are currently no animal models that allow for the systematic evaluation
of the effects of chronic alcohol abuse that are mediated by alcohol-associated dysbiosis
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independent of the direct effects of alcohol. This is especially true for evaluating the ef-
fects of human alcohol-associated dysbiosis, as only a handful of studies have sought to
understand the functional consequences of human alcohol-associated dysbiosis [1,5,9,10].
To address this challenge and knowledge gap, we developed a translationally relevant
human alcohol-microbiota mouse model, which allows us to evaluate the immunological
effects of alcohol-associated dysbiosis independent of the direct effects of alcohol. Precisely,
C57BL/6 germ-free mice were colonized with human fecal microbiota from individuals
with high and low Alcohol Use Disorders Identification Test (AUDIT) scores and bred to
produce human alcohol-associated microbiota or human control-microbiota F1 progenies.
Both female and male progeny (F1 mice), designated as human alcohol-microbiota mice or
human control-microbiota mice, were then generated. Evaluation of the intestinal micro-
bial community structure of germ-free mice colonized with human microbiota found that
the recipient mice cluster with respect to the original human donor sample. In addition,
the F1 generation of human alcohol-microbiota mice or human control-microbiota mice
maintained a similar microbial community structure. Finally, utilizing human alcohol-
microbiota-associated F1 mice, we found that mice colonized with the fecal microbiota from
AUDIT > 8 individuals had increased susceptibility to both Klebsiella pneumoniae and Strep-
tococcus pneumoniae when compared to mice recolonized with fecal microbiota from AUDIT
< 8 individuals, as determined by increased (A) mortality, (B) pulmonary bacterial burden,
and (C) lung damage/leak post infection. These data support the use of human samples as
well as F1 mice to evaluate the effects of the alcohol-associated dysbiosis on pulmonary host
defense, independent of alcohol’s effects on tissues. Further, these findings highlight the
importance of considering the direct effects of both alcohol and alcohol-induced dysbiosis
when investigating the mechanisms behind alcohol-related disorders.

2. Materials and Methods
2.1. Mouse Studies

Mice were housed in an SPF environment under standard social housing conditions in
Comparative Medicine at UNMC. Food and water were provided ad libitum. All protocols
used in these studies were approved by the Institutional Animal Care and Use Committee
of UNMC (IACUC# 20-085-09-FC & 20-084-10-FC). This research protocol is in accordance
with the NIH and Office of Laboratory Animal Welfare (OLAW) guidelines.

2.2. Human Stool Sample Collection and Fecal Engraftment

All human fecal samples were obtained through the New Orleans Alcohol HIV study
(NOAH), an NIH P60-funded center. Selection criteria for the human fecal samples were as
follows: AUD positive samples were defined as subjects with an Alcohol Use Disorders
Identification Test (AUDIT) score of ≥ 8 for men and ≥ 5 for women, with the last alcohol-
containing beverage consumed within the 7 days prior to enrollment. Human fecal samples
were collected using the Fecal Aliquot Straw Technique, as described previously [11]. Four
or more straws were collected for each fecal sample and stored at −80 ◦C until shipped
or used. All human fecal microbiota samples were treated and prepared under anaerobic
conditions. Specifically, frozen fecal samples were homogenized in sterile 10% glycerol
phosphate buffered saline (PBS; ThermoFisher Scientific, Cincinnati, OH, USA) and filtered
to remove large organic particulate matter. The germ-free mice used in this study were
obtained from the Nebraska Gnotobiotic Mouse Program (Lincoln, NE, USA). Engraftment
of human fecal samples was performed as described previously [12]. Male and female
C57BL/6 germ-free mice were engrafted with fecal microbiota from individuals with high
and low AUDIT scores. Specifically, 9 breeding pairs derived from 3 human fecal samples
from individuals with an AUDIT score > 8, and 9 breeding pairs derived from 3 human
fecal samples from individuals with an AUDIT score < 8, were used to establish our
alcohol-microbiota and control-microbiota humanized mice. Human-microbiota mice were
maintained in sterile individually ventilated cages for the duration of the study. Human
alcohol-microbiota mice and human control-microbiota mice were then bred to produce
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human-microbiota-associated F1 mice. F1 generation of human alcohol-microbiota mice
and human control-microbiota colonized mice were used for all experimental endpoints
in this study. F1 offspring at 8–10 weeks were infected with either K. pneumoniae or S.
pneumoniae via oropharyngeal aspiration and sacrificed 48 h post infection.

2.3. DNA Sequencing of the 16s rRNA Gene

Sequencing of the 16s rRNA bacterial gene was performed in the Genomics Core at
UNMC, as previously described [13].

2.4. Sequence Analysis

R and the following R packages were used to process all raw sequencing data: DADA2
v1.1.5, Phyloseq v1.16.2, DESeq2 v1.20.0, microViz v0.10.7, microbiome v1.16.0, micro-
biomeutilities v1.00.16, and vegan v2.3-5 [14–21]. DADA2 was used to truncate, denoise,
chimera-filter, and cluster the sequences into amplicon sequence variants (ASVs). Taxo-
nomic classification of ASVs was performed using the SILVA reference database v132. The
estimate_richness function in Phyloseq was used to calculate alpha diversity. Phyloseq
and vegan were used to calculate beta-diversity using a distance-based redundancy anal-
ysis (dbRDA) on sample-wise Bray–Curtis dissimilarity distances. DESeq2 was used to
determine the differentially abundant ASVs.

2.5. K. pneumoniae and S. pneumoniae Culture and Infection

K. pneumoniae strain 43816, serotype 2 (American Type Culture Collection, Manassas,
VA) was grown and prepared as previously described [22]. S. pneumoniae strain JWV500
(D39hlpA-gfp-Cam’) was grown and prepared for inoculation as described previously [12].
Oropharyngeal aspiration of mice was performed as described elsewhere [22]. Mice were
infected with 1 × 103 colony-forming units (CFU) of K. pneumoniae or 4 × 108 CFU of S.
pneumoniae in 100 µL of PBS. The K. pneumoniae and S. pneumoniae dose was confirmed by
serial dilutions. All mice were sacrificed 48 h post infection.

2.6. K. pneumoniae and S. pneumoniae Lung and Spleen Quantification

For quantification of pulmonary and splenic K. pneumoniae burden, tissues were
homogenized, and serial dilutions of the tissue homogenates were plated on HiCrome
Klebsiella Selective Agar plates (Thomas Scientific, Swedesboro, NJ, USA) for incubation at
37 ◦C for 24 h. The CFU/lung or CFU/spleen was calculated based on standard colony
counts. To measure the pulmonary and splenic burden of S. pneumoniae in the mice, the
lytA gene was quantified using real-time quantitative PCR. Primer sequences, probe, and
thermocycler run parameters are described elsewhere [13].

2.7. Bronchoalveolar Lavage (BAL) Fluid Analyses

BAL fluid was collected from the lungs by lavage with PBS. A Bio-Rad TC20 automated
cell counter (Bio-Rad, Hercules, CA, USA) was used to determine the total number of BAL
cells. Hema-3 cell staining (ThermoFisher Scientific, Cincinnati, OH) and manual counting
was used for BAL cell differential counts. BAL levels of total protein, chemokine, and
cytokine were determined using commercially available ELISA kits according to their
manufacturers’ instructions (BioLegend, San Diego, CA, USA, R&D Systems, Minneapolis,
MN, USA and ThermoFisher Scientific, Cincinnati, OH).

2.8. Lung Histology

Whole lungs were inflated with 10% formalin (ThermoFisher Scientific, Cincinnati,
OH) to preserve pulmonary architecture. The UNMC Tissue Sciences Core Facility then
processed all lungs for histological evaluation, as described previously [12]. Lung inflam-
mation was determined by a blinded pathologist using a previously validated scoring
system [23,24].
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2.9. Behavioral Assessments

Anxiety-like behavior was assessed using a marble-burying approach, as described
elsewhere [25]. Precisely, individual mice were placed in a standard cage with 10 marbles
evenly spaced throughout the cage. After 30 minutes, the number of marbles buried was
measured (a marble was considered buried if 2/3 of the marble was covered with bedding).
Drinking preference was assessed using a standard 2-bottle alcohol-preference test [26].
Briefly, mice were presented with two graduated water tubes in their home-cage. One
tube contained water while the other contained 10% ethanol. The positions of the tubes
were switched at 3-day intervals for a total of 15 days. Drinking preferences were assessed
every 24 h and alcohol preference was calculated using the following formula: Drinking
preference = ethanol intake (mL)/intake of ethanol + intake of water (total fluid-intake in
mL) × 100. Drinking preference was then calculated for each 24 h period and averaged and
scored as follows: A score of 50% indicates equality of preference, while ≤ 49% indicates
aversion, and, finally, a score of ≥ 51% indicates preference.

2.10. Statistics

The R packages vegan and GraphPad Prism version 9.1 (GraphPad Software, La Jolla,
CA, USA) were used for statistical analysis. Data were presented as the mean ± standard
error of the mean. Results were considered statistically significant if p < 0.05 or if the false
discovery rate (FDR) q-value < 0.05. The number of replicates and sample size are indicated
in each figure. One-way analysis of variance (ANOVA) was used for comparisons between
three or more groups. Sidak’s correction for multiple comparisons was applied to group
comparisons following ANOVA. A Welch’s T-test was used to evaluate statistically signifi-
cant differences between two groups. Mandel–Cox modeling was used to analyze survival
curves. Microbiome statistics were assessed as follows: Alpha-diversity significance was
determined using the aov function in stats. Permutational multivariate analysis of variance
(PERMANOVA) via the adonis2 function in vegan was used to determine beta-diversity
significance. FDR corrections were applied to group comparisons following PERMANOVA.
The DESeq2 R package was used to determine differentially abundant ASVs.

3. Results
3.1. Microbial Community Structure Is Maintained in the F1 Generation of Human
Alcohol-Associated Microbiota Mice

As stated in the methods section, a total of six human donor samples were used to
generate F1 human alcohol-microbiota mice or human control-microbiota mice. Specific
details of each donor are shown below in Table 1. Our breeding/experimental strategy is
shown in Figure 1.

Microbiota composition was assessed following human engraftment into germ-free
mice, as well as in the F1 generation of human alcohol-associated microbiota and human
control-microbiota mice. β-diversity analysis demonstrated that the microbiota compo-
sition differed significantly between the 6 groups of conventionalized mice (F = 8.0288,
p = 0.00001), as well as between control and alcohol-associated microbiota conventionalized
mice (F = 3.3482, p = 0.00137). Conversely, analysis of the β-diversity between the human
donor sample and the mouse cecal samples (F0 and F1 combined) showed no significant
difference for D1023 (F = 2.4793, p = 0.09087); D1003 (F = 3.2624, p = 0.08281), D1022
(F = 3.5607, p = 0.0774), D1935 (F = 1.8977, p = 0.08957), D1047 (F = 4.574, p = 0.07595), and
D1038 (F = 3.6382, p = 0.08359) (Figure 2A). However, differences in the relative abundance
of microbial taxa were observed (Figure 2B). Importantly, the significant differences in
differentially abundant microbial taxa were maintained in F0 and F1 conventionalized mice
(Figure 3A–C).
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Table 1. Demographics of human fecal samples.

Sample ID Gender Age AUDIT C AUDIT Total

D1022 Female 60 1 1
D1003 Female 35 0 0
D1023 Male 63 0 0
D1038 Male 63 2 8
D1035 Male 63 9 17
D1047 Male 46 6 16
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Figure 2. Microbial community structure is maintained in the F1 generation of human alcohol-
associated microbiota mice, as shown by the 16s sequencing of human donor fecal samples and cecal
microbial community from F0 and F1 conventionalized germ-free mice. (A) Beta diversity of human,
F0, and F1 human-microbiota associated mice, as determined by distance-based redundancy analysis
(dbRDA) on sample-wise Bray–Curtis dissimilarity distances. (B) Relative abundance of microbial
taxa in human fecal samples, as well as cecal samples from F0, and F1 human-microbiota associated
mice. n = 5–6/group.
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mice. Differentially abundant ASVs as determined by DESeq2. (A) Human donor fecal samples,
(B) F0 conventionalized mice, and (C) F1 human-microbiota associated mice. n = 5–6/group.

3.2. Human Alcohol-Associated Microbiota Mice have Increased Weight Loss and Decreased
Survival following K. pneumoniae Infection

To evaluate the effects of human alcohol-associated dysbiosis on survival after K.
pneumoniae infection, both male and female F1 mice were administered 1 × 103 CFU of
K. pneumoniae, and survival was evaluated 48 h. post infection. All mice exhibited post-
infection weight loss (Figure 4). Human alcohol-associated microbiota mice had a trend
toward increased weight loss in the combined group (Figure 4A) and there was no difference
between control and alcohol-associated male mice (Figure 4B). However, significant weight
loss in F1 human alcohol-associated microbiota female mice (Figure 4C) was observed,
suggesting a potential gender effect following K. pneumoniae infection. In addition, there
were distinct effects on post-infection weight loss with K. pneumoniae based on the original
human donor (Figure 4D). Both F1 male and female alcohol-associated microbiota mice
had decreased survival in comparison to their control-microbiota counterparts (Figure 5).
Human alcohol-associated microbiota mice had a significant increase in mortality in the
combined group (Figure 5A). However, a nonsignificant decrease in mortality was seen
between control and alcohol-associated male mice (Figure 5B). Conversely, a significant
increase in mortality in F1 human alcohol-associated microbiota female mice (Figure 5C)
was observed, again suggesting a potential gender effect following K. pneumoniae infection.
Further, mortality post infection with K. pneumoniae was associated with the original human
donor (Figure 5D). Consistent with increased weight loss, we also observed changes in the
physical appearance and activity levels (data not shown) with F1 human alcohol-associated
microbiota, particularly in female mice, which had the most significant symptoms.
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Figure 4. Human alcohol-associated microbiota mice have increased weight loss following K. pneu-
moniae infection. F1 microbiota mice were infected with K. pneumoniae, and weight loss was assessed
daily for 48 h post infection. Post-infection weight loss in (A) combined male and female mice,
(B) male mice, and (C) female mice. (D) Donor-dependent weight change in combined male and
female mice post infection. Dots represent the mean and SEM per group (n = 20 control-microbiota
F1 mice, and n = 20 alcohol-associated F1 mice). Red lines indicate F1 alcohol-associated microbiota
mice. p values are indicated in the figure and were determined by two-way ANOVA with a post hoc
Sidak’s multiple comparisons correction.

3.3. Human Alcohol-Associated Microbiota Mice have Altered Lung Tissue Integrity and Increased
Bacterial Burden

To determine the role of human alcohol-associated dysbiosis on pulmonary host de-
fense against K. pneumoniae infection, both male and female F1 mice were administered
1 × 103 CFU of K. pneumoniae via oropharyngeal aspiration and sacrificed 48 h post infection.
Pulmonary and splenic bacterial burden and lung damage of F1 human-microbiota mice
were then assessed. F1 human alcohol-associated microbiota mice exhibited a significantly
higher bacterial burden in both the lung (Figure 6A–D) and spleen (Figure 6E–H) when
compared to F1 control microbiota mice. Precisely, human alcohol-associated microbiota
mice had a significantly increased pulmonary bacterial burden in the combined group
(Figure 6A), male mice (Figure 6B), and female mice (Figure 6C). In addition, there were
clear effects on pulmonary bacterial load based on the original human donor (Figure 6D).
Likewise, human alcohol-associated microbiota mice had significantly increased bacterial
dissemination to distal organs (spleen) in the combined group (Figure 6E), although both
male mice (Figure 6F) and female mice (Figure 6G) exhibited a nonsignificant trend towards
increased bacterial burden. Consistent with previous data, alcohol-microbiota associated
effects on bacterial dissemination were more pronounced in female mice. There were also
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clear effects on splenic bacterial load based on the original human donor (Figure 6H),
suggesting a significant increase in pulmonary permeability following K. pneumoniae in-
fection. To further determine whether increased bacterial dissemination was associated
with lung-tissue damage, histological staining of lung tissue was performed. F1 human
alcohol-associated microbiota mice exhibited a significant increase in lung injury post K.
pneumoniae infection (Figure 7).
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Figure 5. Human alcohol-associated microbiota mice have increased mortality following K. pneumo-
niae infection. F1 microbiota mice were infected with K. pneumoniae, and survival was assessed 48 h
post infection. Survival post infection in (A) combined male and female mice, (B) male mice, and
(C) female mice. (D) Donor-dependent survival in combined male and female mice post infection.
Dots represent the mean and SEM per group (n = 20 control-microbiota F1 mice, and n = 20 alcohol-
associated F1 mice). Red lines indicate F1 alcohol-associated microbiota mice. p values are indicated
in the figure and were determined by the Log-rank (Mantel–Cox) test.

3.4. Human Alcohol-Associated Microbiota Mice Exhibit Increased Lung Leukocyte Recruitment
and Inflammation

To define the effects of human alcohol-associated intestinal dysbiosis on pulmonary
host defense against K. pneumoniae infection, male and female F1 human alcohol-associated
microbiota mice were administered 1 × 103 CFU of K. pneumoniae in the lung via oropha-
ryngeal aspiration and sacrificed 48 h post infection. Analysis of BAL fluid from the lungs
demonstrated that K. pneumoniae infection resulted in a significant increase in BAL protein,
a marker of lung injury and leak (Figure 8). Human alcohol-associated microbiota mice had
a significant increase in BAL protein levels in the combined group (Figure 8A). However,
both male mice (Figure 8B) and female mice (Figure 8C) exhibited a nonsignificant trend
in increased BAL protein. The original human donor sample also influenced BAL protein
levels (Figure 8D).
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Figure 6. Human alcohol-associated microbiota mice have increased pulmonary bacterial burden
and dissemination. F1 Microbiota mice were infected with K. pneumoniae and bacterial burden
was assessed. Log transformation burden of K. pneumoniae in the lungs of (A) combined male and
female F1 mice, (B) male mice, (C) female mice, and (D) donor-dependent pulmonary burden. Log
transformation burden of K. pneumoniae in the spleens of (E) combined male and female F1 mice,
(F) male mice, (G) female mice, and (H) donor-dependent pulmonary burden. Bars represent the
mean ± SEM and dots represent individual mice. p values are indicated in the figure and were
determined by Welch’s t-test.

F1 human alcohol-associated-microbiota mice also had decreased total numbers of
leukocytes in their airways compared to control-microbiota mice (Figure 9A), with a non-
significant decrease in total BAL cells in male mice (Figure 9B) but a significant decrease
in total BAL cells in F1 human alcohol-associated microbiota female mice (Figure 9C).
The original human donor sample (Figure 9D) also influenced total cell numbers. This
corresponded with a nonsignificant decrease in BAL macrophages (Figure 9E) in both
male (Figure 9F) and female (Figure 9G) mice and was not influenced by the original
donor sample (Figure 9H). Conversely, F1 human alcohol-associated-microbiota mice also
exhibited decreased numbers of BAL neutrophils (Figure 9I) with an even greater decrease
of BAL neutrophils in males when compared to females (Figure 9J–K). BAL neutrophils
were also not significantly influenced by the original donor sample (Figure 9L). There were
no significant changes in lymphocytes across all groups.
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Figure 7. Human alcohol-associated microbiota mice have increased pulmonary damage. F1 Mi-
crobiota mice were infected with K. pneumoniae, and pulmonary damage was assessed. (A) Repre-
sentative lung H&E images at 20× magnification. Lung inflammatory scores via H&E histology of
(B) combined male and female F1 mice and (C) donor-dependent pulmonary damage. Bars represent
the mean ± SEM, and dots represent individual mice. p values are indicated in the figure and were
determined by Welch’s t-test.
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Figure 8. Human alcohol-associated microbiota mice have decreased barrier function. F1 microbiota
mice were infected with K. pneumoniae, and the level of BAL protein was determined in the lungs of
(A) combined male and female F1 mice, (B) male mice, (C) female mice, and (D) donor-dependent
pulmonary BAL protein levels. Bars represent the mean ± SEM and dots represent individual mice.
p values are indicated in the figure and were determined by Welch’s t-test.
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Figure 9. Human alcohol-associated microbiota mice have decreased pulmonary immune cell num-
bers. F1 microbiota mice were infected with K. pneumoniae and the numbers of BAL immune cells
were assessed. Total BAL counts were determined in the lungs of (A) combined male and female F1
mice, (B) male mice, (C) female mice, and (D) donor dependent. Total macrophages post infection
were determined in the lungs of (E) combined male and female F1 mice, (F) male mice, (G) female
mice, and (H) donor dependent (D). Total neutrophils post infection were determined in the lungs
of (I) combined male and female F1 mice, (J) male mice, (K) female mice, and (L) donor dependent.
Bars represent the mean ± SEM, and dots represent individual mice. p values are indicated in the
figure and were determined by Welch’s t-test.

Surprisingly, the levels of BAL IL-6, TNF-α, CXCL1, and IL-1β did not differ between
alcohol-associated microbiota and control-microbiota mice when the data was combined
for both genders in both groups (Figure 10A–D). However, F1 human alcohol-associated-
microbiota mice exhibited a significant increase in the level of BAL GM-CSF (Figure 10E)
with an even greater increase in the level of BAL GM-CSF in males when compared to
females (Figure 9F–G). BAL GM-CSF levels were also influenced by the original donor
sample (Figure 10H).

3.5. Human Alcohol-Associated Microbiota Mice have Increased Weight Loss following S.
pneumoniae Infection

Streptococcus pneumoniae is a Gram-positive organism and the leading etiological
cause of pneumonia in alcohol-using individuals. As with the K. pneumoniae infection
model, we sought to understand the role of human alcohol-associated dysbiosis on S.
pneumoniae infection in both male and female F1 mice. Similar to previous studies, F1
human alcohol-associated mice were administered 4 × 108 CFU of S. pneumoniae via
oropharyngeal aspiration and weight change was determined 48 h post infection. Mice
exhibited weight loss within the first 48 h post infection (Figure 11). Human alcohol-
associated microbiota mice had significantly increased weight loss in the combined group
(Figure 11A) and there was no difference between control and alcohol-associated male
mice (Figure 11B). However, a nonsignificant weight loss in F1 human alcohol-associated
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microbiota female mice (Figure 11C) was observed, suggesting a potential gender effect
following S. pneumoniae infection. In addition, there were clear donor-specific effects on
weight loss post infection with S. pneumoniae (Figure 11D). Similar to the K. pneumoniae
studies, weight loss data were consistent with the compromised physical appearance and
decreased activity levels with F1 human alcohol-associated microbiota, with female mice
having the most significant clinical signs. No difference in mortality was observed in the
human alcohol-associated microbiota mice 48 h post infection.
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Figure 10. Human alcohol-associated microbiota mice have altered pulmonary inflammation. F1
microbiota mice were infected with K. pneumoniae, and the levels of BAL cytokines/chemokines were
assessed. Total BAL (A) IL-6, (B) TNF-α, (C) CXCL1, and (D) IL-1β were determined in the lungs
of combined male and female F1 mice. Total BAL GM-CSF levels were determined in the lungs of
(E) combined male and female F1 mice, (F) male mice, (G) female mice, and (H) donor dependent.
Bars represent the mean ± SEM, and dots represent individual mice. p values are indicated in the
figure and were determined by Welch’s t-test.
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Figure 11. Human alcohol-associated microbiota mice exhibit increased weight loss following S.
pneumoniae infection. F1 microbiota mice were infected with S. pneumoniae and weight loss was
assessed out to 48 h post infection. Post-infection weight loss in (A) combined male and female mice,
(B) male mice, and (C) female mice. (D) Donor-dependent weight change in combined male and
female mice post infection. Dots represent the mean and SEM per group (n = 18 control-microbiota
F1 mice and n = 25 alcohol-associated F1 mice). Red lines indicate F1 alcohol-associated microbiota
mice. p values are indicated in the figure and were determined by two-way ANOVA with a post-hoc
Sidak’s multiple comparisons correction.

3.6. Human Alcohol-Associated Microbiota Mice have Altered Lung Tissue Integrity and Increased
S. pneumoniae burden

To evaluate the effects of human alcohol-associated dysbiosis on pulmonary host
defense against S. pneumoniae infection, both male and female F1 mice were administered
4 × 108 CFU of S. pneumoniae via oropharyngeal aspiration and sacrificed 48 h post infection.
Pulmonary and splenic bacterial burden and lung damage of F1 human-microbiota mice
were then assessed. F1 human alcohol-associated microbiota mice exhibited a significantly
higher bacterial burden in both the lung (Figure 12A–D) and spleen (Figure 12E–H) when
compared to F1 control microbiota mice. Precisely, human alcohol-associated microbiota
mice had a significantly increased pulmonary bacterial burden in the combined group
(Figure 12A), male mice (Figure 12B), and female mice (Figure 12C). In addition, there were
distinct effects on pulmonary bacterial load due to the original human donor (Figure 12D).
Likewise, human alcohol-associated microbiota mice had significantly increased bacterial
dissemination to distal organs (spleen) in the combined group (Figure 12E) and in both
male mice (Figure 12F) and female mice (Figure 12G). There was also a small effect on
splenic bacterial load based on the original human donor (Figure 12H), which suggests
that pulmonary permeability is increased following S. pneumoniae infection. To further
determine whether increased bacterial dissemination was associated with lung tissue
damage, histological staining of lung tissue was performed. F1 human alcohol-associated
microbiota mice exhibited a significant increase in lung injury post-Streptococcal infection
(Figure 13).
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Figure 12. Human alcohol-associated microbiota mice have increased pulmonary bacterial burden
and dissemination. F1 microbiota mice were infected with S. pneumoniae and bacterial burden
was assessed. Log transformation burden of S. pneumoniae in the lungs of (A) combined male and
female F1 mice, (B) male mice, (C) female mice, and (D) donor-dependent pulmonary burden. Log
transformation burden of S. pneumoniae in the spleens of (E) combined male and female F1 mice,
(F) male mice, (G) female mice, and (H) donor-dependent pulmonary burden. Bars represent the
mean ± SEM, and dots represent individual mice. p values are indicated in the figure and were
determined by Welch’s t-test.

3.7. Human alcohol-associated Microbiota Mice have Increased Lung Leukocyte Recruitment
and Inflammation

To define the effects of human alcohol-associated intestinal dysbiosis on the pulmonary
immune response against S. pneumoniae infection, female F1 human alcohol-associated mi-
crobiota mice were administered 4 × 108 CFU of S. pneumoniae in the lung via oropharyngeal
aspiration and euthanized 48 h later. Analysis of BAL fluid from the lungs demonstrated
that S. pneumoniae infection resulted in a significant increase in BAL protein, a marker of
lung injury and leak (Figure 14A,B). F1 female human alcohol-associated microbiota mice
also exhibited an increase in the total numbers of leukocytes in their airways compared
to control-microbiota mice (Figure 14C,D), which corresponded with significant increases
in BAL macrophages (Figure 14E,F) and BAL neutrophil numbers (Figure 14G,H). There
were no significant changes in lymphocytes across the different groups. In addition to
increased BAL cell numbers, F1 female human alcohol-associated microbiota mice had
increased levels of IL-6 (Figure 15A,B), TNF-α (Figure 15C,D), and CXCL1 (Figure 15E,F)
and a nonsignificant increase in IL-1β (Figure 15G,H) compared to control-microbiota mice.
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Figure 13. Human alcohol-associated microbiota mice have increased pulmonary damage. F1
microbiota mice were infected with S. pneumoniae, and pulmonary damage was assessed. (A) Repre-
sentative lung H&E images at 20× magnification. Lung inflammatory scores of (B) female F1 mice,
and (C) donor-dependent pulmonary damage. Bars represent the mean ± SEM, and dots represent
individual mice. p values are indicated in the figure and were determined by Welch’s t-test.

3.8. Human Alcohol-Associated Microbiota Mice Exhibit Increased Drinking Preference and
Anxiety-Like Behavior

Finally, we sought to determine whether the effects of human alcohol-associated intesti-
nal dysbiosis extend beyond the gut–lung axis, namely to the gut–brain axis. To that end,
we evaluated drinking preference and anxiety-like behavior in human alcohol-associated
microbiota mice. Both male and female F1 mice were subjected to a 30-min marble-burying
assessment prior to and following a 15-day 2-bottle choice alcohol-drinking paradigm.
Interestingly, human alcohol-associated microbiota mice had a significant increase in base-
line alcohol preference compared to control microbiota mice; however, no differences
in drinking preference were observed at the end of the 15-day assessment (Figure 16A).
Similarly, human alcohol-associated microbiota mice had a significant increase in baseline
anxiety-like behavior when compared to control microbiota mice, but no differences in
anxiety-like behavior were seen following 15 days of 2-bottle choice alcohol administration
(Figure 16B). These data suggest that an alcohol-associated microbiota may be an important
factor contributing to both anxiety-like behavior and drinking preference, both of which
are commonly seen in individuals who consume alcohol chronically.
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Figure 14. Human alcohol-associated microbiota mice have increased pulmonary leak and immune
cell numbers. F1 microbiota mice were infected with S. pneumoniae and the level of BAL protein
was determined in the lungs of (A) female F1 mice, and (B) donor-dependent pulmonary BAL
protein levels. The numbers of BAL immune cells were assessed. Total BAL counts were determined
in the lungs of (C) female F1 mice and (D) donor-dependent mice. Post-infection macrophages
were enumerated in the lungs of (E) female F1 mice, and (F) donor-dependent mice. Post-infection
neutrophils were also enumerated in the lungs of (G) female F1 mice, and (H) donor dependent mice.
Bars represent the mean ± SEM, and dots represent individual mice. p values are indicated in the
figure and were determined by Welch’s t-test.
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Figure 15. Human alcohol-associated microbiota mice have increased pulmonary inflammation. F1
microbiota mice were infected with S. pneumoniae and the levels of BAL cytokines/chemokines were
assessed. Total BAL (A,B) IL-6, (C,D) TNF-α, (E,F) CXCL1, and (G,H) IL-1β were determined in the
lungs of female F1 mice. Bars represent the mean ± SEM and dots represent individual mice. p values
are indicated in the figure and were determined by Welch’s t-test.
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4. Discussion 

It is now widely accepted that the intestinal microbiota plays a critical role in the 

host’s immune response to both bacterial and viral respiratory infections [2,27–33]. Regu-

lation of the gut–lung axis has been led by work primarily using two model systems that 

include germ-free and antibiotic-treated mice. Both germ-free mice and antibiotic-treated 

mice are highly susceptible to pulmonary infection with leading bacterial pathogens, in-

cluding K. pneumoniae and S. pneumoniae [27,28]. Further, fecal transplant of a healthy mi-

crobial community into these models bolsters pulmonary host defense, which suggests 

that optimal pulmonary host defense requires a “healthy” or diverse intestinal microbial 

community [27,28]. 

Alcohol increases the risk of pneumonia via impairment of several critical host de-

fense mechanisms. First, chronic alcohol abuse significantly impairs mucus-facilitated 

clearance of bacterial pathogens from the upper airway [34,35]. Additionally, alcohol 

abuse increases the risk of aspiration of microbes from the upper alimentary tract. Taken 

together, these findings suggest that alcohol greatly increases the risk of pathogenic bac-

teria entering the lungs, thus increasing the risk of infection. Chronic alcohol consumption 

also suppresses tissue recruitment of neutrophils during infection and inflammation [36], 

as well as the phagocytic capacity of alveolar macrophages [37–43]. Chronic alcohol inges-

tion also decreases the differentiation and effector function of dendritic cells [44–46]. Al-

cohol use is also known to decrease the number of circulating lymphocytes and dysregu-

late Th1, Th2, and Th17 immune responses [40,43]. Because the impacts of alcohol on lung 
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Figure 16. Human alcohol-associated microbiota mice have increased drinking preference and
anxiety-like behavior. Male and female F1 alcohol-associated microbiota mice were subjected to a
30-min marble-burying assessment prior to and following a 15-day 2-bottle choice alcohol-drinking
paradigm. (A) 2-bottle choice alcohol-drinking preference, and (B) marble-burying score. Dots
represent the mean and SEM per group (n = 10 (5 male and 5 female) control-microbiota F1 mice, and
n = 10 (5 male and 5 female) alcohol-associated F1 mice). p values are indicated with a *, corresponding
to p = 0.03 and p = 0.05 for drinking preference and marble-burying, respectively. p values were
determined by the Mann–Whitney test.
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4. Discussion

It is now widely accepted that the intestinal microbiota plays a critical role in the
host’s immune response to both bacterial and viral respiratory infections [2,27–33]. Regu-
lation of the gut–lung axis has been led by work primarily using two model systems that
include germ-free and antibiotic-treated mice. Both germ-free mice and antibiotic-treated
mice are highly susceptible to pulmonary infection with leading bacterial pathogens, in-
cluding K. pneumoniae and S. pneumoniae [27,28]. Further, fecal transplant of a healthy
microbial community into these models bolsters pulmonary host defense, which suggests
that optimal pulmonary host defense requires a “healthy” or diverse intestinal microbial
community [27,28].

Alcohol increases the risk of pneumonia via impairment of several critical host defense
mechanisms. First, chronic alcohol abuse significantly impairs mucus-facilitated clearance
of bacterial pathogens from the upper airway [34,35]. Additionally, alcohol abuse increases
the risk of aspiration of microbes from the upper alimentary tract. Taken together, these
findings suggest that alcohol greatly increases the risk of pathogenic bacteria entering the
lungs, thus increasing the risk of infection. Chronic alcohol consumption also suppresses
tissue recruitment of neutrophils during infection and inflammation [36], as well as the
phagocytic capacity of alveolar macrophages [37–43]. Chronic alcohol ingestion also de-
creases the differentiation and effector function of dendritic cells [44–46]. Alcohol use is also
known to decrease the number of circulating lymphocytes and dysregulate Th1, Th2, and
Th17 immune responses [40,43]. Because the impacts of alcohol on lung host defense are
multi-factorial, and the gut–lung axis is now viewed as an important regulator of immune
homeostasis, it is critical to define the role of alcohol-mediated gut dysbiosis on immune
cell responses and host defense against bacterial infections that result from alcohol misuse.
In addition, as access to alcohol treatment centers is often limited for many individuals,
strategies that reduce the risk for alcohol-associated pneumonia are critically needed.

We have previously shown that alcohol-associated dysbiosis, independent of the direct
effects of ethanol consumption, increased susceptibility to K. pneumoniae [2]. Alcohol-
associated dysbiosis was also associated with impaired pulmonary immune cell recruit-
ment, as well as marked intestinal permeability and inflammation [2]. Alcohol-associated
dysbiosis also affects the number of mucosal associated invariant T-cells (MAIT cells) in
mucosal tissues [47]. Furthermore, fecal microbiota transfer from alcohol-fed mice into
alcohol-naïve mice resulted in a MAIT cell profile like those seen in alcohol-fed animals [47].
The differences in MAIT cells between alcohol- and control-fed mice were also mitigated by
antibiotic treatment. Finally, we demonstrated that the intestinal microbiota can be targeted
therapeutically to reduce host susceptibility to alcohol-associated bacterial pneumonia.
More precisely, treatment of alcohol-fed mice with indole (a microbial metabolite) or with
a probiotic cocktail improved pulmonary host defense by increasing pathogen clearance
and pulmonary immune cell trafficking. Protective effects were, in part, mediated by
AhR, as inhibition of AhR diminished the protective effects of indole [22]. Taken together,
these studies demonstrate that (1) alcohol-associated dysbiosis increases bacterial pneumo-
nia, (2) alcohol-associated microbial products increase systemic immune activation, and
(3) microbial targeted therapies can mitigate the risk of alcohol-associated bacterial pneu-
monia. Importantly, all these studies are unified by the fact that alcohol-associated dysbiosis
leads to immune cell dysfunction and impaired pulmonary recruitment [2,22,48,49].

Although preclinical studies have highlighted the importance of the intestinal micro-
biota in alcohol-related disorders, including behavioral consequences and immunological
effects, these studies are limited in their ability to assess the direct effects of alcohol-
associated dysbiosis independent of the direct effects of alcohol [1–3,5,6,22,47–51]. To date,
these studies rely on associations, manipulating the microbiota with antibiotics, or conven-
tionalization of germ-free mice [2,3,10]. While antibiotic cleansing and conventionalization
of germ-free mice are valid models, they pose several challenges when trying to assess the
immunological consequences of changes in microbiota community structure. For example,
antibiotic treatment is known to have off-target effects and to influence a variety of immune
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cell populations [8]. Further, germ-free mice have aberrant immune development, and,
upon conventionalization, exhibit marked immune reconstitution and activation for a pe-
riod of time post conventionalization [52,53]. As such, there are currently no animal models
that allow for the systematic evaluation of the effects of chronic alcohol abuse mediated by
alcohol-associated dysbiosis independent of the direct effects of alcohol, without potential
confounding effects of the treatment or mouse background on the immune system. To
address this challenge, we developed a translationally relevant human alcohol-microbiota
mouse model by colonizing germ-free mice with human fecal microbiota from individuals
with high and low AUDIT scores and bred to produce human alcohol-associated microbiota
or human control-microbiota F1 progenies. This model provides several advantages over
our previous published work because: (1) we can evaluate the effects of human-specific
microbial communities on disease progression and susceptibility; (2) both sexes of mice can
be evaluated; (3) confounding from repeated conventionalization or by off target effects
due to antibiotics are eliminated; (4) individual donor (human-level characteristics) can
be evaluated alongside group/disease effects; (5) microbiota traits are inherited across
generations of mice; and (6) both behavioral and physiological traits can be evaluated.

5. Conclusions

Disease-associated microbial communities impair host immune responses, indepen-
dent of disease-associated sequelae. Here, we established that human alcohol-associated
microbiota mice have increased susceptibility to both K. pneumoniae and S. pneumoniae
pneumonia when compared to mice colonized with a human control “healthy” microbiota.
Human alcohol-associated microbiota mice have increased mortality, pulmonary bacterial
burden, bacterial dissemination, lung damage/leak, and increases in pulmonary immune
cell infiltration and inflammation. However, many of the mechanisms by which the mi-
crobiota controls or alters host defense against respiratory infections are still ill-defined.
Determining and characterizing the mechanisms that facilitate crosstalk between innate
lymphocytes, the microbiota, and indole in a highly translatable model of human alcohol-
associated dysbiosis is our primary future goal. It is likewise important to understand
the opposing effects between K. pneumoniae and S. pneumoniae in the BAL analysis of cell
infiltrates and chemokines, as well as to evaluate the pulmonary cellular infiltration and
inflammation in male mice infected with S. pneumoniae. In turn, we envision that these
efforts will lead to new screening methods to identify at-risk populations and subsequently
to innovative strategies to reduce the burden of CAP.
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