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Abstract: The Wnt signaling pathway is a highly conserved regulator of metazoan development and
stem cell maintenance. Activation of Wnt signaling is an early step in diverse malignancies. Work
over the past four decades has defined a “canonical” Wnt pathway that is initiated by Wnt proteins,
secreted glycoproteins that bind to a surface receptor complex and activate intracellular signal trans-
duction by inhibiting a catalytic complex composed of the classical tumor suppressor Adenomatous
Polyposis Coli (APC), Axin, and Glycogen Synthase Kinase-3 (GSK-3). The best characterized ef-
fector of this complex is β-catenin, which is stabilized by inhibition of GSK-3, allowing β-catenin
entrance to the nucleus and activation of Wnt target gene transcription, leading to multiple cancers
when inappropriately activated. However, canonical Wnt signaling through the APC/Axin/GSK-3
complex impinges on other effectors, independently of β-catenin, including the mechanistic Target of
Rapamycin (mTOR), regulators of protein stability, mitotic spindle orientation, and Hippo signaling.
This review focuses on these alternative effectors of the canonical Wnt pathway and how they may
contribute to cancers.

Keywords: Wnt; adenomatous polyposis coli (APC); glycogen synthase kinase 3 (GSK-3); Axin;
beta-catenin; mTOR; cancer

1. Introduction

Glycogen synthase kinase-3 (GSK-3) is a ubiquitous protein kinase in eukaryotes, with
orthologues in protozoans such as Dictyostelium, metazoans, and plants [1–10]. GSK-3 was
first purified and named for its activity toward glycogen synthase [11,12], but multiple
functions have since been defined. Distinctive features of GSK-3 include a propensity for
processive phosphorylation at characteristically spaced serines and threonines, a preference
to phosphorylate 4 residues N terminal to an already phosphorylated site, a tendency
to suppress signaling pathways and promote protein degradation [13], a large array of
disparate substrates, and sensitivity to lithium, which is observed in GSK-3 from cellular
slime molds to humans [14,15]. GSK-3 has been studied extensively for its central role
in common signaling pathways, including Wnt/β-catenin and receptor tyrosine kinase
(RTK)/AKT signaling (notably insulin signaling), as well as roles in Hedgehog, Notch, and
other pathways. Its potential role as a therapeutic target in bipolar disorder, neurodegener-
ative diseases, viral infections, and cancer has generated continued interest among both
basic and biopharmaceutical scientists.

The primary purpose of this review is to discuss Wnt/GSK-3 signaling in cancer. Given
space limitations and the availability of superb and detailed recent reviews on the broader
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aspects of GSK-3 in promoting cancer progression and on targeting GSK-3 in cancer, we
refer the reader to those reviews [16–18] and the reviews cited above. Authoritative reviews
of general aspects of the Wnt/β-catenin pathway are also available [19–22]. “Noncanonical
Wnt” pathways that share the frizzled family of receptors but use distinct intracellular
signaling mechanisms, for example, planar cell polarity and Wnt/calcium pathways, are
also reviewed elsewhere [23–26]. Here, we briefly review the general features of GSK-3 and
then focus on some less appreciated but important aspects of Wnt and GSK-3, especially on
the mechanisms by which canonical Wnt signaling inhibits GSK-3 catalytic activity, novel
mechanisms of β-catenin-independent signaling by the “canonical” Wnt pathway, and how
these divergent pathways contribute to cancer pathogenesis.

2. General Features of GSK-3
2.1. GSK-3α and GSK-3β Are Closely Related Serine/Threonine Kinases

GSK-3 primarily phosphorylates serines and threonines. While it can phosphorylate
tyrosine, this is mostly through autophosphorylation that occurs during translation [27].
GSK-3 falls within the CMGC (cyclin-dependent kinase (CDK), mitogen-activated pro-
tein kinase (MAPK), glycogen synthase kinase (GSK) and CDC-like kinase) family of
kinases and has functional as well as sequence similarities with the dual specificity tyrosine
phosphorylation-regulated kinases (DYRKs) [28]. In most vertebrates, GSK-3 proteins are
encoded by two similar genes, GSK3A and GSK3B [29], that are mostly but not completely
redundant. Birds lack GSK3A [30] and mice with homozygous deletions of Gsk3a are
viable [31,32], indicating that Gsk3b can fulfill many of the essential functions of GSK-3.
In contrast, the Gsk3b loss of function is either embryonic or perinatal lethal in mice, with
different lethal phenotypes reported by different groups [33–35]. The ability to generate a
nearly normal fetus with isolated tissue-specific defects (defects in palate or cardiovascular
development) in mice lacking Gsk3b underscores the similar functions of these two closely
related isoforms in non-affected tissues, although the reasons for the disparate phenotypes
for Gsk3b knockouts has not been fully explained. Embryos with Gsk3a/Gsk3b double
knockout (DKO) have not been observed despite extensive efforts to generate them; the
loss of both genes is very likely an early lethal mutation, as DKO mouse embryonic stem
cells (mESCs) have a severely limited capacity for differentiation [36].

2.2. Distinct Functions of GSK-3α and GSK-3β

Despite their largely overlapping functions, distinct functions for the two genes have
emerged. The Gsk3a KO mice have behavioral and metabolic defects [31,32], reduced sperm
motility [37], and shorter life span [38]. GSK3A was recently shown to suppress chromatin
looping by modulating activity of the chromatin organizing complex cohesin, specifically
through recruitment of the cohesin “unloader” WAPL, whereas GSK3B did not share this
function [39]. GSK3A is also specifically required for the survival of AML cells [40]. This
observation led to the development of small molecule inhibitors that preferentially inhibit
one or the other isoform, an impressive achievement given the high similarity in the
catalytic domains of the two proteins [41]. Selective inhibition of GSK-3α also reverses
Fragile X disease phenotypes in mice [42]. GSK-3α and Gsk-3β phosphorylate mostly
similar substrates but do have distinct substrate preferences in some cases [43,44]. Similarly,
proximity labeling studies show that while the range of proteins that interact with GSK-3α
and Gsk-3β are mostly similar, there are interesting differences between the two isoforms
that were confirmed in independent studies [45,46].

2.3. A Multitude of GSK-3 Targets

GSK-3 was first identified as the third of five protein kinases that phosphorylate
glycogen synthase (GS) [11,12,47], which incorporates UDP-glucose into glycogen. GSK-3
inhibits GS by phosphorylating the enzyme at an array of serines and threonines with
characteristic spacing, and phosphorylation of these residues by GSK-3 depends on a
preceding phosphorylation at the +4 position [48–52], organized in the SXXXSXXXSXXXS
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motif, where S represents serine or threonine and the most C-terminal position is phos-
phorylated by another, priming kinase; for GS, the priming kinase is casein kinase II,
but this varies for other substrates. GSK-3 then moves in a processive manner in the N
terminal direction. This pattern is also observed for β-catenin and for a subset of other
GSK-3 substrates [1,5,53]. However, GSK-3 phosphorylates a broad range of substrates,
many of which do not contain +4 priming sites, including phosphatase Inhibitor-2 (I-2),
cyclin D1 [54], PTB-associated splicing factor (PSF) [55], and Tau protein [1,5,53], and the
mechanisms of substrate recognition in these cases are less well characterized.

Rigorous proof that a substrate is a direct in vivo target of GSK-3 is difficult to obtain
and lacking in most cases. Evidence from GSK3 KO or knockdown combined with phar-
macologic inhibition can demonstrate that a phosphorylation is dependent on GSK-3 but
does not distinguish direct from indirect phosphorylation. In vitro kinase reactions with
recombinant GSK-3 show that GSK-3 can phosphorylate the target, but do not address
whether this occurs under physiological conditions. The presence of the SXXXS motif
and evidence that phosphorylation depends on a priming step further supports GSK-3 as
the relevant kinase, but, as above, not all GSK-3 substrates require priming, and priming
phosphorylation is not an exclusive feature of GSK-3.

2.4. GSK-3 Frequently Functions within a Scaffold Complex

GSK3 frequently functions as part of a scaffold and supports scaffold assembly or sta-
bility. The Axin binding of GSK-3 is integral to the Wnt pathway, as it facilitates interaction
of GSK-3 with the Adenomatous Polyposis Coli (APC) protein and with β-catenin, and at
the same time shields the “Wnt signaling” pool of GSK-3 from regulation by RTK/AKT
pathways [56]. The A kinase anchoring proteins (AKAP)-11 and AKAP220 bind GSK-3 and
PKA [45,46,57]. The assembly of the AKT and PP2A on the β arrestin-2 scaffold is enhanced
by GSK-3, which also binds to this complex and promotes PP2A-depedent inactivation of
AKT [58,59]. Hence, inhibition of GSK-3, for example, by lithium, disrupts the β arrestin-2
complex, releasing AKT and PP2A and preventing the dephosphorylation and inactivation
of AKT. This mechanism may explain why lithium enhances AKT phosphorylation and
activity [58,59].

2.5. GSK-3 Is Constitutively Active and Is Inhibited by Diverse Signals

GSK-3 is unusual in being a constitutively active kinase that typically represses down-
stream signaling. The best characterized pathways that engage GSK-3 are the canonical
Wnt pathway and RTK/AKT signaling. These pathways inhibit GSK-3 to activate effectors
downstream of GSK-3. The classical example is insulin signaling, which inhibits GSK-3 by
inducing phosphorylation of GSK-3α at serine-21 and Gsk-3β at serine-9, creating a pseu-
dosubstrate that binds the active site and inhibits activity toward primed substrates [51,60].
Insulin thus activates GS by inhibiting GSK-3. Wnt signaling also inhibits GSK-3, but
through a distinct mechanism that does not involve N terminal phosphorylation. Indeed,
GSK-3 is sequestered in separate pools that isolate its functions, preventing crosstalk
between Wnt and RTK signaling pathways.

2.6. GSK-3 Has Multiple Functions in Addition to Its Roles in Wnt and RTK Signaling

While this review focuses on GSK-3 in the Wnt pathway, it should be kept in mind
that GSK-3 has multiple functions. GSK-3 also antagonizes Hedgehog and Notch signaling;
these ligands also inhibit GSK-3 to activate downstream signaling. The roles of GSK-3 in
RTK, Hedgehog, and Notch signaling are not discussed here given space constraints (see
references above). Given its multiple functions, GSK-3 can play both tumor suppressive and
tumor promoting roles in cancer, as thoroughly reviewed in [16]. Indeed, multiple GSK-3
inhibitors are currently being explored as single-agent and adjunctive cancer therapies [17].
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3. Wnt Signaling

Wnt signaling directs early patterning of metazoan embryos, cell fate specification,
tissue and cell polarity, somatic stem cell maintenance, and other functions [19–22,61].
Aberrantly activated Wnt signaling through genetic loss of Wnt suppressors drives di-
verse malignancies [62]. Elucidation of the Wnt pathway arose from a convergence of
studies of mammalian cancer and the study of embryonic patterning in model organ-
isms such as Drosophila melanogaster, Xenopus laevis, zebrafish, Caenorhabditis elegans, and
mouse [21,61,63–65]. The founding members of the Wnt gene family were originally named
Int1, a gene that induces neoplastic transformation in cultured breast epithelial cells when
activated by proviral integration [66], and Wingless (Wg), a classical segment polarity gene
in Drosophila [67–72]. Given their similar primary sequences and activities [69,72], the gene
family (and signaling pathway) was christened “Wnt” for Wingless + Int [10,73].

The “canonical Wnt pathway” or the “Wnt/β-catenin pathway” refers to a broadly
conserved pathway initiated by secreted Wnt proteins that signal through a conserved
surface receptor/co-receptor complex and the intracellular Axin complex to inhibit GSK-3
and promote β-catenin-dependent activation of Wnt target genes. However, β-catenin is
just one of several effectors of this pathway. We first present an outline of the Wnt/β-catenin
pathway and the mechanisms that mediate transduction of an extracellular Wnt ligand to
target gene activation. As the pathway through β-catenin has been amply reviewed in depth
elsewhere, we then focus on GSK-3, addressing mechanisms that regulate GSK-3 activity
and discussing effectors of GSK-3 regulated specifically by the Wnt signaling apparatus, as
these topics tend to receive less attention in the many reviews on Wnt signaling.

3.1. Wnt/β Catenin Pathway

In the absence of a Wnt ligand, the cell expends considerable effort to turn off the
Wnt/β-catenin pathway (Figure 1A). An intracellular complex comprising the scaffold
protein Axin, the classical tumor suppressor APC, and the protein kinases Casein Kinase
1α (CK1α) and GSK-3 maintains continuous phosphorylation of β-catenin at a bank of N-
terminal serines and threonines with the characteristic SXXXS spacing. Axin directly binds
each of these components through conserved domains, placing β-catenin in proximity to
CK1α and GSK-3. CK1α phosphorylates β-catenin at a priming site (serine-45), allowing
subsequent phosphorylation by GSK-3 at ser33, ser37, and thr41 [74]. APC also binds
β-catenin directly through domains referred to as the 15 and 20 amino acid repeats in the
central region of APC [75–78] (as cited by [79]). The affinity of these domains for β-catenin
is increased by GSK-3- and CK1-dependent phosphorylation, and the interaction of β-
catenin with these sites likely plays an important role in β-catenin phosphorylation within
the Axin complex (see [79]). APC enhances the catalytic activity of GSK-3 and is required
for maximal β-catenin phosphorylation [80–82]. The half-life of phosphorylated β-catenin
is short, as newly synthesized protein is continually phosphorylated and degraded by the
proteosome. Under these basal conditions, Wnt target genes are bound at specific sites
by TCF family transcription factors associated with the Groucho (GRG)/Transducin-like
enhancer of split (TLE) co-repressor complexes [83]. Wnt target genes are therefore actively
repressed in the absence of Wnt signaling.

Wnt binding to the surface receptor Frizzled (FZD) and recruitment of the low-
density lipoprotein receptor-related protein (LRP)-5 or -6 (LRP5/6) initiates signaling
(Figure 1B). The first catalytic step is phosphorylation of the LRP5/6 C-terminus by GSK-3
and CK1α [84,85]. This series of phosphorylations recruits the Axin complex to LRP5/6 on
the intracellular surface of the plasma membrane. GSK-3 plays an activating role at this
step, in contrast to its more widely appreciated role as an Wnt antagonist within the Axin
complex. Indeed, recruitment of the Axin complex to the surface leads to dissociation of
APC, inhibition of GSK-3, and stabilization of β-catenin, which then accumulates, enters
the nucleus, displaces the Groucho co-repressor complex, and activates transcription of
Wnt target genes. Hence, GSK-3 promotes the initial intracellular steps in Wnt signaling in
response to the ligand but antagonizes downstream signaling in the absence of the ligand.
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This dynamic regulation of β-catenin in the response to signaling means that total β-catenin
increases as phosphorylated β-catenin is reduced; assessing the kinetics of β-catenin phos-
phorylation by measuring phosphorylated β-catenin relative to total β-catenin over time
confirmed that the Wnt/β-catenin pathway is indeed regulated through inhibition of the
catalytic activity of GSK-3 within the Axin complex [86].
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Figure 1. The canonical Wnt/β-catenin signaling pathway. (A) In the absence of Wnt signaling, an
intracellular complex organized around the scaffold Axin binds APC, CK1α, GSK-3, and β-catenin.
CK1α phosphorylates β-catenin at a “priming” site that then engages GSK-3, which phosphorylates
a series of adjacent serines and threonines. Phosphorylated β-catenin is then ubiquitylated and
degraded by the proteosome. As a result, Wnt target genes are repressed by a nuclear complex
that includes TCF transcription factors and Grg/TLE co-repressors. (B) Wnt protein binding to the
cysteine rich domain (CRD) of Frizzled proteins (7-pass integral membrane receptors) and LRP5/6
co-receptors (single pass) triggers phosphorylation of the C terminal domain of LRP5/6 by GSK-3
and CK1. Phosphorylated LRP5/6 recruits the Axin complex to the inner face of the cell membrane.
At the same time, APC dissociates from the complex. These early steps in signaling cause GSK-
3 inhibition and β-catenin stabilization. Accumulated β-catenin enters the nucleus, displaces the
Grg/TLE co-repressor, and activates Wnt target gene transcription. (Diagrams made with BioRender).

The net effect of Wnt pathway activation is therefore to inhibit GSK-3. Wnt activa-
tion can be mimicked genetically by loss of function mutations in APC, Axin, or GSK3.
These mutations, as well as mutation of the GSK-3 phosphorylation sites in β-catenin,
activate Wnt/β-catenin target gene transcription. However, because of the redundancy
of Gsk3a and Gsk3b, at least three of the four alleles must be knocked out to stimulate
downstream signaling, and maximal activation is only seen when all four loci are dis-
rupted [36]. Similarly, direct GSK-3 inhibitors such as lithium [14], inhibitory peptides like
the heat-shock-factor-1-derived L807mts [87] and the GSK-3 interaction domain (GID) of
Axin [88], or small molecule GSK-3 inhibitors stabilize β-catenin and activate canonical
Wnt signaling. Inhibitors such as CHIR99021 are commonly used as “Wnt activators”, but
it should be noted that GSK-3 inhibitors also affect Wnt-independent functions of GSK-3,
including GSK-3 functions downstream of RTK/AKT signaling.
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Several mechanisms have been put forward to explain how Wnts inhibit GSK-3
activity, and it is likely that each of these contribute to Wnt signaling. We and others
showed that APC directly enhances the catalytic activity of GSK-3 [80,82] and that Wnt
signaling promotes the dissociation of APC from the Axin complex within minutes of Wnt
binding to the surface receptor [80,89–91] (although APC dissociation was not observed
in an in vivo study using bimolecular fluorescence complementation to visualize Axin
complex dynamics in Drosophila [92] or in an examination of the complex in HEK293T cells
using native gel electrophoretic methods [93]). Thus, in our model, the dissociation of APC
reduces GSK-3 activity toward β-catenin, allowing accumulation of unphosphorylated
β-catenin. This model is consistent with the observation that oncogenic mutations in APC,
which prevent its interaction with Axin, also impair β-catenin phosphorylation, mimicking
Wnt-dependent activation. The model also predicts that other effectors of Axin-bound
GSK-3 should be activated by Wnt signaling, as described in greater detail below [80,94].
An alternative and elegant mechanism supported by structural data proposes that the
phosphorylated C-terminus of LRP5/6 directly inhibits GSK-3 [95–97]. These two models
are not mutually exclusive. Wnt signaling also promotes the mobilization of the Axin
complex into multivesicular bodies, which may protect β-catenin from phosphorylation
and degradation [98]. This sequestration mechanism occurs over several hours and does
not explain the rapid reduction in GSK-3 enzymatic activity per se, whereas the dissociation
of APC and the inhibition of GSK-3 occur within 30 min [80,86,89–91], but it may play an
important role in maintaining active Wnt signaling over a more prolonged time. These
mechanisms are non-exclusive, and all may contribute to the inhibition of GSK-3 and the
stabilization of β-catenin by Wnts.

GSK-3 is also inhibited by RTK/AKT signaling, as first demonstrated for insulin-
mediated signaling. AKT phosphorylates GSK-3α at serine-21 and Gsk-3β at serine-9,
creating an intramolecular pseudosubstrate that mimics primed substrates and occludes
the active site [51,60]. However, this inhibitory mechanism has no role in Wnt signal-
ing [36,56,99]. GSK-3 bound to Axin is not phosphorylated by AKT and mice with the
Gsk3aser21ala and Gsk3bser9ala double knockin, which cannot be phosphorylated by AKT, have
no defects in Wnt signaling. Furthermore, Wnt signaling is rescued in Gsk3 DKO mESCs
by expression of Gsk3bser9ala, which lacks the AKT phosphorylation site [36]. Similarly,
Wnt signaling does not affect RTK/AKT signaling or cause phosphorylation of GSK-3 at
serine-21/9. These findings demonstrate the insulation of the Wnt pool of GSK-3 from
RTK/AKT signaling.

In summary, the canonical Wnt pathway signals through the Axin complex to inhibit
GSK-3. For Wnt/β-catenin signaling, this prevents phosphorylation of β-catenin and
thereby activates downstream Wnt/β-catenin target genes. However, this linear pathway
to β-catenin is only part of the story.

3.2. When You Come to a Fork in the Road, Take It [100]: Divergence in Canonical Wnt Signaling

The Axin/APC/GSK-3 complex is a signaling hub with multiple effectors in addition
to β-catenin (Figure 2) [6,7,94,101–106]. This was recognized early on from genetic studies
in C. elegans, which showed that Wnt signaling through Gsk3 is required for endoderm
induction and mitotic spindle polarity independently of β-catenin [107]; the APC-like
gene apr is also required for endoderm development [108], spindle orientation, and cell
asymmetry [109] in C. elegans. Inhibition of GSK-3 or loss of function of APC also disrupts
spindle orientation in mammalian cells, resulting in chromosomal misalignment [110–112].
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Figure 2. Multiple effectors of the Wnt pathway are regulated by APC, Axin, and GSK-3 indepen-
dently of β-catenin. (A) In addition to phosphorylating β-catenin, the Axin complex, acting through
GSK-3, suppresses mTORC1, targets multiple proteins for proteosomal degradation, and inhibits
YAP/TAZ transcription factors (Hippo pathway). APC and GSK-3 also suppress ERK and BMP
signaling and regulate mitotic spindle orientation (not shown in this figure). (B) Activation of the
canonical Wnt pathway causes APC to dissociate from the Axin complex, reducing the catalytic
activity of GSK-3. The phosphorylated C terminus of LRP5/6 also inhibits GSK-3 directly. GSK-3
inhibition activates mTORC1, YAP/TAZ, and the Wnt stabilization of protein (Wnt-STOP) pathway,
in addition to β-catenin stabilization. (C) Oncogenic mutations in APC remove the domain required
for Axin binding. As truncated APC does not bind to Axin, this mimics the dissociation of APC in
response to Wnt signaling, thereby reducing GSK-3 activity and activating the downstream effec-
tors β-catenin and mTORC1. For additional information on YAP/TAZ, see text. (Diagrams made
with BioRender).

An elegant biochemical analysis showed that Wnt signaling through the Axin/APC/GSK-
3 complex activates the nutrient sensor mTOR complex 1 (mTORC1) in mammalian
cells [103], as also observed in vivo in zebrafish embryos [94]. Inoki et al. showed that
GSK-3 phosphorylates and enhances the activity of the tuberous sclerosis complex-2 protein
(TSC2), an antagonist of mTORC1 activity. Wnt-dependent inhibition of GSK-3 through the
APC/Axin complex impaired TSC2 function, resulting in the activation of mTORC1. GSK-3
phosphorylation promotes proteosomal degradation of multiple proteins [13,101,102], and
Wnt-mediated inhibition of GSK-3 through APC and Axin stabilizes a subset of these
proteins [13,101,102,106] through a mechanism termed “Wnt stabilization of proteins” or
Wnt-STOP. Wnt signaling through APC also modulates the function of the Hippo path-
way transcription factors YAP and TAZ in a manner that appears to be independent of
β-catenin [113,114], although the nature of the interactions between Wnt and Hippo path-
way components remains controversial, with somewhat distinct findings that are difficult
to reconcile (discussed in detail below). Other parallels between APC and GSK-3 that are
independent of β-catenin include modulation of retinoic acid synthesis [115,116], Bone
Morphogenetic Protein (BMP) signaling [117–119], and Extracellular Signal-Regulated
Kinase (ERK) signaling [120–122].

Gsk3 knockdown/knockout or conditional Apc deletion in mice also causes expan-
sion of hematopoietic stem and progenitor cells (HSCs) in bone marrow [123,124]. This
expansion is transient and eventually leads to HSC depletion. HSPC expansion can be
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maintained by simultaneous inhibition of GSK-3 and mTORC1. Complete knockout of
Gsk3b in hematopoietic cells causes a persistent myeloproliferative state with increased
HSPCs/blast cells and marked expansion of mature granulocytes [125].

These are a few of the parallels between GSK-3 and APC in diverse organisms.
Whether the effects of APC and GSK3 loss of function are causally related and whether
they are Wnt regulated has not been fully addressed in most cases, but the parallels are
intriguing and are consistent with the hypothesis that APC is a positive regulator of GSK-3
in the Wnt pathway and that downstream effectors function independently of β-catenin.
Thus, while β-catenin is the best characterized and most studied effector of canonical
Wnt signaling, the pathway is more complex, with multiple potential effector pathways
diverging from the APC/Axin/GSK-3 complex (Figure 2).

3.3. Wnt/GSK-3 Signaling in Cancer

APC is a classical tumor suppressor that was first identified because germline mu-
tations cause the autosomal dominant cancer syndrome familial adenomatous polyposis
(FAP), in which the loss of heterozygosity of APC causes hundreds of intestinal adenomas
and inevitable colorectal cancer by the time patients reach their early 20s [126–128]. Somatic
mutations in APC are also the most common early driver mutations in sporadic colorectal
cancers; following the loss of APC and adenoma formation, additional somatic mutations,
e.g., in KRAS or TP53, accumulate and lead to malignant transformation [127]. The im-
portance of APC as a driver mutation was underscored by a study showing that restoring
full-length Apc in mice with colon cancer initiated by oncogenic Apc mutations causes
tumor regression despite the presence of Kras or Tp53 mutations [129]. Human colon can-
cers that lack APC mutations frequently have activating mutations in CTNNB1 (β-catenin)
that prevent its phosphorylation by GSK-3, demonstrating a key epistatic relationship be-
tween APC and CTNNB1/β-catenin [130,131]. Activating mutations in CTNNB1/β-catenin
(23–36%) and loss-of-function mutations in AXIN (5–10%) are common in hepatocellu-
lar cancer [132,133] and, along with other Wnt pathway mutations, are also observed in
melanoma, uterine, gastric, and pancreatic ductal adenocarcinomas [133–136].

Given these data, it is widely accepted that APC mutations drive neoplasia by activat-
ing Wnt/β-catenin target genes, such as MYC (c-Myc) and CCND1 (cyclin D1). However,
the evidence for additional effectors of the Axin/APC/GSK-3 complex described above
raises the possibility that Wnt-dependent, β-catenin-independent pathways contribute to
the effects of APC loss in cancer. Pathogenic APC mutations tend to cluster in the mutation
cluster region (mcr) and yield a truncated protein that does not bind to Axin. As APC is
required in the Axin complex for maximal GSK-3 activity, oncogenic APC mutations reduce
GSK-3 activity. Importantly, these mutations mimic physiological Wnt signaling, which
drives transient dissociation of APC from the Axin complex [80,89–91], except that with
truncating APC mutations, dissociation and activation persist indefinitely.

The reduced GSK-3 activity caused by oncogenic APC mutations stabilizes β-catenin
but also activates mTORC1, YAP/TAZ (Hippo pathway), Wnt-dependent stabilization of
proteins (Wnt-STOP), and other pathways. Activation of mTORC1 by APC truncations
is clearly evident in zebrafish embryos with the homozygous apcmcr/mcr mutation [94], in
adenomas from mice with the Apcmin mutation [80], in sporadic colonic adenomas and
colon cancer in humans [137–139], and in adenomas from patients with FAP (Figure 3).
Consistent with a central role for mTORC1 in Apc-dependent tumorigenesis, Rapamycin
blocks adenoma formation in Apcmin mice [137,140–148]. Similarly, several phenotypes in
apcmcr/mcr zebrafish embryos [149–151] caused by mTORC1 activation are reversed by the
mTORC1 inhibitor Rapamycin and not by inhibition of β-catenin [94].
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Nuclei are stained with DAPI (blue). Magnification 200×.

These data strongly support the notion that mTORC1 contributes to neoplasia caused
by APC mutations, as also reported for many other cancers [139]. This does not conflict with
the firmly established role of β-catenin in colonic neoplasia; indeed, CTNNB1/β-catenin
overexpression in mouse colonic epithelial cells induces adenomas and Ctnnb1 knockout
blocks adenoma formation in Apc mutant mice [152–155]. Mutations in the GSK-3 phospho-
rylation site of β-catenin, which stabilize the protein and activate downstream signaling,
also account for a substantial percentage of sporadic colon cancers that lack APC mutations
and are the most common Wnt pathway mutation in HCC. But nuclear β-catenin is not
frequently observed in early adenomas that form in FAP patients, sporadic human colonic
polyps, or microadenomas from a rat FAP model, despite confirmed loss of heterozygosity
of APC and increased cellular levels of β-catenin [156–159]. In this context, β-catenin
could be active in the nucleus below the limit of detection by immunofluorescence, but
it is also possible that elevated β-catenin caused by APC loss is insufficient to initiate
hyperproliferation and microadenoma formation and that other pro-proliferative stim-
uli, including mTORC1 activation [80,94,105,139,142–146,160], could contribute to early
adenoma formation.

The Hippo pathway regulates organ size, proliferation, and apoptosis by modulating
levels of the transcription factors YAP and TAZ [161]. Multiple studies on interaction
between Hippo and Wnt pathway components have been published, and while some of
these findings are difficult to reconcile, several groups have shown that APC and GSK-3
suppress Hippo target gene expression by suppressing the level or function of YAP protein
independently of β-catenin [113,162,163] (one group reported that β-catenin activates YAP
transcription [164], which is distinct from but not incompatible with the other studies).
Consistent with a suppressive role for APC and GSK-3, YAP and TAZ protein levels were
increased by inhibition of GSK-3 or by oncogenic APC mutations. Although this regulation
was mediated by APC and GSK-3 and independent of β-catenin, the specific, proposed
mechanisms were distinct. Multiple groups also reported that Yap is genetically required for
the development of adenomas driven by loss of Apc, as KO of Yap in Apcmin mice abolished
adenoma formation [113,163,165,166]. However, another paper presented data indicating
that Yap and Taz suppress adenoma formation in the colon of mice with conditional deletion
of Apc [167]. These seemingly opposing results are difficult to reconcile, and perhaps reflect
the use of different experimental models of Apc loss of function and modulation of Hippo
signaling. Nevertheless, apart from how YAP influences colonic epithelial regeneration
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and neoplasia, most studies are consistent with the direct regulation of Hippo signaling
components by APC and GSK-3.

One might ask why GSK3 mutations have not been identified as driver mutations in
human cancers when loss of GSK3 activates Wnt signaling similar to the loss of APC or
AXIN. GSK3A and GSK3B are redundant in the Wnt pathway [36] and mostly redundant in
other settings. As described above, three of the four Gsk3 genes must be deleted in mouse
ESCs to achieve modest activation of Wnt signaling and all four copies of Gsk3 (Gsk3a and
Gsk3b) must be deleted to achieve the high level of Wnt target gene activation observed
with Apc mutations, making this an unlikely event. Furthermore, GSK-3 has multiple
functions beyond suppression of Wnt signaling, and it is also possible that complete loss of
GSK3A/B is not compatible with cancer cell viability, despite the clear vitality of Gsk3a/b
DKO mESCs. The complexity of GSK-3 functions is likely a reason that GSK-3 inhibition
can both enhance and impair oncogenic signaling, depending on context.

Most small-molecule GSK-3 inhibitors inhibit GSK-3α and GSK-3β equally. A reason-
able concern for therapeutic applications of GSK-3 inhibitors is therefore that activation of
Wnt/β-catenin signaling by GSK-3 inhibitors might lead to cancer. However, real-world
data do not support this concern. Multiple large-scale, population-based retrospective
studies of patients on the GSK-3 inhibitor lithium have shown no increased incidence of
cancers [168,169] and in at least one study lithium was associated with reduced cancer
risk [170]. Indeed, these findings have led to a phase 2 clinical trial to test the counterin-
tuitive but intriguing hypothesis that low-dose lithium may prevent adenoma formation
in FAP patients [171] (a similar approach was suggested by preclinical data in a B-cell
lymphoma model, in which the inhibition of GSK-3 caused apoptosis by stabilizing and
increasing levels of the c-Myc protein [172]). Therapeutic lithium does not achieve complete
inhibition of GSK-3, so it remains possible that complete inhibition would still promote
malignant transformation, but we are unaware of reports of malignancy induced by Gsk3
DKO, which represents maximal inhibition of GSK-3. This conclusion is emphatically illus-
trated in a thorough review on the subject [16]. Gsk3 DKO does enhance cell proliferation in
some settings, however, including the developing CNS [173] and the adult hematopoietic
system [123,125], and with other more potent transforming mutations, it could still, in
principle, contribute to malignancy. The clinical data on lithium and the data on Gsk3 DKOs
summarized by Domoto et al. [16] are extensive, and from these many studies, the risk of
cancer does not appear to be increased with GSK-3 inhibition, but caution is still needed as
more potent GSK-3 inhibitors become available for clinical use.

4. Summary

The canonical Wnt pathway impinges on multiple effectors in addition to its well-
established regulation of β-catenin and activation of Wnt target genes. The evidence
supporting the role of β-catenin in development, tissue homeostasis, and disease is exten-
sive and irrefutable but additional effectors of canonical Wnt signaling, including mTORC1,
targeted protein degradation (Wnt-STOP), ERK, BMP, Hippo signaling, and likely others to
be discovered, clearly play an important role in normal tissues and disease. A closer exami-
nation of these alternative effectors of the Wnt pathway revealed unexpected mechanisms
for developmental phenotypes associated with apc mutations in zebrafish and may also
identify new targets for cancer chemotherapy. GSK-3 functions at the bifurcation point of
this pathway, directly modulating multiple downstream factors, and GSK-3 is also a core
factor in RTK signaling and other pathways, a complexity of function that may explain
why GSK-3 inhibition has been reported to have seemingly opposing effects depending
on the tissue context. Despite the reasonable concern that GSK-3 inhibition could lead to
malignancy, similar to mutations in APC or Axin, this has not yet been observed. This
leaves open the opportunity for using small-molecule GSK-3 inhibitors for a number of
illnesses including neurodegenerative and psychiatric disorders, as well as cancer.
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