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Abstract: The biguanide drug metformin is widely used in type 2 diabetes mellitus therapy, due
to its ability to decrease serum glucose levels, mainly by reducing hepatic gluconeogenesis and
glycogenolysis. A considerable number of studies have shown that metformin, besides its antidiabetic
action, can improve other disease states, such as polycystic ovary disease, acute kidney injury,
neurological disorders, cognitive impairment and renal damage. In addition, metformin is well
known to suppress the growth and progression of different types of cancer cells both in vitro and
in vivo. Accordingly, several epidemiological studies suggest that metformin is capable of lowering
cancer risk and reducing the rate of cancer deaths among diabetic patients. The antitumoral effects
of metformin have been proposed to be mainly mediated by the activation of the AMP-activated
protein kinase (AMPK). However, a number of signaling pathways, both dependent and independent
of AMPK activation, have been reported to be involved in metformin antitumoral action. Among
these, the Wingless and Int signaling pathway have recently been included. Here, we will focus our
attention on the main molecular mechanisms involved.

Keywords: metformin; cancer; Wnt

1. Introduction

Metformin, a biguanide drug, is the most prescribed oral antidiabetic agent worldwide,
taken by over 150 million people annually [1]. It is able, indeed, to lower the plasma glucose
level mainly by inhibiting hepatic gluconeogenesis (HGP) and improving insulin resistance
with negligible hypoglycemia side effects [2,3]. Many of both the systemic indirect and
direct effects exerted by metformin are thought to be mediated through the activation of the
Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a regulator of energy
metabolism induced by cellular stresses that cause a depletion of cellular ATP (Adenosine
triphosphate) content, thus increasing the AMP/ATP ratio [4–6]. It has been shown, indeed,
that the inhibition of AMPK signaling significantly reduces the efficiency of metformin in
the treatment of type 2 diabetes mellitus (T2DM) and atherosclerosis [7]. Once activated,
AMPK can inhibit the mammalian target of rapamycin (mTOR), thereby regulating different
pathways involved in glucose, lipid and energy metabolism. Besides T2DM, metformin
has been reported to be effective in the treatment of other diseases such as nephropathy [8],
polycystic ovary syndrome [9], neurological disorders [10] and cardiovascular diseases [11],
which are often associated with insulin resistance or diabetes. Evans and coworkers were
the first to recognize the antitumor properties of metformin in 2005 [12]. They found, indeed,
an inverse correlation between cancer occurrence and metformin treatment in diabetic
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patients, launching the investigation on the usage of metformin and other biguanides in
both cancer therapy and prevention. Since then, a plethora of studies have been performed
that support the antitumoral properties of metformin in different cancer types where
diabetes represents an important risk factor, such as kidney, pancreas, liver, lung, non-
Hodgkin lymphomas, prostate, rectum, endometrial, breast, and colon cancers [13,14]. In
these cases, metformin reduces both the risk of cancer and the rate of cancer deaths [15]. As
for diabetes, the anticancer properties of metformin are thought to be due to the activation of
AMPK and the consequent inhibition of mTOR, leading to protein synthesis inhibition and,
thus, decreasing the proliferation of cancer cells. However, although a considerable number
of effects have been described, the mechanisms of action underlying the antitumoral activity
of metformin remain only partially elucidated and it is becoming increasingly clear that
metformin can modulate different molecular pathways [16]. Several studies have recently
reported that the Wing-less and Int (Wnt) signaling pathway can be affected by metformin.
This pathway regulates embryonic development and different physiologic functions such
as stem cell regulation but also cell migration, wound healing, and maintenance of tissue
homeostasis [17]. However, it plays a key role also in cancer, favoring the initiation,
progression, and invasion of cancer cells [17]. Thus, a better understanding of the molecular
mechanism through which metformin can modulate the Wnt pathway might be extremely
relevant in the perspective of a therapeutic use of metformin, alone or in association with
other antineoplastic agents, especially in those tumors in which this pathway is deregulated.
Here, we will provide an overview of the main molecular mechanisms implicated in the
Wnt-related anticancer effects of metformin.

2. The Wnt Signaling Pathway
2.1. The Canonical Wnt Signaling Pathway

The Wnt/β-catenin signaling pathway is traditionally known as the “canonical” Wnt
pathway. It plays a crucial role in development and in many physiological aspects, but it
also drives pivotal processes in cancer such as progression, invasion, metastasis, and drug
resistance in hematological malignancies and solid tumors [17,18]. Under normal physiolog-
ical conditions, the transcription factor β-catenin is destroyed by the β-catenin destruction
complex formed by adenomatous polyposis (APC), casein kinase I (CK I), glycogen syn-
thase kinase 3β (GSK3β) and Axin [19–21]. Axin works as a scaffolding protein whether
β-catenin is phosphorylated by CK I and GSK3β in different residues [19–21]. At this point,
the protein is degraded by the E3 ubiquitin ligase (β-TrCP) [22]. However, the binding of
the Wnt protein ligands Wnt1, Wnt2, Wnt3, Wnt3a, Wnt8a, Wnt8b, Wnt10a, and Wnt10b
to the complex formed by the cell membrane Frizzled protein (Fz) and the low-density
lipoprotein receptor-associated protein (LRP5/6), changes the conformation of the complex
itself, leading to LRP phosphorylation and to the association of the cytoplasmic disheveled
proteins (DVL) to Fz, increasing the binding of Axin to heterodimers [23]. In turn, the
stability of the degradation complex is decreased and the phosphorylation of β-catenin by
CK1 and by unphosphorylated GSK-3β is blocked, as well as the targeting of the protein for
ubiquitination and proteasome degradation. The result is the accumulation of unphospho-
rylated β-catenin in the cytoplasm and its translocation to the nucleus [24], where binding
to the T-cell transcription factor/lymphoid enhancer-binding factor (TCF/LEF) occurs. This
interaction, finally, determines the transcriptional upregulation of downstream target genes
Axin2, c-Myc, Cyclin D1, Survivin, Matrix Metalloproteinases (MMPs) and others [25–27].
Wnt antagonists have been divided into two classes, characterized by different molecular
mechanisms: the first class includes proteins able to bind Wnt ligands, such as Cerberus,
Wnt inhibitory factor-1 (WIF-1), and secreted Frizzled-related proteins (SFRPs); the second
class includes proteins able to bind Lrp5/6 and that are constituents of the Wnt receptor
complex Dickkopf (Dkk) [28]. The canonical Wnt pathway has the capability to regulate
the epithelial–mesenchymal transition (EMT), a process that mediates the invasion and
progression of tumors [29]. The connections between E-cadherin and β-catenin play a key
role in this process: E-cadherin deals, indeed, with cell adhesion, stabilizing the structure
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of tissues [30]. The downregulation of E-cadherin alters cellular architecture, weakening
cellular junctions and favoring tumoral invasion [31]. Upon E-cadherin downregulation,
β-catenin is free to translocate into the nucleus, thus exerting its transcriptional activity [32].
One of its target genes is ADAM10, a metalloprotease that, reducing cell adhesion, favors
cell migration, while promoting the translocation of β-catenin to the nucleus [31]. Slug [33]
or Twist [34], which play important roles in the destabilization of cell junction, besides
pro-invasive factors that favor both the motility and loss of polarity of epithelial cells, such
as laminin-5γ2 [31,35], are also targets of Wnt/β-catenin.

2.2. The Non-Canonical Wnt Signaling Pathway

The main non-canonical Wnt signaling pathways are the Wnt/Planar cell polarity
(PCP) and Wnt/Ca2+ signaling pathways [36]. Wnt4, Wnt5a, Wnt5b, Wnt7a, Wnt7b, and
Wnt11 activate non-canonical pathways by binding the Frizzled receptors. In particular, in
the Wnt/Calcium (Ca2+) pathway, the activation of the Fzd/Dvl complex enables phos-
pholipase C γ to convert phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol
(DAG) and inositol 1,4,5-triphosphate (IP3), leading to the increased release of intracellular
Ca2+. The release of Ca2+ causes, in turn, the activation of calcium-dependent kinases,
including Ca2+-dependent phosphatase calcineurin (CaN), Ca2+-calmodulin dependent
kinase II (CAMKII), or protein kinase C (PKC) [37]. Once activated, CaMKII phosphory-
lates TGFβ-activated kinase 1 (TAK1), inducing Nemo-like kinase (NLK) activation. In
turn, the TAK1/NLK pathway is able to counterbalance the canonical Wnt/β-catenin
pathway [38]; CaN, instead, induces the nuclear factor of activated T-cells (NFAT) family
proteins to move into the nucleus, increasing their transcriptional activity. In the Wnt/PCP
pathway, the activated Fzd/Dvl complex determines the activation of the Rho family small
GTPases RhoA, Rac and Cdc42 [39]. Cdc42 and Rac induce the activation of the c-Jun N-
terminal kinase (JNK) signaling, leading to the activation of the activating protein-1 (AP-1)
complex [40], while RhoA activates ROCK (Rho-associated kinase) [41]. These pathways
mainly modulate cell motility and polarity [42,43].

3. Molecular Players Involved in the Wnt/β-Catenin-Mediated Anticancer Activity
of Metformin
3.1. DVL3

Upregulation of Wnt signaling is a strong cancer-driving force for multiple types of
malignancies [36]. In most cases, Wnt signaling upregulation is due to loss-of-function
mutations in the APC gene or stabilizing mutations in the β-catenin gene, both resulting in
β-catenin accumulation. These events account for 95% of incidences of colorectal cancer
(CRC) but are often also found in tumors of other origin, such as the liver [44], kidney [45],
ovary [46], prostate [47], brain [48], endometrium [49], thyroid [50], and lung [51]. However,
changes in the expression and/or function of any of the components of the Wnt signaling
pathway might contribute to the onset and progression of different types of cancer. Kwan
and coworkers [52] reported a significant link between DVL3 upregulation and increased
Wnt/β-catenin activity in cervical cancer. Interestingly, they were the first to demonstrate
that AMPK activators, including metformin, block the growth of cervical cancer cells by
interfering with the DVL3-mediated Wnt/β-catenin signaling. They showed, indeed, that
the increase in proteasomal degradation was the molecular mechanism of the reduction of
DVL3 induced by AMPK activators, such as metformin, evidencing the importance of DVL3
in the oncogenesis of cervical cancer and highlighting the importance of targeting DVL3 in
cervical cancer via AMPK activators. The implication of AMPK activation in this process
was supported by the fact that the use of an AMPK inhibitor (Compound C) was able to
prevent DVL3 reduction induced by metformin [52]. The role of DVL3 in the anticancer
activity of metformin was also highlighted in breast cancer in a similar study by Zou
and coworkers [53], where the reduction in DVL3 levels upon metformin treatment was
paralleled by the downregulation of β-catenin levels and its transcriptional targets cyclin
D1 and c-Myc. Also in this study, increased AMPK-dependent proteasomal degradation
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of DVL3 was reported to be responsible for the downregulation of Wnt signaling by
metformin. Interestingly, the inhibition of the DVL-3/Wnt/β-catenin axis by metformin
with the impairment of the nuclear translocation of β-catenin was reported to play a role
not only in cancer but also in the development of neural crest cells, since it interferes with
the epithelial mesenchymal transition (EMT) process, which is crucial for neural cell crest
fate determination [54].

3.2. MMP26

Matrix metalloproteinases (MMPs) play a key role in regulating embryogenesis, tissue
morphogenesis and wound healing processes. In addition, the members of this family of
proteins have the ability to disintegrate the components of the extracellular Matrix (ECM),
favoring invasion and metastasis. Consequently, increased levels of these proteins have
been described in different types of cancer. Metformin has been described to inhibit the
expression of several members of the MMP family in cancer, such as MMP11 in male
germ tumor cells [55], MMP9 in ovarian cancer cells and in fibrosarcoma cells [56,57],
MMP2 in cholangiocarcinoma cells [58], melanoma cells [59] and endometrial carcinoma
cells [60], and MMP2 and MMP9 in breast cancer cells [61] and in esophageal squamous cell
carcinoma [62]. In these studies, different molecular mechanisms were described to explain
the inhibitory activity of metformin in MMPs expression. However, the involvement of
the Wnt pathway was not reported. Xu and coworkers [63] have recently shown that the
overexpression of the matrix metalloproteinase-26 (MMP26) increased the invasiveness of
chondrosarcoma cells. This is the only study to show that metformin is able to limit the
effects of MMP26 on the invasion of cancer cells through the inhibition of the Wnt pathway,
possibly by increasing β-catenin phosphorylation.

3.3. HNF4α

Chang and coworkers [64] found hepatocyte nuclear factor-4α (HNF4α) as a key com-
ponent among multiple expression datasets of gastric cancer (GC) in whole-transcriptome
profiles in Caucasians. They showed that the knockdown of HNF4α exerted antitumori-
genic effects both in vitro and in vivo. Interestingly, HNF4α has been previously described
as a downstream target of AMPKα [65,66], since it is phosphorylated in its ligand-binding
domain (Ser304), thereby blocking dimerization and its binding capability to DNA. They
demonstrated that metformin induces the tumor suppressing liver kinase B1 (LKB1) and
AMPK in different GC cell lines. Moreover, metformin treatment reduces HNF4α expres-
sion, suggesting that the activation of AMPK may be responsible for the downregulation
of HNF4α. Interestingly, metformin treatment also decreased WNT5A expression and
its downstream target genes TCF1 and β-catenin in both GC cell lines and in xenograft
models. Silencing of HNF4α showed similar effects, downregulating WNT5A expression
and TCF/LEF signaling, thus confirming that WNT5A is a direct target of HNF4α in
GC [64] and that the LKB1/AMPK/HNF4α/WNT5A axis constitutes a signaling cascade
that might play a main role in GC tumorigenesis.

3.4. Wnt3a

Cancer stem cells (CSCs) are tumor cells with the ability of self-renewal that can induce
tumor generation, recurrence and chemoresistance [67]. Several studies have showed that
the Wnt/β-catenin pathway plays a crucial role in stem cells formation in cancer [68].
Zhang and Wang [69] have recently shown that metformin impaired the capability to form
a spheroid. Moreover, metformin was also able to inhibit the expression of different markers
of stemness in HCT116 colorectal cancer cells, such as aldehyde dehydrogenase 1 (ALDH1),
epithelial cell adhesion molecule (EpCAM), Nanog and CD44. This was paralleled by
the attenuation of the epithelial mesenchymal transition (EMT), as demonstrated by the
reduction in vimentin, a known mesenchymal marker, and by the increase in E-cadherin,
an epithelial marker. More importantly, they showed that these changes were a direct
consequence of the capability of metformin to downregulate the expression of both Wnt3a
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and β-catenin. Treating CSCs with the Wnt3a/β-catenin agonist SKL2001 or increasing
the expression of Wnt3a, besides inhibiting EMT markers, also attenuated the inhibition
of the size and number of sphere cells induced by metformin. Metformin was also able to
attenuate 5-fluorouracil resistance of HCT116 sphere cells, confirming what was observed
in other types of cancer such as hepatocellular carcinoma [70], pancreatic cancer [71] and
non-small cell lung cancer (NSCLC) [72].

3.5. Intracellular Acidification and ER Stress

The tumor microenvironment is characterized by a low extracellular pH that can be
reduced to levels near to ~pH 5.5. Consequently, acidosis might become an important
stress factor, forcing the selection and the evolution of cancer cells [73]. A property of
metformin and other biguanide-type drugs resides in their capability to decrease the cel-
lular ATP amount by blocking the activity of mitochondrial complex I (MCI). This event
is usually paralleled by a compensatory increase in glycolysis [74] and the imbalance be-
tween the leakage of H+ from the extracellular acidified microenvironment to intracellular
compartments, thereby determining an alteration of proton pumps function and the fall of
intracellular pH. Melnik and coworkers [75] have recently shown that intracellular acidi-
fication caused by metformin inhibits Wnt signaling induced by Wnt3a, preferentially in
cancer cells. In particular, the rise of intracellular acidification in association with the drop
of ATP levels would cause Endoplasmic Reticulum (ER) stress, followed by the activation
of the Unfolded Protein Response (UPR), a homeostatic cellular response that involves a
transcriptional reprogramming of stressed cells [76,77]. DDIT3 (DNA damage-inducible
transcript 3, CHOP, GADD153), one of the genes more strongly induced by the UPR, is a
transcriptional repressor whose expression has been shown to be driven by metformin [78]
and which is also capable of inhibiting Wnt signaling through the binding to LEF/TCF [79].
Melnik and coworkers confirmed, indeed, this evidence, also showing that upregulation of
DDIT3 determines the direct inhibition of SOX4, a gene that favors metastasis in different
tumors [80], by disrupting the TCF4/β-catenin activation complex and, thus, impairing the
binding of TCF4 and CBP/p300 to SOX4 promoter. These events limited Wnt signaling,
reducing both cancer cells’ growth and invasion. A link between ER stress, the UPR and
the Wnt pathway has been also recently reported by our group [16]. Metformin was able,
indeed, to inhibit β-catenin expression and transcriptional activity in endometrial cancer
cells. This was associated with the upregulation of DDIT3, as described by Melnik et al. [75],
but also to the downregulation of HSPA5, a key player of the UPR that also exerts antiapop-
totic functions [81–83]. We observed, indeed, a reduction in both growth and survival of
endometrial cancer cells following metformin treatment. Furthermore, metformin effects on
both β-catenin and UPR protein levels/activity were not influenced by a specific inhibitor
of AMPK activation, supporting the importance of molecular mechanisms independent
from AMPK.

3.6. PPARGC1A

Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PPARGC1A) is
a transcriptional coactivator that, interacting with PPAR gamma, is able to regulate the ex-
pression of genes related to energy metabolism. PPARGC1A is involved in the progression
and prognosis of different types of cancer, such as clear cell renal cell carcinoma [84], pancre-
atic cancer [85], breast cancer [86] and, lately, also in hepatocellular carcinoma (HCC). It has
been shown, indeed, that PPARGC1A l expression is significantly reduced in HCC samples
and that this represents a risk factor for overall survival of patients [87], suggesting that
PPARGC1A might play an important role in HCC. Zuo et al. [88] reported that PPARGC1A
acted as a tumor suppressor, inhibiting metastasis by suppressing glycolysis and suggested
the involvement of the WNT/β-catenin/PDK1 axis. Zhang and coworkers [89] further
investigated these aspects and found, via RNA-seq analysis, that the expression of BAMBI
(bone morphogenetic protein and activin membrane-bound inhibitor), a survival-related
gene target of the Wnt/β-catenin signaling pathway, was significantly upregulated in HCC
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cells when PPARGC1A was knocked down. Furthermore, in most of the HCC cohorts
analyzed, they discovered a negative correlation between PPARGC1A and BAMBI ex-
pression. The downregulation of PPARGC1A in HCC and also resistance of HCC cells to
lenvatininb were due to N6-Methyladenosine (m6A) modification of PPARGC1A mRNA
by methyltransferase 3 (METTL3), a key m6A writer that they found highly expressed
in HCC. Low PPARGC1A levels fail to repress BAMBI and, thus, the WNT/β-catenin
pathway. Metformin was, instead, able to restore PPARGC1A expression by inhibiting
METTL3 and, thus, reducing m6A modification of the protein, therefore inhibiting the
WNT/β-catenin pathway.

3.7. Klotho

Klotho is mainly known as an antiaging gene, due to its ability to suppress senescence,
oxidative stress, and inflammation. Thus, Klotho insufficiency seems to be involved in
human aging and, specifically, in several aging-related diseases, including cancer [90].
There are two different forms of Klotho: a membrane-bound coreceptor form for fibroblast
growth factor 23 (FGF23) [91] or a soluble form, exerting the functions of an endocrine
mediator [92]. Klotho acts as an antitumor protein, blocking cancer cell proliferation
and migration by modulating different signaling pathways usually involved in cancer,
such as the Wnt/β-catenin and phosphoinositide 3-kinase (PI3K)/Akt pathways [93].
Klotho expression is reduced or silenced in several cancers, due mostly to epigenetic
changes such as histone modifications, DNA hypermethylation at promoter sites and
miRNAs activity, as already observed for other tumor suppressor genes [94]. Wang et al.
showed, indeed, that the use of a demethylating agent, such as 5-azacytidine, led to
increased expression of Klotho [95]. Klotho, in its soluble form, can prevent Wnt activation
by sponging different Wnt ligands, such as Wnt3, Wnt1, Wnt5a, and Wnt4 [96,97]. In
preclinical studies, metformin, besides other antidiabetic drugs (PPAR-γ agonists, GLP-1-
based, GABA) has been reported to enhance Klotho expression [90]. Thus, metformin would
be able to antagonize aberrant Wnt signaling due to deregulated production of Wnt ligands.

3.8. miRNAs

Metformin has been recognized to be effective in the prevention and treatment of can-
cer through multiple mechanisms, including micro-RNA (miRNA) regulation. Metformin
is able, indeed, to modify miRNAs expression, thereby affecting specific downstream path-
ways. In particular, metformin can exert its anticancer effects by inhibiting the expression
of oncogenic miRNAs and/or by upregulating miRNAs that display tumor suppressor
activity, as extensively reviewed by Alimoradi et al. [98]. Oncogenic miR-21 has been
shown to be upregulated in different types of cancer, such as breast, colorectal, renal,
and skin cancer [98]. It has been described that metformin can inhibit the expression of
miR-21, thereby negatively affecting several oncogenic pathways such as the TGF-β and the
PTEN/Akt pathways [98]. However, only the study of Nangia-Makker et al. [99] evidenced
a link between miR-21 downregulation by metformin and the Wnt pathway. They show
the effects of metformin on survival of chemo-resistant colon cancer cells that are highly
enriched in CSCs/CSLCs (Cancer Stem-Like Cells). In particular, they report that met-
formin can act synergistically with FuOx, a combination of 5-fluoruracil and oxaliplatin, to
promote apoptosis in chemo-resistant colon cancer cells HT-29 and HCT-116. Furthermore,
they observed that this drug combination was also able to inhibit colonospheres formation
and to enhance their destruction. Moreover, the combinatorial treatment was able to inhibit
migration of CR colon cancer cells. This in vitro evidence was confirmed in vivo, since the
combination of metformin and FuOX for 5 weeks was capable of inhibiting the growth
of tumor xenografts obtained by implanting chemo-resistant HCT-116 and HT-29 cells in
SCID mice by almost 50%, when compared with the vehicle-treated controls. These effects
were associated with the variation of specific microRNAs (miRNAs). They showed, indeed,
that tumor suppressor miR-145 levels were increased while oncomiR miR-21 levels were
reduced following metformin treatment, alone or in combination with FuOX. miR21, in
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particular, was previously shown to be upregulated in colorectal cancer, where it induces
stemness in chemo-resistant colon cancer cells [100]. Furthermore, over-expression of
miR-21 in HCT-116 cells resulted in increased β-catenin activity [33] and c-myc levels. Thus,
the capability of metformin to downregulate miR-21 and the Wnt/β-catenin signaling
pathway suggests a possible role of miR-21 in targeting not yet identified key regulators of
this pathway.

4. Conclusions and Future Perspectives

Metformin is still the most prescribed antidiabetic agent worldwide. However, a
number of different pathologic states, including cancer, have been described to benefit
from metformin administration. The more extensively investigated molecular pathway is
the AMPK-dependent pathway. However, in recent years, a number of other pathways
have been reported to contribute to the anticancer potential of metformin. One of the more
interesting and promising, from a therapeutic point of view, is the Wnt pathway. It is,
indeed, often deregulated in cancer cells, where it drives important processes, such as EMT,
invasion, stemness and chemoresistance. As described in this “Perspective”, metformin
appears to affect the Wnt pathway at various levels (Wnt signaling complex formation,
β-catenin accumulation, β-catenin transcriptional complex formation) and, often, in a
cancer-specific manner (Table 1 and Figure 1). Of particular interest is the therapeutic
strategy that might arise from the entrapment of cancer cells in a sort of a “Warburg
Trap”, a vicious cycle determined by MC1 inhibitors such as metformin and ionophores
combination, able to cause both an increase in intracellular acidification and a drop in ATP
concentration, ultimately leading to apoptosis of cancer cells. Thus, a better understanding
of the different molecular players that can be modulated by metformin in the Wnt pathway
might be relevant in the therapy of different types of cancer.

Table 1. The molecular mediators of the inhibitory activity of metformin on the Wnt pathway are
shown, along with the cancer type, the molecular mechanism, and the citing references.

Mediator Cancer Type Mechanism Reference

Dv13 Cervical, breast Increased Dv13 proteasomal degradation [53,54]
MMP26 Chondrosarcoma Increased β-catenin phosphorylation [57]
HNF4α Gastric Wnt5 downregulation [65]
Wnt3a Colorectal Wnt3a and β-catenin downregulation [70]

DDIT3
Lung, breast, colon,
prostate, melanoma,

glioblastoma
Inhibitory binding to LEF/TCF complex [76,79,80]

PPARGC1A Hepatocellular BAMBI repression [89,90]
Klotho Gastric Competitive binding to Wnt ligands [97,98]
miR-21 Colon Reduced β-catenin activity [33,92]
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Figure 1. Metformin inhibits the Wnt pathway through multiple mechanisms. Wnt/β-catenin sig-
naling can be initiated either by Wnt ligands, or by inactivating mutations of APC, or by stabilizing
mutations of β-catenin, all resulting in β-catenin accumulation. β-catenin binds LEF/TCF transcrip-
tion factors and induces target genes, regulating EMT, migration, stemness and chemoresistance
of cancer cells. In the right section of the picture, metformin impairs ATP production and, thus,
the activity of the ATP-dependent H+ pumps, leading to low intracellular pH, ER stress with UPR
induction, an increase in DDIT3 and inhibition of the β-catenin/LEF/TCF complex formation. In
the left section of the picture, metformin can upregulate Klotho, preventing Wnt ligand binding;
inhibit directly Wnt3a; activate AMPK that can inhibit AKT, interfering with β-catenin accumula-
tion; activate the LKB1/AMPK axis causing proteasomal destruction of Dvl3; inhibit, via AMPK,
the HNF4α-dependent transcription of Wnt5; inhibit the METTL3 dependent m6A modification
of PPARGC1A, causing BAMBI and β-catenin inhibition; increase tumor suppressor miR-145 and
inhibit oncomiR miR-121, having inhibitory or stimulatory effects, respectively, on β-catenin activity,
through still unidentified mediators.
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