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Abstract: The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor
for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands
initiating cell signaling that includes guided migration. Although well known to be expressed on
immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer
epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of
aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed
on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of
CCR5 (CCRb5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies
(leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early
clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on
both the tumor and the anti-tumor immune response. Current clinical studies have therefore included
combination therapy approaches with checkpoint inhibitors.

Keywords: CCR5; breast cancer; triple-negative breast cancer

1. Introduction

Breast cancer represents 31% of estimated new cancer cases in the USA (first place in
women) and is the second leading cause of cancer in women, with 15% of estimated deaths
for 2023 [1]. Breast cancer staging determines therapeutic options and correlates with 5-year
relative survival [1]. According to the National Cancer Institute, between 2015-2019, the
age-adjusted death rate was 19.9 per 100,000 women per year [2].

The standard Nottingham combined histologic grade is the classic histopathological
grading system that provides a significant prognostic tool to predict the outcome of a
particular breast tumor [3]. In addition to the traditional histological grading, the molecular
classification of breast cancer based on biomarker expression can provide further infor-
mation to determine the biological behavior of the tumor and can help in deciding the
treatment strategies [4,5]. Molecular classifications of breast cancer include luminal A,
luminal B, HER2 (human epidermal growth factor receptor 2) enriched, and basal-like,
which is also known as triple-negative breast cancer (TNBC) [6,7]. In general, compared
with the basal-like and HER2-related subtypes, the luminal subtypes express estrogen
receptor alpha (ERx) and have a better prognosis.
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TNBC has a high risk of invasiveness, greater metastatic potential, and does not
respond to hormonal or HER2-targeted therapy [6,8]. Patients with TNBC have a less
favorable prognosis, with a 77.1% 5-year survival rate, compared to 84.8-94.4% for other
types of breast cancers [2]. Based on SEER databases, the 5-year survival rate for local TNBC
patients is 91.3%. If the tumor has spread locally or to nearby lymph nodes, the 5-year
survival rate decreases to 65.8%, and distant metastases are associated with a 12.0% 5-year
survival rate [2]. Therefore, the need for effective treatment of TNBC remains an urgent
necessity. A study of 2245 human breast cancer samples showed increased expression of
CCRS5 and its ligand CCL5 in most basal and HER2 subtypes [9]. Over 95% of TNBC tumors
expressed CCRS5 [8,10]; therefore, increased CCR5 expression and elevated CCL5 levels
predict a poor prognosis of breast cancer [10]. CCL5 levels correlate with advanced breast
cancer stage in several studies [9]. CCR5 was shown to be an essential participant in breast
cancer metastasis using CCR5i [9]. Furthermore, CCR5 contributed to tumor growth, drug
resistance, tumor migration, and prognosis [10,11]. Reconstitution of CCR5 expression in
CCRb5-negative breast cancer cells imbued the cells with mobility and metastatic capability,
induced DNA repair gene expression and activity, and promoted stemness, resulting in the
ability to form new tumors in mice [11].

Although a matter of ongoing controversy, a mutation in CCR5 was reported to be
associated with a lower risk of metastasis in breast cancer [12], and CCR5 expression in
other cancers has been linked to recurrence risk and prognosis [13]. In postmenopausal
women, the mutant allele CCR5-delta32 (CCR5del32), which has a negative effect on the
function of the wildtype CCR5 and is increased in prevalence in the northern European
population, is associated with favorable prognosis and less metastasis [12]. Recognizing
the limited treatment options available for patients with TNBC, recent clinical studies have
targeted CCR5. The role of CCRS5 in the progression of breast cancer and the importance of
blocking CCR5 in treating breast cancer are reviewed herein.

2. Normal Physiology of CCR5

CCR5 is a seven-transmembrane G-protein-coupled receptor (GPCR). GPCRs coupled
to heterotrimeric G proteins consist of three subunits—Ga, Gf3, and Gy. There are 16 Goas
in mammalian cells, divided into four classes—Go;/,, Gas, Gayp 13, and Gogg1q [14,15].
CCR5 predominantly couples to Go/, and Gag 11 [16], is expressed on dendritic cells, T
cells, macrophages, eosinophils, microglia, and myeloid-derived suppressor cells [10,17]
and is activated by diverse ligands (CCL3, CCL3L1, CCL4, CCL5, CCLS8, CCL11, CCL13,
and CCL16) [18,19] to promote chemotaxis and immune cell activation. CCL7 also binds
to CCR5, but without a biological function, and can act as a natural CCR5 antagonist [18].
Upon ligand binding, CCR5 undergoes conformational changes which enable GTP loading
to associated heterotrimeric G proteins and dissociates it to GTP-bound G and Gy [16]
(Figure 1).

The main functions of Ge; are inhibiting cAMP production, activating a variety of
phospholipases and phosphodiesterases, and promoting the opening of several ion chan-
nels [20,21]. The Geg 11 family activates Protein Kinase C (PKC) and elevates intracellular
Ca?* levels via the conversion of phosphatidylinositol 4,5-bisphosphate to Diacylglycerol
(DAG) and inositol-1,4,5-trisphosphate [20,21]. Although DAG typically activates Ras-
Guanine Nucleotide Exchange Factors (GEFs) [22], the Gag/11 subunit noncanonically
stimulates Rho GTPases via Rho GEFs [23,24]. Once dissociated from the G, Gy dimers
can activate Phospho-Inositol-3-Kinases (PI3K), Phosphol-lipase-C[3 (PLCf3), adenylyl cy-
clase, and the small GTPases Rac, which are stimulated by GEFs [20]. The activation of
PI3K results in the conversion of phosphatidylinositol-2 (PIP2) to phosphatidylinositol-3
(PIP3), which will recruit a Pleckstrin Homology (PH) domain containing proteins to the
plasma membrane for activation [25] (Figure 2). These proteins include Rho-GEFs, Pyru-
vate Dehydrogenase Kinase-1 (PDK1) and Akt, as well as Btk/Itk and Phospholipase-Cy
(PLCy). Rho-GEFs stimulation of small GTPases such as Rac result in actin rearrangement.
Akt is phosphorylated by PDK1, thereby activating the Akt/mTOR (mammalian target of
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rapamycin) and mitogen-activated protein kinase (MAPK) signaling pathways, which con-
tributes to cell survival and drug resistance. Although Gy can activate PLCs, generating
IP3 and DAG, calcium elevation induced by CCR5 is mostly from Ga /11 activation [16].
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Figure 1. Normal physiology of the CCR5-CCL5 axis. CCR5 is shown as a transmembrane receptor
linked to the activation Gai/o0, Gaq/11 and Gpy and their downstream signal pathways.
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Figure 2. The activation of PI3K results in the conversion of phosphatidylinositol-2 (PIP2) to
phosphatidylinositol-3 (PIP3). PIP3 will recruit a Pleckstrin Homology (PH) domain containing
proteins, including Rho-GEFs, PDK1, and Akt, as well as Btk/Itk and PLCy, to the plasma membrane

for activation.
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Although initially characterized in immune cells, CCR5 signaling in MDA-MB-231
breast cancer cells showed CCL5 and serum-induced calcium signaling [11]. Analysis
of signaling pathways in breast cancer cells showed that CCR5 augmented ribosomal
biogenesis, PI3k/Aktl HIF1, and focal adhesion signaling [11]. Western blot analysis
confirmed that CCR5 inhibition reduced Akt phosphorylation [11]. Single-cell sequencing
comparing CCR5* vs. CCR5™ breast cancer cells from within a heterogeneous population
of breast cancer patients revealed dramatic enrichment of pathways governing ribosomal
biogenesis [11].

Functional studies of CCR5 in breast cancer cells revealed similar attributes as im-
mune cells promoting cellular chemotaxis, activation of immune mediators, and cellular
proliferation [10,17]. The CCL5-mediated induction of cellular invasion was observed in
diverse breast cancer cell types (MDA-MB-231, Hs587T, SUM-159, MCF-7, MCF10A-NeuT,
MCF10A-Ras, and MCF10A-Src [11]). Understanding the function of CCR5 in physio-
logical conditions helps predict plausible roles it may play in tumor development and
metastasis progression.

3. Pathophysiology of CCR5 in Cancers

The pathological expression of CCR5 has been demonstrated in many different types of
tumors, including breast cancer [9,11], prostate cancer [26], colorectal carcinoma, pancreatic
cancer, melanoma, head and neck cancer, gastric cancer, esophageal cancer, Hodgkin
lymphoma, and acute lymphocytic leukemia [27-35]; reviewed in [10,30]. Elevated levels
of CCL5 in tissues or plasma predicts poor outcomes in breast cancer [36,37], cervical
cancer [37], prostate cancer, ovarian cancer [38], gastric cancer [39,40], and pancreatic
cancer. Elevated levels of CCL5 predict poor response to regorafenib in metastatic colorectal
carcinoma [41]. CCLS5 levels are high in patients with hot melanoma vs. cold melanoma
and CCL5-high tumors express more effector immune cells (Th1, NK, CD8" T cells) [42].

CCR5 abundance is induced in immortalized breast cells upon oncogenic transforma-
tion by v-Src, Ha-Ras, ErbB2, or c-Myc, or by DNA damage, or CCL5 stimulation [9]. CCR5
expression on breast cancer cells results in increased cancer cell motility, strengthened DNA
damage repairing, and enhanced capacity of tumor cells to survive and resist chemothera-
peutic regimens [11]. Hypoxia also activates CCR5 and CCL5 expression in breast cancer
cells [43].

In an analysis of >2200 breast cancer patients, >95% of triple-negative breast cancer
(TNBC) were CCR5" [9]. More than half of all patients’” tumors were CCR5* [9]. Higher
cytoplasmic CCR5 staining predicted a poorer outcome [11]. CCR5 was also overexpressed
in >90% of Her2+ BCa, and 30-40% of luminal breast cancers.

In addition to direct effects on the breast cancer epithelial cell, the CCL5-CCR5 axis may
promote tumor progression by modulating the breast cancer tumor microenvironment [44].
In HER2* murine breast cancer, after tumor regression, CCL5 remained elevated in the
residual tumor, recruiting Tumor-Associated Macrophages (TAMs) that promoted tumor
recurrence [45]. Malignant phyllodes breast tumor, which is derived from breast cancer
periductal stromal cells, lacks effective therapy and is, therefore, another area of unmet
need. The CCL5-CCRS5 axis promotes tumor growth of phyllodes tumors via recruitment
of TAMs [46].

CCRS5 on the tumor surface may respond in an autocrine manner to ligands secreted
by the cancer cell or in a paracrine manner to ligands secreted by the cells of the tumor mi-
croenvironment, including T cells, myeloid-derived stem cells (MDSCs), and macrophages.
The binding of CCL5 to CCR5 on cancerous epithelial cells induces tumor growth via
several signaling pathways, including the mammalian target of rapamycin (mTOR), the
pathway activation of the Janus kinase signal transducer, and the activator of transcription
(JAK-STAT) pathway [9,11].
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4. The Role of CCRS5 in Breast Cancer Cell Metabolism

The growth of a tumor depends upon its ability to metabolize energy. The primary
energy source in tumor cells is aerobic glycolysis via the Warburg effect [47-49]. Normally,
cells produce energy through oxidative phosphorylation in the mitochondria; however,
cancer cells produce energy via aerobic glycolysis in the cytosol, even in the presence of
oxygen, resulting in lactate production and secretion into the local tumor microenviron-
ment [48,50,51]. CCR5 promotes glucose uptake in breast cancer cells to maintain energy
supply during tumor growth [50,52]. As a result of continuous cancer cell growth, there is
a massive increase in energy expenditure, leading to an increase in oxygen consumption
and hypoxia. Glucose transport protein (GLUT) mediates glucose uptake across the cell
membrane [50]. There are many GLUT isoforms; however, in cancer cells, only GLUT 1,
GLUT 3, and GLUT 12 mediate glucose uptake [53]. The CCL5-CCR5 axis and GLUT
1 both use the Akt (protein kinase B) pathway. CCRS5 increases the cell surface GLUT-1
expression (but not other GLUT isoforms), which mediates glucose uptake and energy
supply to cancerous cells [50].

5. The Role of CCR5 in Tumor Migration, Circulating Tumor Cells, and Tumor Metastasis

CCR5 has been implicated in the progression and metastatic spread of different cancers,
including breast cancer, prostate cancet, glioblastoma, osteosarcoma, and oral cancer [9,26,54-58],
reviewed in [59]. CCR5-positive cells may be more migratory in nature and thus more
likely to become metastatic [55,60]. Elevated CCR5 signaling is associated with highly
invasive breast cancer subtypes [10,50,61,62]. The upregulation of CCR5 signaling in breast
cancer is positively correlated with axillary lymph node metastasis, consistent with a
model in which CCR5 correlates with the spread of more aggressive disease [12,62]. Tumor
migration induced by CCR5 involves multiple distinct pathways. Firstly, the binding of
CCL5 to CCRS5 activates PI3K/ Akt and NF-«B (nuclear factor kappa-light-chain-enhancer
of activated B cells) (Figure 3), resulting in the activation of av33 integrin, which mediates
cell migration [52]. Secondly, tumor metastasis requests that cancer cells travel through
the blood and lymph system. Circulating tumor cells are the tumor cells in the blood of
patients, which can be measured with several cancer types [63].
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Figure 3. Schematic representation of CCR5 signaling in breast cancer cells. The activation of
CCRb5 by ligand induces downstream signaling pathways impacting ribosomal biogenesis in breast
cancer and induces several signaling pathways, including NF-kB, Akt, and STATs, contributing to
protein synthesis, cellular growth, and migration.
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CCRS5 is expressed on circulating tumor cells (CTC) of breast cancer patients [64,65]. The
finding that CCRS5 is expressed on CTC is not necessarily expected, as the gene expression
of CTC varies substantially from the primary tumor, both in breast cancer [66,67] and
other cancer types [68]. The change in gene expression is necessary to enable the process
of invasion, intravasation, and survival, since cells within circulation are often exposed
to extreme turbulence and shearing forces. The treatment of patients with breast cancer
metastasis using a CCR5 monoclonal antibody, leronlimab, was associated with a reduction
in CTC in patients [69]. CCR5 signaling is not high in primary breast cancer tumor sites,
but is upregulated in secondary sites of metastasis, which suggests the CCR5-CCLS5 axis
may play a role in upregulating circulating tumor cells (CTC), and thereby contribute to a
poor clinical outcome [55,64,70,71].

Thirdly, tumors recruit tumor-associated macrophages (TAMs), which provide heterotypic
signals to promote tumor cell intravasation, extravasation, and migration [10,52,72].

6. Involvement of CCR5 in Breast Tumor Angiogenesis

A tumor can stimulate neovascularization through cytokines or via hypoxia-mediated
responses. A key mediator of tumor angiogenesis is the hypoxia-responsive protein Vascu-
lar Endothelial Growth Factor (VEGF) [73,74]. CCRS5 activation triggers Protein Kinase C
5 (PKC9), followed by initiation of c-Src Kinase (Proto-oncogene tyrosine-protein kinase
Src) and hypoxia-inducible factor-1 (HIF-1) expression, which results in stimulation of
VEGEF [74]. CCRS5 antagonist resulted in less vasculature, and impaired tumor growth [75].
Inhibition of CCL5/CCRS5 signaling impairs endothelial cell migration, associated with
a decrease in activation of the mTOR/ Akt pathway [75]. Using CCR5 knockout, elegant
reconstitution experiments in a murine model of EO771 breast cancer showed CCR5 ex-
pressing endothelial cells in the breast tumor microenvironment contributed to ongoing
breast tumor growth [75]. Furthermore, CCL5, from endothelial cells, acts in a paracrine
fashion on triple-negative breast cancer cell lines (MDA-MB-231, Hs578t) to enhance their
migration, invasion, and metastasis [76]. Overall, the CCR5-CCL5 axis induces a proan-
giogenic environment, promoting endothelial cell migration and neovascularization that
provides the necessary nutrients and oxygen needed for tumor growth.

7. The Role of the CCR5-CCL5 Axis in Immune Evasion

A variety of studies have shown a role for CCR5-CCLS5 in promoting tumor immune
evasion and that inhibiting this axis promotes the anti-tumor immune response. Tregs
are immunosuppressive and Treg cell recruitment has been shown to depend on CCL5 in
tumors including breast cancer [77-79]. CCL5 expression has also been correlated with
breast cancer poor prognosis [78], lymph node metastasis [78], residual tumor size, and
tumor infiltration of lymphocytes after neoadjuvant chemotherapy [80]. In an inducible
mammary-epithelial-cell targeted Her2 model of breast cancer, a tumor microenvironment
inflammatory program driven by TNFx/NF«B signaling promoted immune cell infiltra-
tion via CCLS5 [45]. CCL5 expression was also elevated in human residual breast tumors
following treatment. CCL5 promoted breast cancer recurrence through recruitment of
macrophages into the residual tumors [45], and a high TAM number has been associated
with poor prognosis in breast cancer [81]. Breast cancer patients with high CCL5 expression
had worse disease-free survival and breast cancer-specific survival [78]. CCL5 is thought to
aid tumor cells” escape the immune system, which is essential in tumor survival and pro-
gression in breast and other cancers [82,83]. Serum CCLS5 levels in BCa patients correlated
with lymph node metastasis [84] and analysis of Tregs, which promote tumor metasta-
sis, showed CCR5"/CD4" and Treg/CCR5" cell ratios were significantly increased in the
lymph nodes of the breast cancer metastasis group [78]. Although most studies have shown
that high CCLS5 correlates with poor outcomes in breast cancer [80], correlative studies have
also shown a positive association between CCL5 and tumor-infiltrating lymphocytes (TILs)
in TNBC. The functional relationship of CCL5 to the TILs in TNBC was not tested [80], and
TNBC has since been shown to consist of several immune subtypes (discussed below).
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CCL5 may be breast-tumor-derived [36,37] or hematopoietically-derived [85], which
promotes mammary tumor (4T1) progression via generating myeloid-derived suppressor
cells (MDSCs) in the bone marrow [85]. CCLS5 recruits monocytes from the circulation and
reprograms them to become the M2 (alternatively activated macrophage) rather than M1
(classically activated macrophage) subtype [82,83]. Subsequently, M2 plays an essential role
in the development of immune tolerance (Figure 4). M2-TAM secretes immunosuppressive
cytokines, including transforming growth factor $ (TGF-f) and interleukin-10 (IL-10).
These cytokines enhance the effect of the immunosuppressive T regulatory cells (Tregs),
which control macrophages, T cells, B cells, dendritic cells, and natural killer cells. M2 cells
express programmed-death-ligand 1 (PD-L1), which can further aid in immune evasion.
PD-L1 works as a break for the progression of the immune response by binding to the PD-1
receptor on lymphocytes and inhibiting downstream signaling cascades, which leads to the
inhibition of CD8* cytotoxic T cells, rendering them anergic, causing a further decrease in
cell-mediated killing [86].
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Figure 4. Formation of M1 and M2 macrophages in the tumor microenvironment. CCR5 inhibitor
maraviroc promoted enrichment of M1 from M2 macrophages.

A recent study found that a higher number of CCR5-positive breast-cancer-associated
macrophage-like cells in inflammatory breast cancer patients was correlated with poor
prognosis [65]. Further analyses revealed a central role of the chemokine receptors CCR1
and CCRS5 and their ligands as an immunological node induced by tumor-derived factors.
Activation of this pathway is essential for the differentiation of myeloid-derived suppres-
sor cells (MDSCs) and protumoral macrophages. Thereby, CCR5 and ligands mediate
differentiation of tumor-associated myeloid cells and cancer-induced myelopoiesis [87].

8. The Role of CCR5 in Breast Cancer Stem Cell Expansion and Chemo-/Radio-
Therapy Resistance

Cancer stem cells (CSCs) can self-renew and give rise to tumors with distinct can-
cer cell lineages [88-90]. CSCs can thereby contribute to tumor heterogeneity [48] and
altered tumor metabolism [91]. CSCs participate in promoting metastasis and therapy resis-
tance [88,89]. CSCs can be characterized by tumor sphere formation, cell surface markers
(EpCAM*CD44*CD247), and high activity of aldehyde dehydrogenase 1 [92]. Cancer cells’
growth as spheres with specific culture conditions predicts the ability to initiate tumorigen-
esis and the capacity to metastasize [93]. Tumor sphere formation thus reflects properties
of CSCs [89,94,95]. Lineage ~CD44*CD24~ tumor cells isolated from breast cancer patients
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are enriched for cancer stem cells. Unlike “CD44*CD24 "~ cells, which readily gave rise to
tumors in mice, a thousandfold more cells with different immune phenotypes did not give
rise to tumors [89]. Our laboratory found that a small population of basal breast cancer
cells are CCR5 positive. Compared with CCR5™ breast cancer cells, the CCR5" cells can
form more mammospheres and are enriched with EpCAM*CD44*CD24* cells [11].

When the same number of CCR5~ and CCR5* breast cancer cells were implanted
in mice, the tumors formed by CCR5" cells were ~770-fold larger than those formed
with CCR57 cells [11]. The epithelial-mesenchymal transition (EMT) participates in the
process of breast cancer cell transition into CSCs [96]. Transforming growth factor (3
(TGFp) induction of EMT increases cancer cell invasiveness and promotes tumor metas-
tasis [97-99]. TGFf induces EMT though both Smad-dependent and -independent path-
ways [100]. The Smad-independent pathway involves the activation of PI3K/Akt/mTOR
signaling [100,101]. CCRS5 is upstream of PI3K/Akt/mTOR. The activation of CCR5 can
enhance PI3K/Akt/mTOR activity [102], potentially contributing to increased EMT and
CSC formation.

CCRS5 conveyed stemness in several assays of breast cancer stem cells, enhancing mam-
mosphere formation, and showing enrichment for tumor-initiating cells [11]. Other media-
tors of cancer stemness [91] intersect with CCR5/CCL5 signaling. Notch induced CCL5
secretion and CCR5 signaling in tumor-associated macrophages [44]. Cancer-cell-derived-
lactate increased the secretion of CCL5 through Notch signaling in tumor-associated
macrophages, and CCL5 in turn induced EMT and aerobic glycolysis in breast cancer
cells. Notch signaling was reported to induce M1 macrophages [103] and inhibit tumor
growth via anti-tumor immune responses. Notch1 regulates cell proliferation and migration
through CCR5 in T cell acute lymphoblastic leukemia [104]. CCR5 antagonists decreased
Notch signaling in B cells and in the brain in a murine model of multiple sclerosis [105].

Although primarily governing organismal size and functioning as a tumor suppressor
pathway, the Hippo pathway participates in stem cell function. The transcriptional effectors
YAP, TAZ, and YKI reside downstream of Hippo [95]. YAP regulates CTGF, Gli2, and other
genes. Hippo intersects both the Wnt and Notch pathways, which in turn govern stem cell
function [95]. YAP1 expression was positively correlated with Notch1 in breast cancer [106].
Breast tumors classified as poorly differentiated /high grade by histopathological criteria
display elevated TAZ/YAP activity [107]. TAZ, a transducer of the Hippo pathway, is
required to sustain self-renewal and tumor-initiation capacities in breast CSCs [107]. YAP1
expression was positively correlated with Notchl in breast cancer [106], and CCL5/CCR5
activated YAP in tumor-associated macrophages [108]. CCL5 educated macrophages
toward TAMs, which reciprocally enhanced clear cell renal cell carcinoma progression
via CCL5/CCR5 and activated STAT3/SOX17'°% /YAP [108]. Collectively, these studies
suggest important mechanisms by which CCR5/CCL5 may augment cancer stem cell
expansion and the TME to induce a pro-tumorigenic environment.

CCR5 induces resistance to chemotherapy and radiotherapy through the induction
of gene expression and function that govern DNA repair and DNA damage sensing.
The breast cancer cells that survived from doxorubicin treatment were enriched with
CCR5-positive cells compared with untreated cells [11]. CCR5 promotes stem-cell-like
properties and enhances DNA repair [11]. In addition, resistance to tamoxifen is acquired
through CCR5-CCLS5 inhibition of apoptosis. CCL5 release promotes constitutive Signal
Transducer and Activator of Transcription 3 (STAT3) phosphorylation. Subsequently,
STAT3 phosphorylation promotes further CCL5 secretion and upregulation of BCL-2 (B-
cell lymphoma 2) apoptosis inhibitors [109]. Resistance to trastuzumab is obtained by
the interaction of CCL5-CCR5, leading to Extracellular Signal-regulated Kinase (ERK)
phosphorylation [72], which leads to the stimulation of antiapoptotic cascades [102]. Taken
together, these CCR5-CCLS5 interactions contribute to CSC formation and therapy resistance
in breast cancer patients.
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9. CCRS5 Inhibitors for Treating Breast Cancer

Preclinical studies have demonstrated the effectiveness of CCR5 inhibitors to reduce
tumor growth and reduce the metastatic burden in mice [9]. CCRS5 inhibition by maraviroc
and vicriviroc blocked migration, invasion, and metastasis in immune-deficient mice. A
dose of CCRS5 inhibitor bioequivalent to the dose used in HIV patients, when used in mouse
models, blocked breast cancer cell homing to the lungs [9]. Subsequent studies showed
maraviroc reduced prostate cancer metastasis in immune-competent mice [26]. Leronlimab,
a humanized IgG4 monoclonal antibody to CCRS5, also showed promising preclinical
efficacy, both reducing established metastasis and preventing the induction of human
breast cancer metastasis in mice [58]. Leronlimab also inhibited CCR5 ligand-induced
calcium signaling and cellular invasion in cultured human breast cancer cells [58].

Several clinical trials currently deploy CCRS5 inhibitors for the treatment of refractory
cancers (Table 1). The safety and efficacy of adding the CCR5 inhibitor maraviroc to
pembrolizumab in refractory mismatch-repair-proficient colorectal cancer (MMRp CRC)
was assessed in a phase I trial PICCASSO study. Analysis of the PICCASSO study [110]
involving twenty patients with refractory colon cancer, who received pembrolizumab
and maraviroc (core period, eight cycles), followed by pembrolizumab monotherapy,
indicated feasibility and promising secondary endpoint responses. It needs to be mentioned
that almost 75% of the patients had an unfavorable genomic profile (RAS mutations,
BRAF mutations), also all had received the standard of care treatment, resulting in a
very limited expected survival prognosis. In this heavily pretreated population, overall
survival was higher than expected. The primary endpoint, the feasibility rate, was met
(~95%). Secondary endpoints included safety /toxicity, overall response rate (ORR) (5.3%),
progression-free survival (PFS) (2.10 months), and overall survival (OS) (9.83 months). The
overall survival exceeded that of the historical control for this highly pretreated group. The
control rate of disease was >70%.

A study of leronlimab with carboplatin (NCT 03838367) was initiated in patients with
metastatic triple-negative breast cancer (TNBC). The study assessed safety and tolerability.
As a phase 1b/2 study, the intent was to determine the maximum tolerated dose in order to
define the phase 2 recommended dose (RP2D). The study received a fast-track designation
in 2019 and showed promising results. CCR5 positivity was an entry criterion. Immunohis-
tochemistry for CCR5 was defined as >10% CCR5 staining in breast tumor cells (primary or
metastatic). CCR5+ cells also included CCR5+ tumor-infiltrating leukocytes (TIL). Patients
were treated with a fixed dose of carboplatin (AUC 5 on day 1 with a 21-day dose-limiting
toxicity window). To this regimen was added weekly subcutaneous leronlimab. Three dose
levels of leronlimab were given using a 3 + 3 dose escalation regimen. Ten patients were
enrolled at 3 dose levels, increasing from 350, to 525, and the highest dose of 700 mg. Eight
of the previously unresponsive ten patients showed a response. Six out of ten patients
achieved stable disease. The recommended dose of leronlimab for the future phase 2
study will be weekly leronlimab 700 mg and thrice-weekly carboplatin AUCS5. The authors
concluded that leronlimab, combined with carboplatin, was well tolerated at each dose
level and that leronlimab showed early evidence of anti-tumor activity in CCR5* metastatic
triple-negative breast cancer patients [111]. In that regard, two out of ten patients achieved
a confirmed partial response. Six of the ten patients achieved stable disease [111].

A related basket study of leronlimab (PRO 140) was used to treat patients with CCR5*
staining solid tumors that were either locally advanced or metastatic (NCT04504942).
Pooled data (N = 19) was stated as showing >75% of patients showed improved median
progression-free survival (mPFS) (6.1 months (95%ClI 2.3-7.5)) and median overall survival
(mOS) 12+ mos (95%CI 5.5-12+). The study was also said to show reduced circulating
tumor-associated cells (TACs) in 75% (N = 21/28) of patients, which is thought to be a
strong predictor of improved survival [112].
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Table 1. The clinical trials currently deploying CCR5 inhibitors for the treatment of refractory cancers.

NCT Trial Title Drug(s) n Phase Status Results
Combined PD-1 and Maraviroc Median survival from ~6 mo to >9 mo
CCR5 Inhibition for the (CCRS5 antagonist) Median PFS: 2.1 mo
NCT03274804 Treatment of Refractory + 20 I Completed (95% CI1.68-2.30)
Microsatellite Stable Pembrolizumab Median OS: 9.83 mo
mCRC (PICCASSO) (PD-1 inhibitor) (95% CI5.59-20.02)
Leronlimab (PRO 140) Leronlimab g?i;ialal:i-ents—stable or regressed
NCT03838367 gombmed. With (CCR5 mAb) 48 Tb/T1 Active, 72% decrease in CAML 30 days post tx
arboplatin in Patients + not recruiting linked 0 300% i : PFS
With CCR5+ mTNBC Carboplatin jnkeed to SU0V% Increase in mean TS +
450% increase in OS (12 mo)
Pooled data (n = 19) “>75% improved
Basket Study of A mPFS 6.1 mo (95%CI 2.3-7.5) R mOS 12+
Leronlimab (PRO 140) in Leronlimab Active, mo (95%CI 5.5-12+)"
NCT04504942 Patients With CCR5+ 30 I S ion oo
(CCR5 mAb) not recruiting Reduced circulating TACs in 75%
Locally Advanced or (n = 21/28) pts (st dictor of
Metastatic Solid Tumors W pts strong predictor o
improved survival)
Vicriviroc Dose Level DL1: 150 mg
(n =20)
DL2: 250 mg (n = 20)
mORR
DL1: 5%
Safety and Efficacy of giz/o gOI/O.1724‘9)
Vicriviroc (MK-7690) in ﬂ/' CIUO 1-24.9)
Combination With o (95% : )
Pembrolizumab Vicriviroc . mPFS
(MK-3475) in (CCR5 antagonist) DL1: 4.0 mo
NCT03631407 Partici . + 41 1I Completed (95% CI12.7-5.6)
articipants With Pembroli b DL2: 49
Advanced /Metastatic embroizuma Py mo
Microsatellite Stable (PD-1 inhibitor) (092 % CI 3.1-8.0)
(MSS) Colorectal Cancer DL1: 4.6 mo
(CRC) (MK-7690-046) (95% CI2.7-12.6)
DL2: 5.3 mo
(95% CI 3.2-8.0)
Abort Tx due to AE
DL1: 4/20
DL2:7/20
5/11 pts re-exposed to chemotherapy
3 of those 5: ORR favorable to response
rates in pts with mCRC, on or after the
CCR5-blockade in Maraviroc third line of chemotherapy, 5-10%.
NCT01736813 Metastatic (CCR5 antagonist) 12 I Completed PET-MRI image from 1 pt with
Colorectal Cancer & advanced-stage mCRC refractory to
standard chemotherapy showed clear
tumor shrinkage after
maraviroc treatment
Trial of Neoadjuvantand =~ BMS-813160 Phase I:
Adjuvant Nivolumab (CCR2/5 dual antagonist) 9/13 pts proceeded to immunotherapy
and BMS-813160 Withor ~ + I Completed after neoadjuvant chemotherapy + rad
NCT03767582 Without GVAX for Nivolumab I: 30 1/11 I Recrlflitin 3 pts received treatment at DL1
Locally Advanced (PD-1 mAb) ’ g 6 pts at DL2.
Pancreatic Ductal +/— No DLTs observed
Adenocarcinomas GVAX grade 3+ AE: 1 pt
Maraviroc
Ipilimumab, Maraviroc (CCR5 antagonist)
and Nivolumab in +
Advanced Metastatic Ipilimumab Active,
NCT04721301 Colorectal and (CTLA-4 mAD) I not recruiting
Pancreatic Cancer the +
LUMINESCENCE Trial Nivolumab
(PD-1 mAb)
. . BMS-813160
Neoadjuvant Nivolumab .
With CCR2,/5-inhibitor 4(—CCRZ/ 5 dual antagonist)
or Anti-IL-8) for Nivolumab
NCT04123379 Non-small Cell Lung (PD-1 mAb) 1I Recruiting
Cancer (NSCLC) or +
Hepatocellular
Carcinoma (HCC) BMS-986253

(IL-8 mAb)
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10. Triple-Negative Breast Cancer Subtypes and CCR5 Inhibitor Therapy

The use of CCR5 inhibitors in combination therapy for TNBC needs to consider
evidence that distinct immunological subtypes of TNBC are now described and checkpoint
inhibitors show promise in this patient population. TNBC includes both “hot” and “cold”
tumors with immunological heterogeneity, and is recognized in both Caucasian [113] and
Asian populations [114]. “Hot tumors” have significant T-cell infiltration (CD8" cytotoxic
T cells) and antigen-presenting cells such as dendritic cells are associated with better ICI
(immune checkpoint inhibitor) efficacy. “Cold tumors” include impaired T-cell priming
(reduced CD8* T cells), increased numbers of suppressor cells (Tregs and myeloid-derived
suppressor cells (MDSCs)), and deficient T-cell homing to tumor beds.

Four transcriptome-based subtypes of TNBC have been proposed: (1) The luminal
androgen receptor (LAR) (23%) reflects signaling by the androgen receptor. (2) The im-
munomodulatory (IM) subtype (24%) is characterized by the activation of gene expression
for immune pathways and cytokine signaling. In the immunomodulatory subtype, the
immune recognition pathway is induced, consistent with a model in which this TNBC
subtype may recruit immune-suppressive cells or activate immune checkpoints to escape
the immune anti-tumor response. In patients with the TNBC IM, the adaptive immune
response and interferon-gamma signaling gene expression are prominent [114]; these acti-
vated pathways coincide with the pathways that were most activated by GSEA analysis
for CCCR5" vs. CCR5™ breast tumors [11]. (3) In the basal-like immune-suppressed (BLIS)
(39%) subtype, cell cycling, and DNA repair gene expression are induced, whereas im-
mune response genes are suppressed. In the (4) mesenchymal-like (MES) (15%) genotype,
there is induction of stem cell pathways, activated immune pathways, and enrichment of
tumor-infiltrating lymphocytes (TILs) (stromal and intratumoral).

Other categories of the TME for breast cancer have been described. Analysis of
~10,000 cancers identified six immunogenomic subtypes, common to 33 cancer types.
These subtypes are different from the traditional genomic and non-coding cancer clas-
sifications [115]. Breast cancer is enriched for C1 and C2, with a lesser amount of C3. In
both C2 and C3 subtypes, an increased expression of IFNG and CCL5 correlated with
increased NK cells together with CD4 and CD8 T cells. The C2, or IFN-g-dominant subtype,
showed a relative increase in M1 vs. M2 macrophages, and an enrichment for TCR diversity.
The C3, or “inflammatory”, subtype showed less chromosomal instability, with low levels
of aneuploidy and somatic copy number alteration, and lower cell proliferation but elevated
Th17 and Th1l gene expression. Although CCR5/CCLS5 is associated with “hot tumors”,
the functional significance of this axis, discussed below, appears to be immunosuppressive,
making CCR5" tumors potentially a target to potentiate checkpoint inhibition therapies.

11. Potential Role for CCR5 Inhibitors in Augmenting the Therapeutic Response to
Current Breast Cancer Therapies

CCRS5 inhibitors are administered (concurrently or sequentially) with DNA-damaging
agents used to treat cancer, such as alkylating agents, intercalating agents, and polymerase
inhibitors. Combined with existing chemotherapy, CCR5-blocking agents may provide
several mechanisms to improve efficacy and reduce the dose of chemotherapy [11,58,116].

As noted above, an analysis of >2200 breast cancer patients showed that several differ-
ent breast cancer subtypes determined by gene expression overexpress CCR5, including
triple-negative breast cancer (TNBC), >90% of Her2+ BCa, and 30-40% of luminal breast
cancer [9]. CDKi (palbociclib) is used for ERa* Her2™ BCa [117]. In Her2+ BCa, Traz-
tuzamab resistance of Her2+ breast cancer was linked to hyperactivation of CCL5/CCR5
signaling [118], and shown to be attenuated by maraviroc. Recent studies have shown that
CDKi affects immune surveillance (please see our recent review, [117]). We hypothesize
that CCR5i may either enhance or reduce the cell killing of CDK inhibitors, depending upon
the tumor subtype and the tumor microenvironment [119]. We previously showed that
cyclin D1 induces TILs and CCRS5 ligand abundance [120]. Ras-MAPK-cyclin D1 pathway
activation promotes immune evasion in TNBC [121]; however, CDKi has been shown



Cells 2023, 12, 2237

12 0of 19

to increase the anti-tumor immune response [122,123]. CDK4/6i increased anti-tumor
immunity [122,124] and expression of CCL5 and PD-L1 [125]. As CCR5 binds with high
affinity to several ligands that are induced by current BCa therapies (CCL5, CCL3 (MIP-1a),
and CCL4 (MIP-1b), CCR5i may augment anti-tumor immune responses.

Radjiation therapy is recommended for women treated with breast cancer conserving
surgery. Radiation is also recommended for women with node-positive disease after
mastectomy or with a tumor >5 cm. Radiation induces an abscopal effect. Low-dose
radiation therapy induces a similar response to the effect seen with CCR5i (T cell and
myeloid infiltration in tumors, and enrichment of anti-tumoral M1-like tumor-associated
macrophages [126-128]. CCR5i enhances the DNA damage response of y-radiation [11],
raising the possibility that CCR5i may enhance the efficacy of radiation therapy for breast
cancer patients.

Cytotoxic chemotherapy is recommended for patients with HER?2 positivity (HER2"),
HR-negative (HR ™) status, or positive lymph nodes. In patients with ER-negative breast
cancer receiving chemotherapy, patients with increased CCR5 populations showed a strong
trend toward reduced metastasis-free and relapse-free survival compared with the pa-
tient population showing reduced CCR5 expression in their tumors [9]. Chemotherapy
enhanced CD73 expression (mesenchymal stem cell, MSC) and PDL-1, which mediate
cytotoxic T lymphocyte evasion [129]. CCL5 siRNAs reduced MSC-induced BCa metasta-
sis [130]. Although chemotherapy may induce a pro-tumorigenic immune response [131],
chemotherapeutics also activate the STING (STimulator of INterferon Genes) pathway [132],
which induces CCL5 and may thereby induce PD-L1 expression and a tumor immuno-
suppressive environment [133]. In this circumstance, CCR5i would be predicted to reduce
CCLS5 action and mitigate the induction of the immunosuppressive environment.

12. Checkpoint Inhibitors

Several lines of evidence suggest CCR5 inhibition may augment immune checkpoint
inhibitors or cellular immunotherapy (ICI) responses. CCR5 is found in “hot tumors” but
appears to play a role in suppressing the anti-tumor immune response. Evidence includes
the findings that: first, CCR5 promotes a tumor-suppressive tumor microenvironment.
CCRS5 pathway activation is necessary for the induction of protumoral macrophages and the
differentiation of MDSCs [87]. CCRS5 silencing of myeloid and myeloid precursors cells was
sufficient to restrain tumor progression in vivo. The anti-tumor effect of CCR5 silencing
correlated with the conversion of polymorphonuclear myeloid-derived suppressor cells into
anti-tumor neutrophils. CCL3 in hematopoietic stem and precursor cells (HSPCs) activated
CCR5 to convert HSPCs into MDSCs. Second, M2 macrophages, inflammatory monocytes,
and myeloid cells such as myeloid-derived suppressor cells (MDSCs) drive tumor immune
evasion. CCR5 is associated with MDSC accumulation, in melanoma [134,135]. Third,
inhibiting CCR5 reduced the tumor-infiltrating MDSCs, and improved the survival rate in
preclinical breast cancer and melanoma models [9,85,134].

The role of different cytokines in PDL1 inhibitor therapy may be more complex.
Checkpoint-inhibitor-unresponsive melanomas lacked CCL4 (a ligand for CCR8—but
also for CCRS5 [136]). Restoration of CCL4 ligands restored responses to checkpoint in-
hibitors [137]. Intravenous administration of CBD-CCL4 (collagen-binding domain (CBD)
of von Willebrand factor) increases tumor localization of CCL4 and thereby recruits CD8*
T cells and CD103+ DCs. The impact of CBD-CCL4 was to thereby improve the anti-tumor
effect of checkpoint inhibitor therapy in melanoma and a breast cancer model (EMT6)
including poor responders to CPI [137].

The composition of immune cell infiltration into the tumor influences the response
to immune checkpoint inhibitor therapy. PD-L1 is not always a good predictor of the
immune benefits of CPI [138]. The Keynote-522 trial (phase III) showed that the benefit of
pembrolizumab occurred independently of PDL-1 status. In this regard, the pathological
complete response rate among patients in the pembrolizumab arm was higher than that of
the patients without anti-PD-1 treatment, independently of PDL-1 status [138]. Furthermore,
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checkpoint inhibitor therapy’s (atezolizumab and durvalumab) benefit for TNBC was
independent of PDL-1 status in both the IMpassion031 and GeparNuevo studies [139,140].

Evidence suggesting CCR5 inhibition may augment immune checkpoint inhibitors or
cellular immunotherapy (ICI) responses includes, firstly, evidence that CCR5 contributes to
tumor progression by facilitating the recruitment of myeloid-derived suppressor cells and
regulatory T cells to induce an immune-suppressive tumor microenvironment [141].

The second line of evidence that CCR5 inhibition may augment immune checkpoint
inhibitors or cellular immunotherapy (ICI) responses includes animal model studies of
gastric cancer in which an anti-CCR5 antibody decreased the number of tumor M-MDSCs
and G-MDSCs. Furthermore, the combination of the anti-CCR5 antibody with an anti-PD-1
antibody treatment decreased the tumor burden in mice, correlating with increased tumor
infiltration of CD4* and CD8* T cells [135].

Thirdly, in human colon cancer clinical trials, findings are consistent with CCR5
inhibitors reverting cold tumors [27,110]. Support comes from CCR5 inhibitor use in
human colon cancer clinical trials. PD-1/PD-L1 inhibitors (PD-1 monotherapy or combined
PD-1 and CTLA-4 blockade) do not show activity in colorectal cancers that are mismatch
repair proficient (MMRp). However, when MMRp colorectal cancer was treated with
maraviroc anti-tumoral M1, macrophages were activated, which is associated with the
induction of pro-migratory chemokines and cytokines, increased T cell agglomeration, and
improved median overall survival when compared with historic data (9.83 months). A
combination treatment with two checkpoint inhibitors and CCRS5 inhibition is currently
ongoing, further enhancing synergistic activation of the adaptive arm of the immune system
and the innate immunity [clinicaltrials.gov NCT04721301].

Collectively, therefore, CCR5-targeted therapy will be an effective treatment for pa-
tients with cancers that express high levels of CCR5/CCLS5 and high levels of circulating
tumor cells and/or metastases, and may be well positioned to augment the efficacy of
current therapies.

13. Conclusions

CCRS5 plays a pivotal role when expressed in breast cancers in facilitating tumor
progression and metastasis in multiple ways. CCR5 stimulates tumor angiogenesis and
induces tumor-cell-forming circulating tumor cells, which allow the tumor cells to spread
to a distant site. CCR5 mediates tumor cell glucose uptake, which aids in tumor growth.
The CCR5-CCLS5 axis allows cancer cells to escape the immune system through the repro-
gramming of TAMs to become M2 macrophages and enhances the expression of PD-L1.
CCRS5 promotes resistance to chemotherapy through the stimulation of the DNA repair
machinery and enhancement of anti-apoptotic mechanisms. CCR5 antagonists such as
leronlimab, maraviroc, and vicriviroc have been shown to reduce the impact of CCR5
on tumor progression and halt the metastatic process. Data from clinical trials suggest
that CCR5 blocking agents may be promising therapeutics by enhancing the efficacy of
chemotherapy and improving outcomes in breast cancer patients.
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