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Abstract: Polycystic ovary syndrome (PCOS) is a prevalent gynecological and endocrine disorder
that results in irregular menstruation, incomplete follicular development, disrupted ovulation, and
reduced fertility rates among affected women of reproductive age. While these symptoms can be
managed through appropriate medication and lifestyle interventions, both etiology and treatment
options remain limited. Here we provide a comprehensive overview of the latest advancements in
cellular approaches utilized for investigating the pathophysiology of PCOS through in vitro cell mod-
els, to avoid the confounding systemic effects such as in vitro fertilization (IVF) therapy. The primary
objective is to enhance the understanding of abnormalities in PCOS-associated folliculogenesis, par-
ticularly focusing on the aberrant roles of granulosa cells and other relevant cell types. Furthermore,
this article encompasses analyses of the mechanisms and signaling pathways, microRNA expres-
sion and target genes altered in PCOS, and explores the pharmacological approaches considered as
potential treatments. By summarizing the aforementioned key findings, this article not only allows
us to appreciate the value of using in vitro cell models, but also provides guidance for selecting
suitable research models to facilitate the identification of potential treatments and understand the
pathophysiology of PCOS at the cellular level.

Keywords: polycystic ovary syndrome; hyperandrogenism; androgen receptor; granulosa cells;
folliculogenesis

1. Introduction

Polycystic ovarian syndrome (PCOS) is a common heterogeneous endocrine disorder
that affects 7–12% of reproductive-age women and is significantly associated with infertility.
The primary symptoms of PCOS include hyperandrogenism, absent ovulation, and polycys-
tic ovaries. Currently, there are no definitive diagnostic criteria for PCOS, as its pathology
involves multiple factors such as endocrinology and gynecology, making it difficult to
categorize [1–4]. PCOS is characterized by an increased density of small pre-antral follicles
and a higher proportion of early growing follicles, accompanied by abnormal granulosa
cell proliferation. Additionally, PCOS is associated with the apoptosis of granulosa cells
in antral follicles [5–7]. Granulosa cells (GCs) form a cuboidal layer on the surface of the
oocyte and secrete steroid hormones that play a crucial role in follicle development, making
them a key focus in PCOS pathogenesis [5,8]. During oocyte development, the oocyte and
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its surrounding granulosa cells exhibit a mutual interdependence, crucial for providing
the oocyte with essential nutrients and growth regulators. In return, the oocyte plays a
role in promoting the growth and differentiation of the granulosa cells. There is evidence
to indicate that dysfunction in these cellular interactions may play a role in the abnormal
folliculogenesis observed in PCOS [9]. Because the molecular mechanism responsible for
triggering PCOS is unknown, it is difficult to offer guidance to women and healthcare
professionals regarding the condition. Hence, discovering the specific mechanism that
causes PCOS has become an area of intensive research.

In recent years, several in vitro models, including cell lines and animal models, have
been developed to study PCOS due to ethical constraints in human studies. However,
despite conducting numerous experiments, the underlying pathophysiology of PCOS
still remains unclear. Nonetheless, the development of these experimental models holds
significant potential in advancing our understanding of the condition and identifying the
most effective treatment options [4]. Herein, we focus on up-to-date in vitro cell models for
PCOS and summarize the mechanisms proposed or discussed in PCOS-like phenotypes
in these models. We also briefly summarize the related mechanisms in hormonal and
genetic alterations in developed PCOS, as well as the common pathophysiology that
accompanies metabolic syndrome. We also summarize the common cellular/molecular
mechanisms of drugs, compounds, and traditional Chinese herbal medicines, along with
miRNA expression and specific genes implicated in PCOS pathogenesis. Finally, we discuss
the effects of cells other than ovarian tissue on PCOS.

2. In Vitro Cell Models for PCOS research

Established animal models with PCOS characteristic are important for studying the
pathophysiology and etiology of the disorder. Moreover, animal-derived cells or cell lines
with an indefinite lifespan offer cost-effective and time-efficient alternatives for screening a
broad spectrum of drugs before progressing to in-vivo models. Consequently, they provide
a reliable and consistent cell source for experimentation. Figure 1 summarized the common
in vitro cell models for PCOS research, as we discussed below.
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Figure 1. The common in-vitro models used in PCOS studies are outlined. The primary GCs from
humans and rodents, cell lines, and others related to the reproductive system or endocrine system
are utilized in PCOS research.

2.1. Human Ovarian Granulosa Cell Lines

In vitro human cell line models have been used in fundamental research, including
studies on PCOS. As outlined in Table 1, numerous human GC lines have been established
successfully, including long-term cultures from human tumor cells [10–15] and immor-
talization through oncoviruses [16–19], lentiviruses [20–23], or retroviral systems [24,25].
GC function is defined by three distinct properties: (1) the production of 17β-estradiol in
response to follicle stimulating hormone (FSH) through the action of P450 aromatase [26];
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(2) support for oocyte growth during the development of the surrounding follicle [27,28];
and (3) the presence of specific molecular markers of apoptosis involved in follicle atre-
sia [29]. To confirm the functional characteristics of these immortalized GCs, various
measurement parameters were investigated for validation. GCs are essential in the ovary,
playing a significant role in folliculogenesis and oocyte maturation. One of their important
functions is secretion of steroid hormones, such as estrogen, progesterone, and AMH.
Moreover, FSH receptor (FSHR) and aromatase are crucial markers of GCs. FSHR acts as an
upstream regulator of aromatase, which plays a pivotal role in the production of estrogen
by GCs through the aromatization of androstenedione. The level of sex steroid hormones
in the culture medium can be measured to determine aromatase activity [24].

Most of the human GC cell lines described in Table 1 exhibit aromatase activity,
although they are not all FSH-dependent. Additionally, several GC lines, including SVOG,
HGL5, and HO23, are typically isolated and established by transfection of luteinized
GCs obtained from IVF programs [16–19,22,23]. Due to the administration of human
chorionic gonadotropin (hCG), luteinized GCs do not express a functional FSHR [30].
Both GCN and GCP, which are established from normal and PCOS GCs, express specific
granulosa markers such as FSHR and aromatase, and their expressions of these markers
are similar to those of primary GCs. These two GC lines provide a good in vitro model
for understanding the cellular mechanisms of the normal and PCOS human ovary [24,25].
KGN, COV434, and HGrC1 were useful models because they maintain most physiological
activities, such as the expression of functional FSHR and an FSH-dependent increase in
aromatase activity [10–14,20,21]. Among these cell lines, KGN is particularly advantageous
as it retains the physiologic features of GCs and exhibits a stable, long-term proliferative
capability. Moreover, as it does not produce endogenous steroids and responds well to
gonadotropins, KGN serves as a suitable model for the two-cell, two-gonadotropin model
of ovarian steroidogenesis. Consequently, it is extensively used in research on the cellular
functions of GCs and the molecular regulatory mechanisms involved in PCOS [10,19].

Table 1. Characteristics of human ovarian granulosa cell lines for PCOS research.

Cell Line GCP GCN KGN COV434 HTOG HGrC1 SVOG HGL5 HO23

Population Iranian Iranian. Japanese ND Japanese ND ND ND Israeli

Age 32 36 63 27 74 35 ND Adult Adult

Category

Telomerase
immortal-
ized cell
line

Telomerase
immortal-
ized cell
line

Cancer cell
line

Cancer cell
line

Cancer cell
line

Transformed
cell line

Transformed
cell line

Transformed
cell line

Transformed
cell line

Disease PCOS
Normal
patient with
IVF

Ovarian
granulosa
cell tumor

Ovarian
granulosa
cell tumor

Ovarian
granulosa
cell tumor

ND ND ND
Normal
patient
with IVF

Transformed hTERT/
c-Myc

hTERT/
c-Myc ND ND ND E6/E7 SV40 E6/E7 SV40

Doubling
time 75 h 86 h 46.4 h 24 h 25 h 40 h ND 96 h ND

Luteinized X X 7 X ND 7 X X X

FSH
responsive X X X 7 ND X 7 7 X

Androgen
responsive ND ND X ND ND ND ND X X

Aromatase X X X X X X ND X ND

P4 X X X X X X X X X

E2 X X X X X X 7 X 7

AMH X X X X ND ND ND ND X

FOXL2 gene ND ND C134W Wildtype ND C134W ND ND ND

Ref. [24,25] [24,25] [10–13,31,32] [11,14,31,32] [15] [20,21] [16] [22,23,32] [17–19,32]

ND, not determined; X, the feature shows in this cell line; 7, the feature does not show in this cell line.
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Both KGN and HGrC1 cell lines harbor a missense mutation in the Forkhead transcrip-
tion factor gene, FOXL2 gene, which play a crucial role in the differentiation and function
of the ovaries [33]. FOXL2 gene is involved in the proliferation and differentiation of GCs.
Hence, there may be concerns regarding the use of KGN and HGrC1 in investigating the
proliferation and apoptosis of GCs during normal folliculogenesis. By contrast, COV434,
another granulosa cell tumor-derived cell line, has a wildtype FOXL2 genotype and does
not express FOXL2 from a juvenile GC tumor, making it a better model for investigating
these aspects [11,14,21].

Establishing appropriate in vitro GC cell line models can help in investigating the
role of steroidogenesis, oogenesis, folliculogenesis, atresia, and luteinization in PCOS [19].
Many studies have used primary culture systems of GCs obtained from follicular fluids
during oocyte retrieval in IVF programs. However, some limitations still exist in GC
culturing such as low cell yield, difficulties in maintaining cell viability for extended cell
generations and preparing uniform cell populations in sufficient amounts. By contrast,
human GC cell lines have no limitations in cell number and show long-term viability and
decreased proliferation.

2.2. Primary Ovary and Other Relevant Cell Lines for PCOS In Vitro Studies

Follicular fluid from patients undergoing IVF procedures is a common source of hu-
man GCs. Therefore, successfully isolating and purifying abundant levels of high-quality
GCs from the follicular fluid is crucial for PCOS research [34,35]. As shown in Table 2,
several human GC isolation techniques have been described in the literature, enabling
us to investigate the development mechanisms of PCOS, including proliferation, apop-
tosis, insulin resistance (IR), and oxidative stress (OS) [36–49]. Hyperandrogenism is
also a prominent feature of PCOS, characterized by excessive production of ∆4 steroids
such as androstenedione (A4) and testosterone, which can lead to anovulation, oligomen-
orrhea, and infertility [50]. The increased expression of steroidogenic enzymes P450c17
(17α-hydroxylase, 17,20-lyase) and 3β-HSDII (3beta-hydroxysteroid dehydrogenase), which
are essential for androgen production, causes enhanced androgen biosynthesis in PCOS [51–53].
NCI-H295R is a human adrenocortical cell line widely recognized as a valuable model
for studying steroidogenesis [54–59]. These cells express all the genes that encode the
steroidogenic enzymes found in all three layers of the adult adrenal cortex, including
3β-HSDII and P450c17.

Table 2. Primary cells from the ovary and other relevant cells for in vitro PCOS studies.

Human Manipulation/Treatment Mainly Description Target Ref.

Primary granulosa cells from women underwent IVF

Proliferation
TLR4 [36]

TGFBR1, SMAD7 [37]

Proliferation, apoptosis

CTBP1-AS [38]

ESR2 [39]

TGFBR1, TGFBR2 [40]

MALAT1, MDM2 [41]

Insulin resistance
SAA1 [42]

IRS-1, GLUT4 [43]

Mitochondrial damage
Glycolysis defection SIRT3 [44]

Androgen production
Antioxidative damage CYP19A1, HO1 [45]

Oxidative stress Keap1, Nrf2 [46]

Autophagy Beclin-1, light chain 3 [47]
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Table 2. Cont.

Human Manipulation/Treatment Mainly Description Target Ref.

Mitophagy SIRT1 [48]

Ovulation FHL2, AR [13]

RNA sequencing TNF-α [49]

NCI-H295R
(Adrenocortical
carcinoma)

Decanoic acid Androgen production 3β-HSDII [54]

Forskolin Androgen production CYP17A1, 3β-HSDII [55]

ND Androgen production 3β-HSDII [56]

BMP2 Steroidogenesis, androgen
production BMP2 [57]

NCI-H295R
(Adrenocortical
carcinoma)

ND Steroidogenesis, androgen
production CYP17, CYP21 [58]

NCI-H295R
(Adrenocortical
carcinoma)

Palmitate, H2O2, HNE Steroidogenesis, androgen
production P450c17 [59]

Animal

Rat primary granulosa
cells

H2O2 (in vitro) Oxidative stress, autophagy Beclin-1, light chain 3 [60]

DHT and FSH (in vitro) Proliferation PTEN [61]

DHEA (in vivo) Mitochondrial abnormality,
insulin resistance

NDUFB8, ATP5j,
IRS-1, GLUT4 [62,63]

TP (in vivo) Autophagy Beclin-1, light chain 3 [64]

Vitamin K3 (in vitro) Oxidative stress Keap1, Nrf2 [46]

Letrozole (in vivo) Insulin resistance IGF-1, PI3K, AKT [65]

Mouse primary
granulosa cells

DHT (in vitro) Autophagy Beclin-1, light chain 3 [66]

IL-15 (in vitro) Proliferation, apoptosis,
steroidogenesis, inflammation CYP17A1, Ifng, IL-1b [67]

DHEA (in vivo) Mitochondrial biogenesis mtDNA [68]

Porcine primary
granulosa cells FSH and PDTC (in vitro) Autophagy, apoptosis NF-κB, IGF-1 [69,70]

Bovine primary theca
cells IL-18 (in vitro) Proliferation, steroidogenesis CYP11A1, CYP17A1 [71]

Mouse primary stroma
cells DHT and LH (in vitro) Lipid metabolism disorder,

steroidogenesis, hypertrophy Col6a5 [72]

Fish primary
granulosa/theca cells Testosterone (in vitro) Apoptosis MAPK [73]

3T3-L1
(Mouse preadipocyte)

Testosterone, LPS Inflammation IL-6
MCP-1 [74]

DHT Lipid metabolism disorder Col6a5 [72]

NCTC1469
(Mouse liver cells DHT Lipid metabolism disorder Col6a5 [72]

Abbreviations: TLR4, toll-like receptor 4; TGFBR, transforming growth factor beta receptor; SMAD7, mothers
against decapentaplegic homolog 7; CTBP1-AS, C-terminal binding protein 1-antisense RNA; ESR2, estrogen
receptor 2; MALAT1, metastasis associated lung adenocarcinoma transcript 1; MDM2, mouse double minute 2;
SAA1, serum amyloid A1; IRS-1, insulin receptor substrate 1; GLUT4, glucose transporter type 4; SIRT, sirtuin;
CYP19A1, cytochrome p450 family 19 subfamily A member 1; HO1, heme oxygenase 1; Keap1, kelch-like ECH-
associated protein 1; Nrf2, nuclear factor like 2; FHL2, four and a half LIM domains 2; AR, androgen receptor;
TNF-α, tumor necrosis factor- alpha; CYP17A1, cytochrome p450 family 17 subfamily A member 1; BMP2, bone
morphogenetic protein 2; CYP21, cytochrome p450 family 21; HNE, hexanitroethane; PTEN, phosphatase and
tensin homolog; NDUFB8, NADH: ubiquinone oxidoreductase subunit B8; ATP5j, ATP synthase peripheral stalk
subunit F6; TP, testosterone propionate; IGF-1, insulin like growth factor 1; PI3K, phosphatidylinositol 3-kinase;
AKT, protein kinase B; Ifng, interferon gamma; IL, interleukin; mtDNA, mitochondrial DNA; PDTC, pyrrolidine
dithiocarbamate; NF-κB, nuclear factor kappa B; CYP11A1, cytochrome p450 family 11 subfamily A member 1;
LH, luteinizing hormone; Col6a5, collagen type VI alpha 5 chain; MAPK, mitogen-activated protein kinase; LPS,
Lipopolysaccharide; MCP-1, The monocyte chemotactic protein-1.
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2.2.1. Primary GC Isolation from Medicine-Induced PCOS Mouse Models In Vivo

Using human models for PCOS research does have limitations due to difficulties in
obtaining samples, as well as ethical or logistical reasons. Therefore, based on the high
degree of evolutionary conservation of the mammalian reproductive system, the devel-
opment of animal models is essential for exploring the pathophysiology of PCOS both
in vivo and in vitro. As shown in Table 2, PCOS models in animals can be induced using
compounds such as dehydroepiandrosterone (DHEA), dihydrotestosterone (DHT), letro-
zole (LET), testosterone, or IL-5. Currently, there are no animal models that are precise
enough to completely mirror the features of PCOS [62–65,68]. While the DHEA-induced
PCOS rodent model displayed key features similar to PCOS in women, such as cystic
follicles, it only induced minor metabolic changes in the rats. Notably, however, the cystic
follicles in the rodent model had a thinner theca cell layer, contrasting with the thick-
ened theca cell layer seen in human PCOS cases [75]. These findings deviate from the
typical characteristics of PCOS, as women with PCOS often experience IR and glucose
intolerance. The DHT-induced PCOS model is a valuable tool for examining the mecha-
nisms of altered hormonal regulation and ovarian changes and can be used to investigate
various aspects of PCOS such as ovarian function, pathophysiology, metabolic distur-
bances, and treatment options. This model closely mirrors most of the reproductive and
metabolic alterations observed in PCOS women, making it a suitable choice for PCOS re-
search [76,77]. With immunoassay-based techniques, testosterone levels in premenopausal
women have been found to be about 40 ng/dL (1.4 nmol/L) and DHT levels about 10 ng/dL
(0.34 nmol/L) [60], there were also testosterone mouse model which represent most of the
PCOS phenome. In LET-induced PCOS models, metabolic dysregulation such as weight
gain increased abdominal adiposity, elevated fasting blood glucose and insulin levels, and
IR has been observed [78]. However, the pubertal LET model differs from the organizational
effects of androgens during prenatal development, which result in permanent changes
in the brain, including alterations in gonadotropin releasing hormone (GnRH) neurons
and anxiety-like behavior. Despite this, hyperandrogenism, LH hypersecretion, polycystic
ovaries, and a lack of corpora lutea are features found in LET-induced PCOS models and
even in ER-α (ESR-1) knockout mice [65,79–81]. Therefore, the key features observed in
LET-induced models of PCOS may be caused by impaired estrogen action, rather than the
hyperandrogenic condition.

2.2.2. Primary GCs Isolated from Normal Animals and Treated with Medicine In Vitro

One of the most common methods of primary GC culture isolation is to isolate cells
from ovaries in PCOS rodent models. However, several studies collected GCs from healthy
animals and treated them with DHT, IL-15, and H2O2 [46,60,61,66,67,69,70]. Numerous
studies have also demonstrated that ovarian GCs in patients with PCOS experience imbal-
anced OS, suggesting that autophagy of GCs triggered by OS may play a crucial role in the
development and onset of PCOS pathology [46,82]. H2O2 has been extensively employed
as an exogenous inducer in many studies to investigate damage mechanisms. By inducing
H2O2 in rat GCs, researchers have established a model for investigating damage mecha-
nisms such as apoptosis and autophagy that result from OS [60]. It is important to note that
the antioxidant system in tissue is more intricate than it is at the cellular level. Therefore,
further research is necessary to better understand the complexity of the antioxidant system
in tissue and its potential implications in the context of OS and for conditions such as PCOS.
Low-grade chronic inflammation may play a role in the development of PCOS, with the
proinflammatory cytokine IL-15 contributing to the development of chronic inflammation,
which leads to obesity-associated metabolic syndrome. Higher levels of IL-15 in follicular
fluid were found in PCOS patients and PCOS animal models, although IL-15 levels in the
serum did not increase significantly. It appears, therefore, that IL-15 is produced locally
or accumulated in ovarian tissue, such as GC cells. Consequently, GC cells cultured with
IL-15 could potentially be used to further explore the pathogenesis of PCOS by affecting
the inflammation state, steroidogenesis, and GC survival rates [67].



Cells 2023, 12, 2189 7 of 26

2.2.3. Other Relevant Cell Lines for PCOS In Vitro Studies

Theca cells (TCs) play a key role during follicular growth and atresia and are one
of the most important cell types in the follicles. Their functions include synthesizing
androgens, promoting the function of GCs, facilitating oocyte development, and providing
structural support for the follicle [83]. Studies have shown that IL-18-dependent regulation
of proliferation and steroidogenesis in TCs may influence follicle development and result in
similar pathologic features to PCOS [71]. Another study investigated the effects of androgen
and the mechanism of Col6a5 in excess lipid accumulation and cell hypertrophy in ovarian
stromal cells under a DHT-induced hyperandrogenic mouse model and hyperandrogenic
cell models. However, it did not investigate mouse liver cells [72].

2.3. Mouse Primary Follicle Cultures

Another method for PCOS studies in vitro is follicle isolation and culture. The ovarian
follicle is the fundamental functional unit of the ovary, comprising an oocyte, and surround-
ing GCs and TCs. The process of folliculogenesis is crucial for the generation of competent
oocytes that can be fertilized and developed properly. This process involves the regulation
of multiple signals, including hormonal regulation, paracrine signals, and bidirectional
communication between the oocyte and the GCs [84]. Follicular development progresses
from primordial follicles, primary follicles (PMF), secondary follicles (SF), preantral follicles,
antral follicles (AF), and eventually to mature follicles [85]. The abnormal morphology of
polycystic ovaries is linked to abnormal ovarian follicle development, which includes in-
creased activation of PMF, ostensible accumulation of follicles at the primary stage, greater
proliferation of GCs in small preantral follicles, and follicle arrest at the antral stage [86–89].
This indicates that ovarian impairment in PCOS originates during the earliest phases of
follicle development, when gonadotrophin action is not essential, and where local factors
such as androgens play a more prominent role in regulating follicle development [90].
Hence, the in vitro follicle culture system provides an opportunity to study folliculogenesis,
oocyte maturation, and pathophysiology.

Hyperandrogenism is detected in PCOS patients. Many studies have suggested that
both endogenous and exogenous sources of androgen excess may directly contribute to the
development of polycystic ovary morphology [91]. Table 3 has summarized the various
rodent primary follicle cultures that have been used to investigate the stimulation of
follicle growth by androgens [84,90,92–94]. Among the strains of rodents provided by
major suppliers, C57BL/6 and ICR mice are commonly used in studies related to aging,
toxicology, pathology, and physiology [95]. These two rodent strains are not only easy to
handle for their size but also have high fertility. They are also commercially available and
widely used for various studies including in vitro culturing of ovarian follicles. In order to
investigate follicle development, isolated growing follicles need to be collected from the
ovaries of three-week-old C57BL/6 mice or six-week-old ICR mice. DHEA is a precursor to
potent androgens and estrogens. In vitro, DHEA supplementation inhibits follicle growth
and steroid hormone synthesis. However, blocking AR signaling can reverse the inhibition
of follicle growth and ovulation by DHEA [84]. By contrast, DHT significantly promoted
secondary follicle growth by potentiating FSH action. Administering DHT to SF in mice
with low FSH increased FSHR expression and promoted follicular growth by enhancing
FSH action [92]. Testosterone also promoted follicle development in rodent models during
the early stages (D7) but inhibited follicle growth at a later stage (D7-14) [94].
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Table 3. Characterization of mouse primary follicle cultures from androgen-induced PCOS models.

Mice Species C57BL/6J C57BL/6J ICR ICR Kunming

Sacrificed age Day 18 to 21 Week 13 to 16 Week 6 Week 6 Day 14

follicle stage Secondary follicle

Small preantral
follicle
(100 to 150 µm)
Large preantral
follicle
(151 to 200 µm)
Small antral follicle
(201 to 250 µm)
Large antral follicle
(251 to 350 µm)
Preovulatory
follicle
(351 to 450 µm)

Secondary follicle
(100 to 160 µm)

Secondary follicle
(100 to 160 µm) Primary follicle

Culture Period 6 days 5 days 13 days 13 days 14 days

Culture medium αMEM +
10 mIU/mL rFSH

αMEM +
100 mIU/mL rFSH

αMEM +
33 mIU/mL rFSH
or 100 mIU/mL
rFSH

αMEM +
33 mIU/mL rFSH

αMEM +
100mIU/mL rFSH
and LH

Culture dish 96 well dish 4 well dish 48 well dish 96 well dish 10 µL droplet

Treatment 10 µM DHEA,
10 µM flutamide DHT 50, 500,

1250 ng/mL DHT

500 ng/mL DHT
5 ng/mL
Pioglitazone

10−6, 10−5, 10−4 M
Testosterone

Reported outcome

DHEA induces
impairment of
follicle growth and
ovulation

Prolonged
exposure to excess
DHT leads to
aberrant follicle
development

DHT supports
follicle
development
during the
FSH-dependent
preantral stage

Pioglitazone
negatively affects
follicular growth

Testosterone
promotes the
follicle
development

Ref. [84] [90] [92] [93] [94]

Abbreviations: αMEM, alpha minimal essential media; rFSH, recombinant FSH.

In general terms, improper androgen production or conversion to estrogen can lead
to hyperandrogenic conditions in PCOS cases [96,97]. The dysfunctional synthesis of an-
drogens and estrogens in PCOS mainly originates from ovarian follicle theca and GCs,
resulting in thickened theca and thin granulosa cell layers under polycystic conditions [98].
At the preantral stage, various androgens promote the growth of isolated mouse preantral
follicles [99–101]. Androgen excess altered the growth patterns of the mice and this hy-
perandrogenic environment may have contributed to the antral follicle arrest observed in
polycystic ovaries [90]. Therefore, rodent primary follicle cultures serve as a good platform
to investigate how a hyperandrogenic environment can directly and permanently affect
follicular development and ovarian function.

3. Mechanisms and Signaling Pathways Identified from In Vitro Models of PCOS

PCOS is a complex endocrine disease that involves endocrine disorders, androgen
excess, infertility, IR, obesity, and glycometabolism disorder [102]. The PI3K-AKT signaling
pathway was previously thought to be related to proliferation, apoptosis, and transfer in
many diseases, including cancer. However, recent PCOS studies have shown that changes
occur in the PI3K-AKT signaling pathway in response to IR, androgen excess, obesity, and
follicular development [103]. In addition, emerging evidence indicates that the transform-
ing growth factor beta (TGFβ) signaling pathway and NF-κB signaling pathway also play
key roles in regulating the physiological conditions of PCOS [40]. Table 4 summarizes the
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most important molecular mechanisms involved in PCOS pathogenesis, providing a new
perspective on the pathogenesis of PCOS and GC dysfunction.

3.1. Proliferation and Apoptosis

GCs are necessary for follicular development and oocyte ovulation as they provide
nutrients and growth regulators. Therefore, decreases in GC proliferation and increases in
GC apoptosis appear to be significantly involved in the pathogenesis of PCOS [104,105]. The
PI3K/AKT/mTOR pathway is an important signaling pathway for cell cycle regulation and
cell proliferation [106]. Several studies have indicated that the PI3K/AKT/mTOR pathway
plays a role in regulating the proliferation or apoptosis of GCs in follicles (see Table 4)
[36,70,107–110]. In addition, regulators involved in the PI3K/AKT/mTOR pathway, such
as ribosomal protein S6 kinase 1 (S6K1), IGF-1, TLR4, and PTEN, may also be associated
with the apoptosis/proliferation ratio in GCs of PCOS [36,61,107,109]. The TGFβ signaling
pathway is another common pathway involved in multiple cellular processes such as
including proliferation, migration, adhesion, and apoptosis, and its dysregulation has been
associated with pathological conditions such as PCOS [37,111,112]. Dysregulated miRNAs,
including miR-33b, miR-142, miR-125b, miR-203a, and miR-423, have been identified in
GCs from PCOS patients and may be involved in regulating the TGFβ-signaling pathway,
promoting cell proliferation, and repressing apoptosis [37,40,41]. Furthermore, expression
of components in the hedgehog (Hh) signaling pathway has been observed in the GCs of
PCOS patients as well as in ovarian tissues in mice [49,113]. Inhibiting the Hh signaling
pathway has been shown to decrease GC apoptosis in PCOS, indicating that aberrant
activation of the Hh signaling pathway is related to abnormal follicular development in
PCOS patients [49]. Recent evidence from fish models suggests that androgens can trigger
apoptosis in granulosa/theca (G/T) cells [73,114]. Testosterone activates the membrane
receptor ZIP9, which induces G/T cell apoptosis through a mechanism involving Gsα
subunit signaling and extracellular signal-regulated kinase (ERK) pathway activation.
This mechanism coordinates androgen-induced G protein signaling pathways with zinc
signaling to facilitate apoptosis, a crucial cellular function, in vertebrate cells [73].

Table 4. Pathological mechanisms and signaling pathways associated with PCOS in various in vitro
models.

Functional Outcome Affected Pathway Cells/Follicles Source/Treatment Ref.

Proliferation/Apoptosis AKT/mTOR Human primary GCs PCOS patients [107]

Proliferation/Apoptosis PI3K/AKT/mTOR Rat primary GCs ND [108]

Proliferation/Apoptosis PI3K/AKT/mTOR KGN ND [109]

Proliferation/Apoptosis PI3K/AKT/mTOR KGN DHEA [47,115]

Proliferation/Apoptosis p53/TGF β Human primary GC/KGN PCOS patients [40,41]

Proliferation TGF β Human primary GCs PCOS patients [37]

Proliferation PI3K/AKT Human primary GC/KGN miR-let-7d-3p OE [36]

Proliferation PPARγ/PTEN/p-AKT Rat primary GCs DHEA/DHT/FSH [61]

Apoptosis Hedgehog signaling Human primary GCs PCOS patients [49]

Apoptosis/Autophagy IGF1/p-AKT/BimEL Porcine primary GCs FSH/PDTC [70]

Apoptosis Gsα/MAPK fish primary G/T cells Testosterone [73]

Autophagy PI3K/AKT/mTOR COV434 ND [116]

Autophagy PI3K/AKT/mTOR Rat primary GCs ND [60,64]

Autophagy PI3K/AKT/mTOR KGN DHEA [47,115]

Autophagy p53/AMPK Rat primary GCs TP [60,64]
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Table 4. Cont.

Functional Outcome Affected Pathway Cells/Follicles Source/Treatment Ref.

Autophagy NF-κB/JNK Porcine primary GCs FSH/PDTC [69]

Insulin Resistance IRS1/PI3K/AKT Rat primary GCs DHEA-treated [62]

Insulin Resistance IGF-
1/PI3K/AKT/Bax/Bcl-2 Rat primary GCs HFD/Letrozole [65]

Insulin Resistance PTEN/AKT/TLR2/TLR4/NF-
κB Human primary GCs PCOS patients [42,43]

Mitochondrial damage
Glycolysis defection

Insulin
receptor/PI3K/AKT/ERK KGN SIRT3 KD/Insulin [44]

Mitophagy PINK1/Parkin Human primary GC/KGN DHT [48]

Mitochondrial dysfunction PDK1/AKT KGN DHT [110]

Oxidative stress PI3K/AKT/mTOR Rat primary GCs H2O2 [60]

Oxidative stress AMPK/AKT/Nrf2 Human primary GCs PCOS patients [117]

Oxidative stress Keap1/NrF2 Human primary GC/
Rat primary GCs Vitamin K3 [46]

Estrogen synthesis WNT2/FZD3/β-catenin COV434 FSH [118]

Follicular development PKA pathway Mice follicles FSH [119]

Abbreviations: mTOR, mammalian target of rapamycin; OE, over expression; PPARγ, peroxisome proliferator-
activated receptor gamma; BimEL, bcl-2-interacting mediator of cell death-extra long; AMPK, AMP-activated
protein kinase; JNK, Jun amino-terminal kinase; Bax, Bcl-2 associated X; Bcl-2, B-cell lymphoma 2; HFD, high-fat
diet; TLR2, toll-like receptor 2; KD, knock down; PINK1, PTEN-induced kinase 1; PDK1, phosphoinositide
dependent proteinkinase 1; WNT2, Wnt family member 2; FZD3, frizzled 3; PKA, protein kinase A.

3.2. Autophagy

Distinct from apoptosis, autophagy is a cellular process that induces cell death and
can facilitate the pathological progression of various diseases [120]. Increasing numbers
of studies have revealed that obvious autophagy occurs in GCs in both humans and rats
with PCOS and may be one of its primary causes [121]. The PI3K/AKT/mTOR signaling
pathway is a classic pathway involved in the regulation of autophagy, and many studies
have shown that the activation of the PI3K/AKT/mTOR signaling can inhibit autophagy
in both human and rat PCOS models [47,60,116]. The tumor suppressor p53 is another
modulator of autophagy in regulating cell death and survival [122]. One study used
testosterone propionate to induce a PCOS cell model in vitro by activating autophagy and
also showed that autophagy of GCs is inhibited by mediating the p53/AMPK signaling
pathway [64]. FSH has been shown to regulate autophagy in rat GCs by activating NF-κB
via PI3K/AKT/mTOR signaling [123,124]. By contrast, in porcine GCs, FSH inhibits NF-κB
and then promotes autophagy via the JNK pathway, which provides new insights into the
crosstalk between different signaling pathways during follicle development [69].

3.3. Insulin Resistance

Another key characteristic of PCOS is IR. Several studies have shown that IR regu-
lates multiple mediators and pathways involved in the pathogenesis and development
of PCOS [125]. Table 4 shows that insulin primarily regulates the PI3K/AKT signaling to
mediate its metabolic regulation effect in both human and rat primary GCs [43,62,65]. In-
sulin sensitizers, such as humanin analog (HNG) and metformin, suppress IR by regulating
the PI3K/AKT signaling pathway [62]. Furthermore, Cangfudaotan decoction, a Chinese
medicine used to treat gynecological diseases, particularly PCOS, regulates the IGF-1-
PI3K/AKT-Bax/Bcl-2 pathway to alleviate IR, improve follicular development, and inhibit
apoptosis [65]. Additionally, SAA1 overproduction may contribute to IR development in
GCs in PCOS patients by stimulating the TLR2/TLR 4 and NF-κB pathways [42].
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3.4. Oxidative Stress and Mitochondrial Dysfunction

Numerous studies have increasingly linked low-grade systemic and ovarian chronic in-
flammation, as well as OS, to PCOS and its associated endocrinological dysfunction [46,126,127].
This indicates that imbalanced OS found in GCs may be an important factor in the de-
velopment of PCOS pathology. Several studies have reported that OS contributes to the
pathophysiology of PCOS through various signaling pathways (see Table 4). In a rat PCOS
model, increasing OS-induced GCs autophagy through the PI3K/AKT/mTOR pathway
can be ameliorated by treatment with metformin [60], while the increased production of
reactive oxygen species (ROS), which causes OS, induced apoptosis in granulosa-lutein cells
via activation of the AMPK/AKT/Nrf2 signaling pathway [117]. The Keap1/Nrf2 pathway
has recently been identified as the pivotal pathway regulating OS. Nrf2 is a key molecule
that becomes activated in response to OS and is usually sequestered by cytoplasmic Keap1
and targeted for proteasomal degradation under basal conditions. Humanin downregula-
tion has been observed in ovarian GCs of PCOS patients and is associated with oxidative
imbalance through modulation of the Keap1/Nrf2 signaling pathway [46,128]. Recent
studies have indicated that mitochondrial injury in GCs, which is associated with PCOS
pathogenesis, is linked to excessive OS [115,129,130]. The PI3K/AKT signaling pathway
is one of the major pathways that help stabilize mitochondrial membrane potential and
prevent mitochondrial membrane defects, thereby maintaining their primary biological
functions. Zheng et al. demonstrated that GCs in PCOS patients contained damaged mito-
chondrial membranes, and that melatonin might activate PDK1/AKT by promoting SIRT1
expression to repair the damage [110]. By contrast, Yi et al. found that decreased SIRT1
expression in the GCs of PCOS might have caused excessive mitophagy and mitochondrial
injury. In addition, melatonin was found to protect against mitochondrial injury in GCs
of PCOS by enhancing SIRT1 expression to inhibit excessive PINK1/Parkin-mediated
mitophagy [48].

3.5. Other Physiological Characteristics and Signaling Pathway

FSH enhances the differentiation capabilities of GCs, including their ability to pro-
duce E2 and facilitate preantral follicle growth [131]. Recent research has suggested that
Wingless-type MMTV integration site family members (WNTs), working in conjunction
with their frizzled (FZD) receptors, contribute to regulating normal folliculogenesis, luteo-
genesis, and ovarian steroidogenesis. In the cumulus cells (CCs) of patients with PCOS,
FZD3 expression was found to be significantly upregulated, which, when coupled with
the activation of the WNT2/β-Catenin pathway, was strongly linked to IR and estrogen
deficiency. Thus, excessive FZD3 expression in CCs may act as an impediment to steroido-
genic activation, which is normally overcome by FSH stimulation [118]. Numerous studies
have also provided evidence that FSH can impact the growth of preantral follicles, through
in vivo experiments and in vitro culture of ovarian tissue explants or isolated, multilayered
preantral follicles. Moreover, FSH-induced growth was found to be suppressed by a PKA
inhibitor, indicating that the PKA pathway is involved in FSH-induced follicle growth [119].

4. MicroRNA Expression and TARGET Genes in In Vitro Models of PCOS

MicroRNAs (miRNAs) are small, non-coding RNA molecules consisting of approx-
imately 20–22 nucleotides, which negatively regulate target gene expression at the post-
transcriptional level by imperfectly base pairing with the 3’-untranslated region (UTR) of
target mRNAs. Numerous studies have demonstrated the impact of miRNAs on various
biological processes, including development, differentiation, cell proliferation, apoptosis,
metabolism, inflammatory responses, and various diseases [132]. miRNA dysregulation is
linked to various pathophysiological processes, including PCOS, with increasing evidence
suggesting that abnormal expression of miRNAs in GCs plays a crucial role in the onset
and progression of PCOS [133–135].
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Moreover, PCOS patients exhibit distinct patterns of miRNA expression during ovar-
ian steroidogenesis. In women with PCOS, numerous miRNAs are modified in their serum,
granulosa-lutein cells (GLCs), and follicular fluids, regulating key processes such as follic-
ular development and maturation, insulin signaling, glucose and lipid metabolism, and
steroid hormone synthesis [136–138]. A better understanding of how genetic regulation
and environmental factors interact to produce varying miRNA expressions may provide
valuable insights into the development of PCOS. miRNAs also have the potential to serve
as noninvasive biomarkers for PCOS diagnosis and classification. However, the current
understanding of the relationship between miRNAs and PCOS development is limited,
mainly because a single miRNA can target numerous mRNA molecules and vice versa.
Further functional studies exploring the connection between miRNAs and PCOS will be
necessary [139].

According to evidence, isolated CCs from PCOS patients exhibited differential ex-
pression of several miRNAs compared with controls [140]. Several miRNAs have been
shown to increase significantly in GCs from PCOS patients or cell lines. For example, in
rat models of PCOS, and in the ovarian GCs of PCOS patients, miR-194 expression was
found to be significantly upregulated. Suppressing miR-194 promoted the growth and
proliferation of KGN cells, while its over-expression induced cell apoptosis [141]. The up-
regulation of miR-3188 levels in PCOS patients may enhance cell viability and progression
of the cell cycle while suppressing cell apoptosis, an effect that can be achieved through
the downregulation of KCNA5 (potassium voltage-gated channel subfamily A member
5) [142]. The expression of miR-21 and toll-like receptor 8 (TLR8) was significantly elevated
in granulosa cells of PCOS patients when compared with normal GCs. miR-21 promotes
the translation of TLR8 mRNA, leading to increased secretion of IFN-γ, TNF-α, and IL-12,
which suggests that miR-21 and TLR8 are involved in PCOS-related inflammation [143].
In PCOS patients, miR-186 and miR-135a were found to be overexpressed. Song et al.
identified ESR2 as a direct target of both miR-186 and miR-135a in GCs, establishing a link
between dysregulated miRNAs and GC dysfunction in PCOS patients [39] (Table 5).

Table 5. MicroRNA expression and target genes in in vitro PCOS studies.

MicroRNA Target Cells Cell Response Ref.

miR-451a ATF2 KGN Proliferation ↓, apoptosis ↑ [144]

miR-194 HB-EGF KGN Proliferation ↓, apoptosis ↑ [141]

miR-3188 KCNA5 KGN Proliferation ↑, apoptosis ↓ [142]

miR-206 CCND2 KGN Proliferation ↓, apoptosis ↑ [145]

miR-let-7d-3p TLR4 KGN Proliferation ↓ [36]

miR-19b IGF-1 KGN Proliferation ↓ [146]

miR-323-3p IGF-1 KGN Steroidogenesis, apoptosis [147]

miR-21 SNHG7 KGN Proliferation ↓, apoptosis ↑ [148]

miR-186, miR-135a ESR2 KGN Proliferation ↑, apoptosis ↓ [39]

miR-29a ND KGN, COV434
Proliferation ↓,
Aromatase expression↓,
Estradiol biosynthesis ↓

[149]

miR-320a RUNX2 Human primary GCs Steroidogenesis [150]

miR-21 TLR8 Human primary GCs Proliferation ↑, apoptosis ↓ [143]

miR-33b, miR-142 TGFBR1 Human primary GCs Proliferation ↑, apoptosis ↓ [37]

miR-423 SMAD7 Human primary GCs Proliferation ↑, apoptosis ↓ [37]

miR-324-3p WNT2B Rat primary GCs Proliferation ↓, apoptosis ↑ [151]

↓, decrease; ↑, increase. Abbreviations: ATF2, cyclic AMP-dependent transcription factor 2; HB-EGF, Heparin-
binding epidermal growth factor-like growth factor; CCND2, cyclin D2; SNHG7, small nucleolar RNA host gene
7; RUNX2, Runt-related transcription factor 2.
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Several miRNAs were oppositely expressed in GC cells. miR-451a is downregulated in
KGN cells, and its upregulation may inhibit GC proliferation, which could be a contributing
factor to the development of abnormal follicles in PCOS patients. Additionally, miR-451a
regulates the proliferation and apoptosis of ovarian GCs by targeting ATF2 [144]. Both
PCOS patients and KGN cells showed downregulation in miR-206 expression. This miRNA
targets CCND2, which functions as a negative regulator of miR-206. The regulation of cell
viability and apoptosis of ovarian GCs by miR-206 suggests that it may play a critical role
in PCOS pathogenesis [145]. High insulin concentrations were found to decrease miR-19b
expression levels, promote cell proliferation, and increase IGF-1 levels. Moreover, both
PCOS ovary tissues and KGN cells exhibited significantly lower expression levels of miR-
19b. Additionally, miR-19b directly targeted IGF-1 and functioned as a negative regulator of
its expression. The over-expression of IGF-1 was found to promote cell proliferation [146].
miR-323-3p downregulation was observed in human GCs of women with PCOS, while
the inhibition of miR-323-3p levels upregulated steroidogenesis and promoted apoptosis
in KGN cells. This miRNA was found to inhibit steroidogenesis and GCs apoptosis by
targeting IGF-1, suggesting it may play a role in the development of PCOS [147]. The
expression levels of miR-21 were found to be downregulated in the ovarian tissue of PCOS
patients and KGN cells. Over-expression of miR-21 inhibited the proliferation of KGN cells
and induced apoptosis. The miR-21/SNHG7 axis was shown to play a role in regulating
GCs proliferation and apoptosis [148]. The downregulation of miR-320a expression in
primary GCs from PCOS patients is associated with estrogen deficiency. IGF1 plays a
role in regulating miR-320a expression in GCs. Through direct targeting of the 3’UTR
of the osteogenic transcription factor RUNX2, miR-320a potentiates steroidogenesis in
GCs by modulating the expression of CYP11A1 and CYP19A1. This suggests that miR-
320a may play a critical role in the pathogenesis of PCOS [150]. miR-29a downregulation
was observed in PCOS patients and was found to be correlated with an increase in the
antral follicle count. The over-expression of miR-29a in KGN and COV434 cells led to
the inhibition of cell proliferation, arrested cell cycle progression, and reduced aromatase
expression and estradiol production. These findings suggest that miR-29a plays a critical
role in GC proliferation and steroidogenesis and could provide new insights into the
pathogenesis of PCOS [149].

In light of these findings, miRNAs appear to have the potential to serve as clinical
biomarkers for diagnosing PCOS and as therapeutic targets for treating the condition. It
may also partly explain the heterogeneity observed in PCOS women. However, despite
recent progress, research surrounding miRNAs as potential diagnostic tools is still in the
early stages. Additionally, while there is potential for miRNA-based therapeutics, they are
yet to be developed. As such, developing commercially available miRNA-based diagnostics
and therapeutic tools remains a long-term goal [152,153].

5. Pharmacological Approaches in In Vitro Models of PCOS

PCOS has a complex pathophysiology, with an etiology involving multiple factors
such as genetics, diet, environment, or even social psychology [47,154]. Current treatments
for PCOS tend to focus on symptom relief instead of addressing or curing the root cause.
The most commonly used medications and compounds for PCOS therapy are summarized
in Table 6. Metformin is a drug usually used to treat patients with PCOS and can improve
hyperandrogenism and induce ovulation [60]. In addition to the drugs, there are currently
many studies investigating the apoptosis or cell viability of GCs using different nutritional
supplements, which could be a new therapeutic modality for PCOS treatment. Another
category, Traditional Chinese medicine (TCM) and Herbal Compounds, has its role in PCOS
treatment. TCM, a notable component of complementary and alternative medicine, has
been used to manage PCOS for centuries. TCM prescriptions comprise multiple active
compounds that have been shown to alleviate clinical symptoms and abnormal laboratory
data of PCOS without significant side effects [155]. Formulas such as Cangfudaotan, Gui
Zhu Yi Kun, Guizhi Fuling Wan, Xiao Yao San, Bu Shen Tian Jing, Bushen Huatan, Kunling
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Wan, and Gengnianchun have been widely used to treat PCOS in human and animal models.
These TCM formulas can inhibit GC autophagy, reduce cell apoptosis, promote normal
follicular development, regulate hormone aberrations, ameliorate irregular estrous cycles,
reverse ovarian aging, and improve pregnancy outcomes [64,65,156]. Some compounds
from herbs, such as cryptotanshinone (CRY) and curcumin, can inhibit granulosa cell
apoptosis, regulate OS, improve hormone imbalance, reduce inflammation, and correct
disturbances in the estrous cycle in cell and animal models [38,157–159]. Additionally,
plumbagin exhibits an inhibitory effect on the proliferation and viability of various cancer
cell lines and induces a significant concentration-dependent inhibition of rat ovarian GC
proliferation. Moreover, a study reported that plumbagin reduce the pyroptosis of GC in
PCOS mouse by inhibiting the Wilms tumor 1-associated protein-mediated N6-methylation
of C-terminal caspase recruitment domain mRNA. Those study supports the profound
potential of plumbagin in PCOS treatment [108,160,161]. All these data show that herbal
medicine is an acceptable alternative therapy for PCOS patients. The current therapeutic
mechanisms of pharmacological agents for PCOS, as mentioned in Section 4, are highly
diverse. Therefore, this section focuses on in vitro studies to better understand their effects.

Table 6. Pharmacological agents used to investigate the pathophysiology of PCOS in in vitro models.

Agents for Treatments Cells Source/Treatment Treatment Outcome Ref.

Metformin Rat primary GCs H2O2
Decreased excessive autophagy in
GCs [60]

Melatonin Human primary GCs PCOS patients Reduced insulin resistance in GCs [43]

Melatonin Human primary GCs PCOS patients Reduced androgen levels through
ERK in GCs [45]

Melatonin KGN cell DHT Protected against mitochondrial
injury in GCs of PCOS [48]

Melatonin KGN cell DHT
Ameliorated mitochondrial
membrane damage in GCs of
PCOS

[110]

Melatonin KGN cell DHEA Suppressed autophagy and
apoptosis [47]

HNG supplementation Rat primary GCs DHEA-induced Improved local ovarian insulin
resistance [62]

HNG supplementation COV434 Vitamin K3 Alleviated oxidative stress in GCs
of PCOS [46]

Vitamin D3 Mice Primary GCs DHEA
Improved mitochondrial
biogenesis and membrane
integrity

[68]

Sulforaphane Human primary GCs PCOS patients
Against oxidative stress by
recudcing intracellular ROS and
apoptosis levels

[117]

Gui Zhu Yi Kun formula Rat primary GCs TP Inhibited GC autophagy [64]

Cangfudaotan Decoction Rat primary GCs Letrozole Suppressed insulin resistance and
improves follicular development [65]

Guizhi Fuling Wan Rat primary GCs Letrozole Inhibited GC autophagy and
promoted follicular development [156]

Xiao Yao San Rat primary GCs Chronic unpredictable mild stress Reduced apoptosis and autophagy
of GCs [162]

Bu Shen Tian Jing Formula KGN Palmitate Improving oxidative stress and
glucose metabolism [163]

Bushen Huatan Granules and
Kunling Wan Rat primary GCs DHEA Protected endoplasmic reticulum

stress. [164]

Gengnianchun recipe KGN Insulin Inhibited the senescence of GCs [165]

Cryptotanshinone Rat primary GCs hCG and insulin Inhibited oxidative stress and
apoptosis [157]

Cryptotanshinone KGN ND Inhibited the proliferation and
promote the apoptosis [38]

Cryptotanshinone Rat primary GCs hCG and insulin Attenuated hormone and
inflammatory factor level [158]
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Table 6. Cont.

Curcumin Rat primary GCs DHEA Inhibited endoplasmic reticulum
stress [159]

Plumbagin Rat primary GCs ND Inhibited proliferation and
promotes apoptosis [108]

Plumbagin mice primary GCs DHEA Reduced the pyroptosis of GCs [161]

5.1. Small Molecular Drugs
Metformin

Metformin is one of the most widely used insulin-sensitizing drugs in the treatment
of PCOS. It has also been shown to reduce hyperandrogenism and induce ovulation [166].
However, the use of metformin as an adjunct is limited and only favorable in the treatment
of PCOS women who are resistant to CC alone [167,168]. In a rat model, metformin
was shown to improve PCOS by decreasing excessive autophagy in primary culture GCs.
Metformin also reduces the levels of OS and autophagy in H2O2-induced GCs through
regulating the PI3K/AKT/mTOR signaling pathway [60]. Organic cation transporters
(OCTs) OCT1, OCT2, and OCT3 control metformin uptake into primary culture GCs of rats,
where metformin can decrease vascular endothelial growth factor (VEGF) and increase
pAMPK levels. When OCTs were inhibited, these effects were reversed. Metformin has
also been shown to act directly on ovarian cells by regulating cell metabolism and VEGF
expression [169].

5.2. Nutritional Supplement
5.2.1. Melatonin

Secreted by the pineal gland, melatonin is a neuroendocrine hormone that plays a cru-
cial role in regulating the reproductive functions of mammals [170]. It is a therapeutic agent
that regulates autophagy and also has the potential to suppress autophagy and apoptosis
in PCOS [47,171]. Additionally, studies have shown that melatonin can significantly reduce
androgen levels and increase FSH levels in PCOS patients. Moreover, it has a positive effect
on oocyte quality in cases of hypoestrogenia and hyperandrogenia [45,172].

Melatonin is not only used in PCOS treatment, it is also a mitochondria-targeted
antioxidant and might repair mitochondrial damage [43,48,110,173]. In both GCs from
PCOS patients and DHT-treated KGN cells, melatonin was found to increase the expression
of SIRT1 and decrease the expression of PINK1/Parkin at the protein level, which improves
mitochondrial dysfunction [48]. Melatonin decreases mitochondrial permeability transition
pore (mPTP) opening and increases the JC-1 aggregate/monomer ratio, indicating that
regulating mPTP can enhance mitochondrial membrane potential. It reduces the levels of
cytochrome C and Bax both in vivo and in vitro while increasing the phosphorylation of
PDK1 and AKT. This activation of the PDK1/AKT pathway is crucial in improving mito-
chondrial membrane function. Additionally, melatonin treatment increases the expression
of SIRT1, while knocking down SIRT1 mRNA inhibits the protective effect of melatonin on
the activation of PDK1/AKT [110].

Melatonin has been shown to have multiple effects on luteinized GCs of PCOS patients.
Firstly, it upregulates the expression of CYP19A1 via the ERK pathway, which accelerates
the conversion of androgen to 17β-estradiol. Secondly, it reduces the levels of inducible
nitric oxide (NO) synthetase and NO in GCs. Thirdly, it increases the level of transcripts
encoding Nrf2 and its downstream target HO1, which results in anti-inflammatory and
antioxidant effects [45].

Melatonin has been shown to improve glucose uptake and insulin signaling in both
GCs from PCOS patients and SVOG cells that were treated with palmitic acid. In these
cells, melatonin increases IRS-1 and GLUT4 expression while decreasing p-IRS-1 (Ser307)
expression. Palmitic acid has been shown to inhibit PI3K and AKT phosphorylation, but
melatonin increases the levels of p-PI3K and p-AKT while decreasing IR via the PI3K/AKT
signaling pathway in GCs and palmitic acid-induced SVOG cells [43].
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5.2.2. Humanin

Humanin, a peptide derived from mitochondria, is involved in metabolic processes
such as diabetes and PCOS. Wang et al. showed that local ovarian expression of humanin
was downregulated in PCOS patients with IR compared with its expression in PCOS
patients without IR. They also showed that exogenous humanin supplementation could im-
prove body weight gain, ovarian morphological abnormalities, endocrinological disorders,
and ovarian and systemic OS in PCOS rat models induced by DHEA [46].

Activating the Keap1/Nrf2 signaling pathway in response to OS is one mechanism
by which humanin exerts its protective effects on ovarian GCs in patients with PCOS.
By modulating this pathway, humanin can alleviate OS in GCs [46]. A study conducted
that supplementation with a humanin analog could reduce elevated levels of fasting
plasma glucose and fasting insulin in PCOS rat models induced by DHEA [62]. Moreover,
exogenous humanin supplementation has been shown to improve the metabolic profile of
PCOS rats by targeting the IRS1/PI3K/AKT insulin signaling pathway, and it decreased
the phosphorylation of IRS1, PI3K, AKT, and GLUT4 proteins in the primary culture of
ovarian GCs [62]. These results suggest that humanin has great potential as a therapeutic
drug for patients with PCOS.

5.2.3. Vitamin D3

In PCOS patients, Vitamin D deficiency can lead to excessive androgen secretion,
IR, and disrupted follicular growth. However, Vitamin D3 can increase the number of
preantral and antral follicles in a DHEA-induced rat PCOS model compared with a healthy
group [68]. Vitamin D3 was shown to improve mitochondrial biogenesis, membrane
integrity, and mtDNA copy number in primary culture GCs of PCOS mice induced with
DHEA, potentially enhancing follicular development and oocyte quality [68].

5.2.4. Sulforaphane

Sulforaphane has anti-tumor, immunoregulatory, and antioxidative effects, and can
protect against OS by lowering the level of intracellular ROS and apoptosis in the GLCs
of PCOS patients [117]. Sulforaphane activates the AMPK/AKT/Nrf2 signaling pathway,
providing protection against OS in the GLCs of PCOS patients [117].

5.3. Traditional Chinese Medicine

An in vitro Gui Zhu Yi Kun formula study showed that primary culture GCs treated
with Gui Zhu Yi Kun formula can increase in mTOR, phosphorylated mTOR, and AMPKα

expression levels, and reduce p53 and sestrin2 expression levels. This finding implies
that a decrease in ovarian primary culture GCs in rats with PCOS may be related to
autophagy [64]. The Cangfudaotan decoction has been shown to improve IR and diminish
ovary morphological damage, normalize abnormal serum hormone levels, and inhibit
inflammatory cytokines in a PCOS rat model [65]. In the primary culture GCs studies,
Cangfudaotan can improve cell viability and inhibit cell apoptosis, which is associated
with the regulation of IGF-1-PI3K/AKT-Bax/Bcl-2 pathway-mediated gene expression [65].
Guizhi Fuling Wan has fewer atretic and cystic follicles, and more mature follicles and
corpus lutea, as well as lower serum T, LH, LH/FSH ratios, HOMA-IR, and FINS levels in
the PCOS rat model [164].

Other studies have demonstrated that Guizhi Fuling Wan can inhibit autophagy in
primary culture GCs and promote follicular development to attenuate ovulation disorder
in PCOS-IR, which is associated with the activation of the PI3K/AKT/mTOR signaling
pathway [156]. Xiao Yao San can reduce the level of autophagy in GCs caused by no-
radrenaline and can also mitigate the autophagy of primary culture GCs through the
AKT/mTOR/S6K1 pathway [162]. Additionally, Xiao Yao San has been shown to inhibit
the apoptosis of primary culture GCs in the AF and the autophagy of GCs in the antral and
cystic follicles in a chronic, unpredictable mild stress-induced PCOS rat model [162]. Bu
Shen Tian Jing can ameliorate glucose tolerance, the estrous cycle, and ovarian morphology
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in the PCOS rat model, while Bu Shen Tian Jing relieves OS and increases SIRT3 expression
of ovarian GCs [163]. In the above study on the KGN cell model, Bu Shen Tian Jing was
shown to reverse palmitate-induced impaired SIRT3 expression and glucose uptake and
decrease palmitate-induced mitochondrial ROS production mediated by SIRT3 [163]. Both
Bushen Huatan and Kunling Wan can improve pregnancy outcomes, improve the viability
of primary culture GCs and decrease the apoptosis of primary culture GCs in a PCOS rat
model [164]. The study also showed that Bushen Huatan granules inhibit apoptosis by
attenuating the dysfunctional mitochondrial of primary culture GC, while Kunling Wan
can relieve endoplasmic reticulum stress [164]. Gengnianchun can decrease IR, reduce
damage to the ovarian reserve, and reduce aging-related mRNA and protein levels such
as p53, p16, and p21 in a mice PCOS model [165]. In a long-term insulin-treated KGN
cells model, which results in senescence, differently expressed genes are mainly enriched
to the ERK1 and ERK2 cascade pathway, which is an integral component of the plasma
membrane and signals a level of receptor binding [165].

5.4. Herbal Compounds

In vitro models of compounds from herb plants, such as CRY, have been shown to
reduce OS, decrease high mobility group box 1 (HMGB1) and Bax expression of primary
culture GCs induced by ischemia-reperfusion through inhibiting ferroptosis, reduce GPX4
expression, and activate NF-κB via the MAKP signaling pathway [157]. Another study
of CRY demonstrates that CTBP1-AS is highly expressed in PCOS patients. CTBP1-AS
interacts with EZH2 and EED in primary culture GCs and balances the proliferation and
apoptosis of primary culture GCs in PCOS patients. CRY has been shown to reduce the level
of CTBP1-AS in a KGN cell model [38] and has also been shown to attenuate increases in
body weight, ovarian quotiety, Lee’s index, and body mass index in a PCOS rat model [158].
CRY also reduces the proliferation of primary culture GCs and modulates TNF-α, TLR4,
NF-κB/p65, and HMGB1 expression in vitro [158].

Curcumin can reverse the phenotype of PCOS model rats such as irregular estrus cycle,
the increase in body and ovarian weight, the elevation of serum T and LH, and the decrease
in FSH [159]. Curcumin also attenuates ER stress in primary culture GCs by activating the
PI3K/AKT pathway and protects against the apoptosis of primary culture GCs, perhaps
by activating the PI3K/AKT pathway and inhibiting IRE1α-XBP1 levels [159]. Plumbagin
can deactivate the PI3K/AKT/mTOR pathway in the primary GCs of the PCOS rat model,
which results in the apoptosis and inhibition of proliferation of the primary GCs.

In summary, compounds from herb plants have multiple regulatory mechanisms in
GCs such as the MAKP signaling pathway, the PI3K/AKT pathway, HMGB1, TNF-α, TLR4,
and NF-κB/p65, resulting in a more regular estrous cycle and normal serum testosterone,
LH, and FSH levels in animal models.

6. Conclusions

Experimental models have been extensively used to gain a better understanding of
PCOS. However, merely treating the symptoms is not enough; suitable models must be
utilized to develop a cure for PCOS. While clinical observations have supported the role of
androgen actions in PCOS, there is currently a lack of conclusive evidence. Recent experi-
mental studies have provided substantial evidence supporting the significance of direct
AR-mediated androgen actions in the development and progression of PCOS. However,
because of the ethical limitations surrounding human experimentation, animal models
using rodents, sheep, and non-human primates have had to be developed. Nevertheless,
in vitro models of PCOS offer a unique opportunity for mechanistic experiments to be
conducted and be reflected pathological features of PCOS (see Table 7), and provide insights
into the pathogenesis of PCOS (Figure 2). In summary, by combining clinical observations
with targeted in vitro models, we can have a better understanding of the mechanistic
pathogenesis of PCOS. This approach offers the possibility of identifying target sites and
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key pathways involved in PCOS, which may, in turn, lead to the development of novel,
evidence-based therapeutic treatment for PCOS.

Table 7. The connection between parameters in in vitro models and pathological features of PCOS.

Parameters Experimental Measurements Pathological Features of PCOS

Morphology

Apoptosis/Autophagy
Flow cytometry, caspase 3 activity assay,
TUNEL staining, LC3 /LC3 ratio,
follicle survival rate

Follicular atresia, follicular arrest [38,47,92]

Mitochondria structure Electron microscopy, mtDNA copy
number measurement

Mitochondrial dysfunction, glycolysis
defection, impaired oocytes [68]

Proliferation Cell proliferation assay, follicle diameter
measurement

Disruption of folliculogenesis, follicular
arrest [38,84]

Biological function

Lipid metabolism
Triglyceride and Total Cholesterol
measurement,
Oil Red O Staining

Dyslipidemia [72]

Ovulation hCG-induced ovulation test,
RT-PCR for ovulation related gene Oligo/Anovulation [84]

Steroidogenesis ELISA, RT-PCR for steroidogenesis
related gene Steroidogenesis imbalance [57]

Chemical/Stress response

Androgens RT-PCR for AR related gene, western
blotting Hyperandrogenism [13]

Cytokines
RT-PCR for pro-inflammatory cytokine
related gene,
immunofluorescence, ELISA

Chronic inflammation [67]

Insulin
IRS-1/GLUT4 RT-PCR, Glucose
Consumption Assay
western blotting, immunofluorescence

Insulin resistance [62]

Oxidative stress MDA, SOD, and GSH detection
Chronic inflammation, glycolysis
defection, impaired oocytes, insulin
resistance

[72]

Abbreviations: TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling; LC3: Microtubule-
associated protein light chain 3; RT-PCR: Reverse transcriptase PCR; ELISA: Enzyme-linked immunosorbent
assay; MDA: Malondialdehyde; SOD: Superoxide dismutase; GSH: Reduced glutathione.
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