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Abstract: There is an increasing interest in biomarkers of nitric oxide dysregulation and oxidative
stress to guide management and identify new therapeutic targets in patients with chronic obstructive
pulmonary disease (COPD). We conducted a systematic review and meta-analysis of the association
between circulating metabolites within the arginine (arginine, citrulline, ornithine, asymmetric,
ADMA, and symmetric, SDMA dimethylarginine), transsulfuration (methionine, homocysteine, and
cysteine) and folic acid (folic acid, vitamin B¢, and vitamin Bj,) metabolic pathways and COPD.
We searched electronic databases from inception to 30 June 2023 and assessed the risk of bias and
the certainty of evidence. In 21 eligible studies, compared to healthy controls, patients with stable
COPD had significantly lower methionine (standardized mean difference, SMD = —0.50, 95% CI
—0.95 to —0.05, p = 0.029) and folic acid (SMD = —0.37, 95% CI —0.65 to —0.09, p = 0.009), and higher
homocysteine (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001) and cysteine concentrations (SMD = 0.34,
95% CI0.02 to 0.66, p = 0.038). Additionally, COPD was associated with significantly higher ADMA
(SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037), SDMA (SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014),
and ornithine concentrations (SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015). In subgroup analysis, the
SMD of homocysteine was significantly associated with the biological matrix assessed and the forced
expiratory volume in the first second to forced vital capacity ratio, but not with age, study location, or
analytical method used. Our study suggests that the presence of significant alterations in metabolites
within the arginine, transsulfuration, and folic acid pathways can be useful for assessing nitric oxide
dysregulation and oxidative stress and identifying novel treatment targets in COPD. (PROSPERO
registration number: CRD42023448036.)

Keywords: folic acid; transsulfuration; oxidative stress; nitric oxide; biomarkers; chronic obstructive
pulmonary disease; homocysteine; asymmetric dimethylarginine; symmetric dimethylarginine;
ornithine

1. Introduction

The global public health and financial burden of chronic obstructive pulmonary disease
(COPD) remains unacceptably high despite the availability of different pharmacological

Copyright: © 2023 by the authors.

and non-pharmacological treatments in this ever-increasing patient group [1-7]. Such
Licensee MDPI, Basel, Switzerland.

challenges have stimulated a significant body of research to better understand the molecular,
biochemical, and cellular mechanisms underpinning the pathophysiology of COPD and
identify novel druggable targets and therapies [8-11]. Whilst the role of local (airway) and
Attribution (CC BY) license (https:// systemic inflammation in COPD is well established, using conventional biomarkers (e.g.,
creativecommons.org/licenses,/by/ C-reactive protein) and specific blood cell types [12-15], studies have also focused on the
40). dysregulation of the endogenous messenger nitric oxide (NO) and the redox state [16-24].
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The investigation of possible alterations in the NO pathway and redox balance are also
important in this context given their involvement in other disease states, some of them,
e.g., atherosclerosis and cardiovascular disease, frequently associated with COPD [25-31].
For example, in epidemiological studies, the prevalence of atherosclerotic cardiovascular
disease in patients with COPD has been shown to range between 20% and 60% [32-34].
Furthermore, the coexistence of COPD and cardiovascular disease is associated with
poorer quality of life and functional capacity and a higher risk of COPD exacerbations,
hospitalizations, and mortality [35-38].

A significant limitation in the development of analytical platforms for the assessment
of NO and biomarkers of oxidative stress in biological samples is represented by the highly
reactive nature of these compounds, the relatively short half-life of NO, and the influ-
ence of other factors in the assessment of circulating NO metabolites such as nitrite and
nitrate [39-45]. Therefore, an alternative approach consists of measuring stable metabolites
within metabolic pathways that are closely associated with NO synthesis and oxidative
stress. In this context, several metabolites within the arginine, transsulfuration, and folic
acid metabolic pathways have been shown to reflect alterations in NO synthesis and/or
redox state. Furthermore, these metabolites can be measured in serum or plasma using a
wide range of analytical methods for targeted metabolomic analysis, involving the assess-
ment of pre-defined metabolites within specific biochemical pathways (Figure 1) [46-54].
The arginine pathway includes (a) arginine, a critical amino acid and substrate for several
enzymes, e.g., protein arginine methyltransferases (PRMTs), arginase 1 and 2, and NO
synthases (NOS) [46,55]; (b) citrulline, the end product of enzymatic reactions catalyzed by
NOS and isoform 1 of dimethylarginine dimethylaminohydrolase (DDAH1) [46,56]; (c) the
methylated arginine analogues, asymmetric (ADMA) and symmetric (SDMA) methylargi-
nine, which directly (ADMA) or indirectly (SDMA) downregulate NO synthesis [55-59];
and (d) ornithine, the end product of arginase 1 and 2 (Figure 1) [46,60]. The transsulfura-
tion pathway regulates sulfur metabolism and redox balance and primarily involves the
transfer of sulfur from homocysteine, a highly reactive amino acid derived from the dietary
compound, methionine, to cysteine through the intermediate cystathionine, in enzymatic
reactions that require vitamin B¢ (Figure 1) [48,61]. Finally, the folic acid pathway plays a
critical role in regulating several intracellular homeostatic mechanisms that also include
the lowering of homocysteine concentrations through the regeneration of methionine in
enzymatic reactions that involve vitamin By, (Figure 1) [62,63].
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Figure 1. Schematic representation of the arginine, transsulfuration, and folic acid metabolic path-
ways. 5,10-MeTHF, 5,10-methylenetetrahydrofolate; CBS, cystathionine 3-synthase; CGL, cystath-
ionine y-lyase; ADMA, asymmetric dimethylarginine; SDMA, symmetric dimethylarginine; DDAHI,
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dimethylarginine dimethylaminohydrolase 1; MAT, methionine adenosyltransferase; MHTFR, 5,10-
methylenetetrahydrofolate reductase; MS, methionine synthase; NOS, nitric oxide synthase; PRMTs,
protein arginine methyltransferases; SAH, S-adenosyl-homocysteine; SAM, S-adenosyl-methionine;
SAHH, S-Adenosylhomocysteine hydrolase; SHMT, serine hydroxymethyltransferase. CBS and CGL
are vitamin By dependent; methionine synthase is vitamin B, dependent.

Importantly, the known associations between the arginine, transsulfuration, and folic
acid pathways, vascular homeostasis, and cardiovascular outcomes might also allow inves-
tigating the complex interplay between COPD, NO, oxidative stress, and atherosclerotic
cardiovascular disease [55,56,58,64—74]. This knowledge would be potentially useful for
identifying new therapeutic targets and management approaches in patients with COPD.

We investigated this issue by (a) appraising the available evidence, through a system-
atic review and meta-analysis, of the association between the circulating concentrations of
key metabolites within the arginine, transsulfuration, and folic acid metabolic pathways
and COPD, and (b) assessing, where possible, the relationship between the effect size of
the observed differences vs. healthy controls and clinical and demographic characteristics.

2. Materials and Methods
2.1. Study Selection

A systematic search of publications was conducted in the electronic databases PubMed,
Web of Science, and Scopus from inception to 30 June 2023. The search utilized the fol-
lowing terms and their combinations: “COPD” OR “chronic obstructive pulmonary dis-
ease” AND “methionine” OR “homocysteine” OR “cysteine” OR “cystathionine” OR
“S-adenosylmethyonine” OR “S-adenosylhomocysteine” OR “S-adenosyl-methyonine” OR
“S-adenosyl-homocysteine” OR “betaine” OR “dimethylglycine” OR “folates” OR “folic
acid” OR “Bj2” OR “cobalamin” OR “B¢” OR “pyridoxine” OR “arginine” OR “asymmet-
ric dimethylarginine” OR “ADMA” OR “symmetric dimethylarginine” OR “citrulline”
OR “ornithine”.

Two investigators independently screened the abstracts, full-text articles, and relevant
references according to the following inclusion criteria: (a) the assessment of homocysteine,
cysteine, methionine, vitamin Bg, vitamin By, folic acid, arginine, ADMA, SDMA, citrulline,
or ornithine in plasma or serum, (b) the study of patients with stable COPD and healthy
controls using a case—control design, (c) the inclusion of participants >18 years, and (d) the
availability of full text in English language. The main exclusion criterion was the assess-
ment of patients with acute exacerbations of COPD. The two investigators independently
extracted the following variables into an electronic spreadsheet for further analysis: year
of publication, first author, study country, participant number, age, male to female ratio,
forced expiratory volume in the first second (FEV1), FEV;/forced vital capacity (FVC),
biological matrix (plasma or serum), and analytical method used. A third investigator was
involved in case of disagreement.

The Joanna Briggs Institute Critical Appraisal Checklist was used to assess the risk of
bias [75], whereas the Grades of Recommendation, Assessment, Development, and Evalu-
ation (GRADE) Working Group system was used to assess the certainty of evidence [76].
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 statement
was followed to present the results [77], and the International Prospective Register of
Systematic Reviews was used to register our review (PROSPERO registration number:
CRD42023448036).

2.2. Statistical Analysis

We created forest plots of standardized mean differences (SMDs) and 95% confidence
intervals (CIs) (p-value < 0.05 for statistical significance), and estimated means and standard
deviations from medians and interquartile ranges or ranges [78,79], or using the Graph
Data Extractor software beta version (San Diego, CA, USA). The heterogeneity of SMD
was evaluated using the Q statistic (significance level set at p < 0.10) [80,81]. Sensitivity
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analysis was used to assess the stability of the results [82]. The Egger’s and Begg’s tests
and the “trim-and-fill” method were used to assess publication bias [83-85]. Univariate
meta-regression and subgroup analyses investigated associations between the effect size
and the following parameters: year of publication, study continent, sample size, age, male
to female ratio, FEV;, FEV; /FVC, biological matrix, and analytical method used. Statistical
analyses were performed using Stata 14 (Stata Corp., College Station, TX, USA).

3. Results
3.1. Literature Search

From a total of 1788 articles, we excluded 1759, as they were either duplicates or
irrelevant. A full-text revision of the remaining 29 articles led to the exclusion of further
eight because they had missing data (n = 2), unsuitable (not case—control) design (n = 4), or
included patients with acute exacerbation of COPD (n = 2). The 21 studies included in the
final analysis were published between 1998 and 2020 (Figure 2 and Table 1) [86-106]. There
was no disagreement between the two independent investigators; therefore, input from a
third investigator was not required. The cross-sectional design of all studies was primarily
responsible for the initial low level of certainty given (rating 2, ®®66). The risk of bias
was low in all studies (Supplementary Table S3) [86-106].
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Figure 2. PRISMA 2020 flow diagram.
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Table 1. Study characteristics.
Healthy Controls Patients with COPD
Horcn;)sctzisrtleeine Arginine HOCI:I;, (;:zfisrtlgine Arginine
Age Methionine 2811&2 Age Methionine 2811&2
Study n 8 M/F Vitamin Bg M n 8 M/F Vitamin Bg e
(Years) Vitamin B Ornithine (Years) Vitamin B Ornithine
Folic A. ciéz Citrulline Folic aci du Citrulline
(Mean + sp) ~ (Mean & SD) (Mean + sp)  (Mean + SD)
N 90 + 14 N 90 + 14
Pow EM et al., 28+ 3 NR 26 -+ 3.5 NR
1998, The 8 64 NR NR NR 12 66 NR NR : NR
Netherlands [86] NR 61 +6 NR 74 £ 21
NR 54+7 NR 48+ 6
14.1+49 179 £ 6.7
NR NR
Andersson A 3211\%{ 50 NR 34?\1 TQ 52 NR
et al., 2001, 29 64 14/15 NR NR 19 68 8/11 NR NR
Sweden [87] NR NR NR NR
NR NR NR NR
NR 97.7 + 228 NR 103 £+ 21.6
Yoneda T et al NR NR NR NR
2001, Japan [88,] 30 NR NR 304+73 NR 30 64 NR 274 +54 NR
+Jap NR 839 +19.7 NR 1124 + 32.1
NR NR NR NR
9.8NiR3D %E 1246N§ 2.9 ﬁg
Kai S et al., 2006, NR NR
Japan [89] 23 63 23/0 NR Iﬁ%{{ 24 71 24/0 NR NE
NR NR
NR NR NR NR
8.1NiR2.2 NR 10.?\%{4.5 NR
Seemungal TAR NR NR NR NR
et al., 2007, 25 65 16/9 NR NR 29 69 23/6 NR NR
England [90] NR NR NR NR
NR NR NR NR
7.61\:TER1.3 NR 9.41\:I|:R1.3 NR
Abdallah GM NR NR NR NR
et al., 2009, 20 NR 12/8 NR NR 24 NR 18/6 NR NR
Egypt [91] 335 + 58 N 299 + 44 N
6.2+3.0 48 +29
11‘9N:It{2.9 NR 14.?\&%4.7 NR
Fimognari FL NR NR NR NR
et al., 2009, 29 71 21/8 91+ 64 NR 42 71 36/6 56+ 5.1 NR
ltaly [92] 369 + 211 N 324 + 144 N
3.0+14 23+1.6
15.2NiR15.7 NR 27.4§R27.9 NR
NR NR
Kahn NA et al., NR NR
2016, India [93] 30 52 13/17 NR II}IE 50 58 43/7 NR Iltllg
NR NR
NR NR NR NR
NR 80+35 N 106 + 3.5
Ruzsics I et al., NR 0.35 + 0.02 NR 0.50 + 0.03
2016, 30 51 15/15 NR 0.42 +0.02 32 59 14/18 NR 0.65 + 0.02
Hungary [94] NR NR NR NR
NR NR NR NR
N 80 + 16 NR 64413
Zinellu A etal, 3 73 34/9 NR a8 1018 43 75 34/9 NR 031% 00
2016, Italy [95] NR R NR R
N NR N NR
. 479 + 6.5 70.7 £9.1
Aydin M et al., NR NR
2017, Turkey [96] 0 64 21/9 NR R 58 62 48/10 NR NR
NR NR
NR NR NR NR
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Table 1. Cont.

Healthy Controls Patients with COPD
Horcn;)sctzisrtleeine Arginine HOCI:I;, (;:zfisrtlgine Arginine
Age Methionine 2811&2 Age Methionine 2811&2
Study n 8 M/F Vitamin Bg M n 8 M/F Vitamin Bg e
(Years) Vitamin B Ornithine (Years) Vitamin B Ornithine
Folic A. ciéz Citrulline Folic aci du Citrulline
(Mean + SD) (Mean + SD) (Mean -+ SD) (Mean + SD)
CostanzoLetal, g5 74 16/9 NR BRY a 74 23/18 NR SR
2017, Ttaly [97] NR NR NR NR
NR NR
NR NR NR NR
Urban M etal, 4, 62 14/26 NR RGN 64 32/28 NR MR
2017, Austria [98] NR NR NR NR
NR NR
NR NR NR NR
14.?\%{4.4 NR 16.1§R18.4 NR
Lin CH et al, 36 71 36/0 NR R 59 71 59/0 NR R
2018, Taiwan [99] NR NR NR NR
628 + 323 NR 653 + 327 NR
129+ 6.3 11.0+ 6.5
. 18.21\%{9.5 NR 19.5N§9.5 NR
Moayyedkazemi NR NR NR NR
Aetal., 2018, 51 66 29/22 NR NR 40 67 22/18 NR NR
Iran [100] NR NR NR NR
NR NR NR NR
§§ 0 42NiRO 04 ﬁg 0 431\:IER0 05
Telo S et al., 2018, NR : ' NR : )
Turkey [101] 40 69 31/9 NR ﬁﬁ 80 69 65/15 NR ﬁg
NR NR
NR NR NR NR
Csoma B et al., NR NR NR NR
2019, 15 51 6/9 NR 0.45 + 0.14 29 63 13/16 NR 0.53 +0.14
Hungary [102] NR NR NR NR
NR NR NR NR
Kuo WK et al., NR NR NR NR
2018, 44 53 36/8 NR NR 75 72 67/8 NR NR
Taiwan [103] NR 90.6 + 18.3 NR 99.1 +32.3
NR NR NR NR
7.5NiR2.7 NR 11.Z\IiR 2.7 NR
. NR NR
Wei B et al., 2020, NR NR
China [104] 50 58 28/22 NR ﬁg 150 62 90/60 NR ﬁﬁ
NR NR
NR NR NR NR
8,31\:TN:R4.4 NR 14.515\1:}:{ 6.9 NR
NR NR
Yu T et al., 2020, NR NR
China [105] 121 59 77/44 NR %E 119 59 86/33 NR ﬁg
NR NR
NR NR NR NR
13.0 £ 3.7 15.5 + 3.8
317 + 74 R 340 + 52 R
Zinellu A etal., 54 73 40/14 NR NR 54 73 40/14 NR NR
2020, Italy [106] NR R NR R
NR NR
NR NR NR NR

Legend: NR, not reported; M, male; F, female; COPD, chronic obstructive pulmonary disease; ADMA, asymmetric
dimethylarginine; SDMA, symmetric dimethylarginine. The concentration of homocysteine, cysteine, methionine,
arginine, citrulline, SDMA, and ornithine is expressed in umol/L. The concentration of ADMA is expressed in
umol/L or ng/mL. The concentration of vitamin B and folic acid is expressed in ng/mL. The concentration of
vitamin B, is expressed in pg/mL.



Cells 2023, 12, 2180

7 of 25

3.2. Homocysteine

Homocysteine was measured in 11 studies investigating a total of 610 COPD pa-
tients (mean age: 57 years, 72% males) and 468 healthy controls (mean age: 44 years,
66% males) [87,89-93,99,100,104-106], six conducted in Asia [89,93,99,100,104,105], four in
Europe [87,90,92,106], and one in Africa [91]. Liquid chromatography was used in four
studies [87,89,91,92], an enzyme-linked immunosorbent assay in two [93,104], capillary
electrophoresis laser induced with fluorescence detection in one [106], and a fluorescence
polarization immunoassay in the remaining one [90]. No information regarding the analyti-
cal method was reported in three studies [99,100,105]. In liquid chromatography studies,
two used a fluorimetric detector [89,92], and the remaining two used an ultraviolet detec-
tor [87,91]. Homocysteine was measured in plasma in eight studies [87,89,90,92,93,104-106],
and in serum in the remaining three [91,99,100]. The FEV; was reported in eight studies
(range between 39% and 70%) [89,90,92,99,100,104-106], and the FEV; /FVC in five (range
between 53% and 68%) [90,92,99,105,106].

Homocysteine concentrations were significantly higher in COPD patients compared
to controls (SMD = 0.78, 95% CI 0.48 to 1.07, p < 0.001; 2 = 79.4%, p <0.001; Figure 3). The
results were stable in sensitivity analysis (SMD range between 0.69 and 0.85; Figure 4).
There was no publication bias (Begg’s test, p = 0.64); Egger’s test, p = 0.51). No additional
study was identified using the “trim-and-fill” method (Figure 5).

Study COPD CTRL %
Name Year SMD (95% Cl) N, mean (SD) N, mean (SD)  Weight
Andersson A et al. 2001 —*%— 0.67 (0.08, 1.26) 19,17.9(6.7) 29,14.1 (4.9) 8.02
Kai S et al. 2006 _ . 0.95(0.34,1.55) 24,12.6(2.9) 23,9.8(3) 7.93
Seemungal TAR etal. 2007 —n— 0.72(0.16,1.27) 29,107 (4.5)  25,8.1(22) 840
Abdallah GM et al. 2009 E—O— 1.44 (0.77,2.11) 24,9.44 (1.3) 20, 7.57 (1.3) 7.39
Fimognari FL et al. 2009 _._ 0.71(0.23,1.20) 42,148 (4.7)  29,11.9(2.9) 897
Kahn NA et al. 2016 _— 0.57(0.11,1.04) 50,27.4(23.9) 30,152(15.7) 9.21
LinCHetal. 2018 JR 0.10 (-0.31,0.52) 59, 16.1 (18.4) 36, 14.6 (4.4)  9.63
Moayyedkazemi A etal. 2018 —_— 0.14 (-0.28,0.55) 40,19.5(9.5)  51,182(9.5) 9.63
Wei B etal. 2020 ————  155(1.19,1.90) 150,11.7 (2.7) 50,7.52(27) 10.15
TuTetal 2020 —_— 1.12(0.85,1.39) 119, 14.8 (6.88) 121,8.32 (4.39) 10.80
Zinellu A et al. 2020 —_— 0.67 (0.28,1.05) 54,155(3.8) 54,13 (3.7) 9.87
Overall (I-squared = 79.4%, p = 0.000) <> 0.78 (0.48,1.07) 610 468 100.00
NOTE: Weights are from random effects analysis

0

Figure 3. Forest plot of homocysteine concentrations in COPD patients and controls [87,89-93,99,100,104-106].

Meta-analysis estimates, given named study is omitted
| Lower Cl Limit ~ OEstimate | Upper CI Limit

Andersson A et al. (2001) O |
Kai S et al. (2006) | |
Seemungal TAR et al. (2007) | O

Abdallah GM et al. (2009)

0]

Fimognari FL et al. (2009) | e} |
Kahn NA et al. (2016) | o |
Lin CH et al. (2018) o
Moayyedkazemi A et al. (2018) | o

Wei B et al. (2020)

6]

Tu T et al. (2020) o
Zinellu A et al. (2020) | [e} |
1
0.41 048 0.78 1.07 1.14

Figure 4. Sensitivity analysis of the association between homocysteine and COPD [87,89-93,99,100,104-106].
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Filled funnel plot with pseudo 95% confidence limits

theta, filled

0.5

T T T
0 0.2 0.4
s.e. of: theta, filled

Figure 5. Funnel plot of studies investigating homocysteine in COPD after “trimming-and-filling”.

There were no significant associations in meta-regression between the effect size and
male to female ratio (t = —0.36, p = 0.73), number of participants (t = 1.39, p = 0.20), or
publication year (t = 0.10, p = 0.92). In subgroup analysis, no significant differences (p = 0.47)
in the pooled SMD were observed between studies in patients <70 years (SMD = 0.81, 95%
CI0.39 to 1.24, p < 0.001; I = 84.0%, p < 0.001), or >70 years (SMD = 0.58, 95% CI 0.22 to
0.93, p = 0.001; I? = 56.8%, p = 0.074; Figure 6), with a lower between-study variance in
the >70 years subgroup. Similarly, no significant differences (p = 0.86) in effect size were
observed between studies conducted in Europe (SMD = 0.69, 95% CI 0. 45 to 0.93, p < 0.001;
12 = 0.0%, p = 0.998) and Asia (SMD = 0.74, 95% CI 0.26 to 1.23, p = 0.003; I? = 88.6%, p < 0.001;
Figure 7), with a virtually absent heterogeneity in the European subgroup. Additionally,
no significant differences (p = 0.95) in the pooled SMD were observed between studies
using high performance liquid chromatography (SMD = 0.90, 95% CI 0.58 to 1.22, p < 0.001;
2 = 17.9%, p = 0.30) and other methods (SMD = 0.89, 95% CI 0.39 to 1.39, p < 0.001;
I? = 81.5%, p = 0.001; Figure 8), with a lower between-study variance in the liquid chro-
matography subgroup. Among the liquid chromatography studies, no significant dif-
ferences (p = 0.64) in the pooled SMD were observed between studies using ultraviolet
detection (SMD = 1.04, 95% CI 0.29 to 1.79, p = 0.007; I? = 64.7%, p = 0.092), and fluorimetric
detection (SMD = 0.81 95% CI 0.43 to 1.19, p = 0.001; 12 = 0.0%, p = 0.55; Figure 9), with a
virtually absent heterogeneity in the fluorimetric detection subgroup. The pooled SMD was
statistically significant in studies assessing plasma (SMD = 0.90, 95% CI 0.64 to 1.16, p < 0.001;
12 = 63.9%, p = 0.007), but not serum (SMD = 0.51, 95% CI —0.19 to 1.21, p = 0.16; I? = 84.1%,
p = 0.002; Figure 10). Furthermore, the pooled SMD was statistically significant in studies of
patients with FEV; <55% (SMD = 0.72, 95% CI 0.32 to 1.13, p < 0.001; I? = 75.9%, p = 0.002),
but not FEV; >55% (SMD = 0.79, 95% CI —0.03 to 1.61, p = 0.06; 1> = 92.6%, p < 0.001;
Figure 11). Finally, the pooled SMD was statistically significantly in studies of patients
with FEV; /FVC <60% (SMD = 0.92, 95% CI 0.63 to 1.22, p < 0.001; I = 33.9%, p = 0.22),
but not FEV1/FVC >60% (SMD = 0.39, 95% CI —0.16 to 0.94, p = 0.17; 1? = 73.7%, p = 0.051;
Figure 12), with a lower heterogeneity in the FEV; /FVC <60% subgroup.
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Study COPD CTRL %
Name Year SMD (95% Cl) N, mean (SD) N, mean (SD) Weight
Patients age < 70 years :
Andersson A et al. 2001 —_— 0.67 (0.08,1.26) 19,17.9(6.7) 29,14.1 (4.9) 8.65
Seemungal TAR etal. 2007 _ 0.72(0.16,1.27) 29, 10.7 (4.5) 25,8.1(2.2) 9.05
Kahn NA et al. 2016 —_— 0.57 (0.11,1.04) 50, 27.4 (23.9) 30,15.2(15.7) 9.95
Moayyedkazemi A etal. 2018 —f— 0.14 (-0.28,0.55) 40, 19.5 (9.5) 51,182(9.5)  10.40
Wei B etal. 2020 1.55(1.19,1.90) 150,11.7 (2.7)  50,7.52(2.7)  10.97
TuTetal. 2020 H 1.12(0.85,1.39) 119,14.8(6.88) 121,8.32(4.39) 11.68
Subtotal (I-squared = 84.0%, p = 0.000) T 0.81(0.39,1.24) 407 306 60.70
Patients age > 70 years :
Kai S etal. 2006 —_— 0.95(0.34, 1.55) 24, 12.6 (2.9) 23,9.8(3) 8.55
Fimognari FL et al. 2009 —_— 0.71(0.23,1.20) 42, 14.8 (4.7) 29,11.9(2.9)  9.69
Lin CHetal. 2018 R 0.10(-0.31,0.52) 59, 16.1(18.4) 36, 14.6 (4.4) 10.40
Zinellu A et al. 2020 e a— 0.67 (0.28,1.05) 54, 15.5 (3.8) 54,13 (3.7) 10.66
Subtotal (l-squared = 56.8%, p = 0.074) C> 0.58(0.22,093) 179 142 39.30
I
Overall (I-squared = 80.1%, p = 0.000) - 0.73(0.42,1.03) 586 448 100.00
1
NOTE: Weights are from random effects analysis E
0

Figure 6. Forest plot of studies investigating homocysteine concentrations in COPD patients and

controls according to patient age (<70 years or >70 years) [87,89,90,92,93,99,100,104-106].

Study

Name Year
Europe

Andersson A et al. 2001
Seemungal TAR et al. 2007
Fimognari FL et al. 2009
Zinellu A et al. 2020

Subtotal (l-squared =0.0%, p = 0.998)

Asia

Kai S et al. 2006
Kahn NA et al. 2016
LinCHetal. 2018
Moayyedkazemi A etal. 2018
WeiB et al. 2020
TuTetal. 2020

Subtotal (I-squared = 88.6%, p = 0.000)
Africa

Abdallah GM et al. 2009
Subtotal (I-squared =.%, p =)

Overall (I-squared = 79.4%, p = 0.000)

NOTE: Weights are from random effects analysis

3—<>
=

SMD (95% Cl)

0.67 (0.08, 1.26)
0.72(0.16,1.27)
0.71 (0.23, 1.20)
0.67 (0.28, 1.05)
0.69 (0.45, 0.93)

0.95 (0.34, 1.55)
0.57 (0.1, 1.04)
0.10 (-0.31, 0.52)
0.14 (-0.28, 0.55)
1.56 (1.19, 1.90)
1.12(0.85, 1.39)
0.74 (0.26, 1.23)

1.44 (0.77, 2.11)
1.44(0.77, 2.11)

0.78 (0.48, 1.07)

COPD
N, mean (SD)

19,17.9 (6.7)
29,10.7 (4.5)
42,14.8 (4.7)
54,15.5 (3.8)
144

24,126 (2.9)
50, 27.4 (23.9)
59, 16.1 (18.4)
40,19.5 (9.5)
150, 11.7 (2.7)
119, 14.8 (6.88)
442

24,9.44 (1.3)
24

610

CTRL
N, mean (SD)

29,14.1(4.9)
25,8.1(2.2)
29,11.9 (2.9)
54,13 (3.7)
137

23,9.8(3)

30, 15.2 (15.7)
36, 14.6 (4.4)
51,18.2(9.5)
50,7.52 (2.7)
121,8.32 (4.39)
311

20,7.57 (1.3)
20

468

%
Weight

8.02
8.40
8.97
9.87
35.26

7.93
9.21
9.63
9.63
10.15
10.80
57.35

7.39
7.39

100.00

o

Figure 7. Forest plot of studies investigating homocysteine concentrations in COPD patients and
controls according to study continent [87,89-93,99,100,104-106].

Study

Name Year
HPLC assay

Andersson A et al. 2001
Kai S et al. 2006
Abdallah GM et al. 2009
Fimognari FL et al. 2009

Subtotal (I-squared = 17.9%, p = 0.301)

Other assays
Seemungal TAR etal. 2007

Kahn NA et al. 2016
Wei B et al. 2020
Zinellu A et al. 2020

Subtotal (I-squared = 81.5%, p = 0.001)

Overall (l-squared = 65.0%, p = 0.006)

NOTE: Weights are from random effects analysis

SMD (95% ClI)

0.67 (0.08, 1.26)
0.95 (0.34, 1.55)
1.44 (0.77, 2.11)
0.71 (0.23, 1.20)
0.90 (0.58, 1.22)

0.72(0.16, 1.27)
0.57 (0.11, 1.04)
1.55(1.19, 1.90)
0.67 (0.28, 1.05)
0.89 (0.39, 1.39)

0.91(0.61,1.21)

COPD
N, mean (SD)

19,17.9 (6.7)
24,126 (2.9)
24,944 (1.3)
42,14.8 (4.7)
109

29,10.7 (4.5)
50, 27.4 (23.9)
150, 1.7 (2.7)
54,155 (3.8)
283

392

CTRL
N, mean (SD)

29,141 (4.9)
23,9.8(3)
20,7.57 (1.3)
29,11.9 (2.9)
101

25,8.1(2.2)
30,152 (15.7
50,7.52 (2.7)
54,13 (3.7)
159

260

%
Weight

11.02
10.86
9.86

12.89
44 .64

11.73
) 13.38
15.44
14.80
55.36

100.00

Figure 8. Forest plot of studies investigating homocysteine concentrations in COPD patients and
controls according to analytical method [87,89-93,104,106].
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Study

Name Year
UV detection

Andersson Aetal. 2001
Abdallah GM etal. 2009

Subtotal (I-squared = 64.7%, p = 0.092)

Fluorimetric detection
Kai S et al. 2006
Fimognari FL etal. 2009

Subtotal (I-squared = 0.0%, p = 0.551)

Overall (I-squared =17.9%, p = 0.301)

NOTE: Weights are from random effects analysis

SMD (95% Cl)

0.67 (0.08, 1.26)

—_———144(0.77,2.11)

1.04(0.29, 1.79)

0.95 (0.34, 1.55)
0.71(0.23, 1.20)
0.81(0.43, 1.19)

0.90 (0.58, 1.22)

COPD
N, mean (SD)

19,17.9(6.7)
24,944 (1.3)
43

24,126 (2.9)
42,14.8 (4.7)
66

109

CTRL
N, mean (SD)

29, 14.1 (4.9)
20,7.57 (1.3)
49

23,98 (3)
29,11.9 (2.9)
52

101

Weight

24.03
19.72
43.74

23.36
32.90
56.26

100.00

Figure 9. Forest plot of studies investigating homocysteine concentrations in COPD patients and
controls according to the detection method used with liquid chromatography [87,89,91,92].

Study

Name Year
Plasma

Andersson A et al. 2001
KaiSetal. 2006
Seemungal TAR et al. 2007
Fimognari FL et al. 2009
Kahn NA et al. 2016
WeiB etal. 2020
TuTetal. 2020
Zinellu A et al. 2020

Subtotal (I-squared = 63.9%, p = 0.007)

Serum

Abdallah GM et al. 2009
Lin CHetal. 2018
Moayyedkazemi A et al. 2018

Subtotal (I-squared = 84.1%, p = 0.002)

Overall (I-squared = 79.4%, p = 0.000)

NOTE: Weights are from random effects analysis

SMD (95% Cl)

0.67 (0.08, 1.26)
0.95 (0.34, 1.55)
0.72 (0.16, 1.27)
0.71(0.23, 1.20)
0.57 (0.11, 1.04)
1.55 (1.19, 1.90)
1.12(0.85, 1.39)
0.67 (0.28, 1.05)
0.90 (0.64, 1.16)

————————— 1.44(0.77,2.11)

0.10 (-0.31,0.52)
0.14 (-0.28, 0.55)
0.51(-0.19, 1.21)

0.78(0.48, 1.07)

COPD
N, mean (SD)

19,17.9(6.7)
24,126 (2.9)
29,10.7 (4.5)
42,14.8 (4.7)
50, 27.4 (23.9)
150, 11.7 (2.7)
119, 14.8 (6.88)
54,15.5 (3.8)
487

24,9.44 (1.3)
59, 16.1 (18.4)
40,19.5 (9.5)
123

610

CTRL
N, mean (SD)

29, 14.1 (4.9)
23,9.8(3)
25,81 (2.2)
29,11.9 (2.9)
30, 15.2 (15.7)
50,7.52 (2.7)
121, 8.32 (4.39)
54,13 (3.7)

361

20,7.57 (1.3)
36, 14.6 (4.4)
51,18.2 (9.5)
107

468

%
Weight

8.02
7.93
8.40
8.97
9.21
10.15
10.80
9.87
73.35

7.39
9.63
9.63
26.65

100.00

Figure 10. Forest plot of studies investigating homocysteine concentrations in COPD patients and

controls according to measurement in serum or plasma [87,89-93,99,100,104-106].

Study

Name Year
FEV1<55%

Kai S et al. 2006
Seemungal TAR et al. 2007
Fimognari FL et al. 2009
Lin CHetal. 2018
TuTetal 2020

Subtotal (l-squared = 75.9%, p = 0.002)

FEV1 > 55%

Moayyedkazemi Aetal. 2018
WeiB et al. 2020
Zinellu A et al. 2020

Subtotal (l-squared = 92.6%, p = 0.000)

Overall (I-squared = 84.1%, p = 0.000)

NOTE: Weights are from random effects analysis

SMD (95% Cl)

0.95 (0.34, 1.55)
0.72 (0.16, 1.27)
0.71(0.23, 1.20)
0.10 (-0.31, 0.52)
1.12 (0.85, 1.39)
0.72 (0.32, 1.13)

0.14 (-0.28, 0.55)

———> 1.55(1.19, 1.90)

0.67 (0.28, 1.05)
0.79 (-0.03, 1.61)

0.75(0.38, 1.12)

COPD
N, mean (SD)

24,126 (2.9)
29,10.7 (4.5)
42,14.8 (4.7)
59,16.1 (18.4)
119, 14.8 (6.88)
278

40,19.5 (9.5)
150, 1.7 (2.7)
54,155 (3.8)
244

517

CTRL
N, mean (SD)

23,9.8 (3)
25,81 (2.2)
29,11.9 (2.9)
36, 14.6 (4.4)
121,8.32 (4.39)
234

51,18.2 (9.5)
50,7.52 (2.7)
54,13 (3.7)
155

389

%
Weight

10.77
11.32
12.00
12.75
14.06
60.89

12.75
13.34
13.02
39.11

100.00

Figure 11. Forest plot of studies investigating homocysteine concentrations in COPD patients and

controls according to FEV; (<55% or >55% years) [89,90,92,99,100,104-106].
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Study COPD CTRL %
Name Year SMD (95% CI) N, mean (SD) N, mean (SD) Weight
FEV1/FVC < 60% :
Seemungal TAR etal. 2007 —% 0.72(0.16,1.27) 29, 10.7 (4.5) 25,8.1(2.2) 16.91

i
Fimognari FL et al. 2009 —_— 0.71(0.23,1.20) 42,148 (4.7) 29,11.9 (2.9) 18.42
TuTetal 2020 i —— 1.12(0.85, 1.39) 119, 14.8 (6.88) 121,832 (4.39) 23.59
Subtotal (I-squared =33.9%, p = 0.220) O 0.92(0.63,1.22) 190 175 58.92
: i
FEV1/FVC > 60% :

1
Lin CH et al. 2018 —_— 0.10 (-0.31,0.52) 59, 16.1 (18.4) 36, 14.6 (4.4) 20.21
Zinellu A et al 2020 -—o'— 0.67 (0.28,1.05) 54,155 (3.8) 54,13 (3.7) 20.87

!
Subtotal (l-squared = 73.7%, p = 0.051) <C>- 0.39 (-0.16,0.94) 113 90 41.08

1
: 1
Overall (I-squared = 76.0%, p = 0.002) <> 0.68 (0.31,1.05) 303 265 100.00
NOTE: Weights are from random effects analysis i

Study

0

Figure 12. Forest plot of studies examining homocysteine concentration in COPD patients and
controls according to FEV /FVC (<60% vs. >60%) [90,92,99,105,106].

The level of certainty remained low (rating 2, @O O) after considering the low risk of
bias in all studies, the high but partially explainable heterogeneity, the lack of indirectness,
the relatively low imprecision, the moderate effect size, and the lack of publication bias.

3.3. Cysteine

Cysteine was measured plasma in two European studies including a total of 73 COPD
patients (mean age: 72 years, 66% males) and 83 healthy controls (mean age: 70 years,
65% males) [87,106]. Liquid chromatography with ultraviolet detection was used in one
study [87], and capillary electrophoresis with laser-induced fluorescence in the other [106].

Cysteine concentrations were significantly higher in COPD patients compared to
controls (SMD = 0.34, 95% CI 0.02 to 0.66, p = 0.038; 2 = 0.0%, p = 0.83; Figure 13). The
limited number of studies prevented sensitivity analysis, the assessment of publication
bias, and the conduct of meta-regression and subgroup analyses.

COPD CTRL %

Name Year

Andersson Aetal. 2001

ZinelluAetal. 2020

Overall (l-squared =0.0%, p =0.832)

SMD (95% CI)

N, mean (SD)

N, mean (SD)

Weight

0.28(:0.30,087) 19,335 (48) 29,321 (50) 2996
0.36 (:0.02,0.74) 54,340 (52) 54,317(74) 7004
0.34(0.02,066) 73 83 100.00

0

Figure 13. Forest plot of studies investigating cysteine concentrations in COPD patients and con-
trols [87,106].

The level of certainty was downgraded to very low (rating 1, §©©0) after considering
the low risk of bias in all studies, the virtually absent heterogeneity, the lack of indirectness,
the relatively low imprecision, the relatively small effect size, and the lack of assessment of
publication bias (downgrade one level).
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Study

Name

Pow EM et al.

Yoneda T et al.

Year

1998

2001

3.4. Methionine

Two studies investigated plasma methionine in a total of 42 COPD patients and
38 healthy controls [86,88]. One study was conducted in Europe [86], and the other
in Asia one [88]. Liquid chromatography with fluorimetric detection was used in both
studies [86,88].

Methionine concentrations were significantly lower in COPD patients compared to
controls (SMD = —0.50, 95% CI —0.95 to —0.05, p = 0.029; I? = 0.0%, p = 0.80; Figure 14).
The limited number of studies prevented sensitivity analysis, the assessment of publication
bias, and the conduct of meta-regression and subgroup analyses.

COPD CTRL %
SMD (95% Cl) N, mean (SD) N, mean (SD)  Weight
-0.60 (-1.52, 0.31) 12,26 (3.5) 8,28 (3) 23.88
—_— -0.47 (-0.98, 0.05) 30,27.4(54) 30,304 (7.3) 76.12

'
'
'

Overall (I-squared = 0.0%, p = 0.799) -0.50(-0.95,-0.05) 42 38 100.00

0

Figure 14. Forest plot of studies investigating methionine concentrations in COPD patients and
controls [86,88].

The level of certainty was downgraded to very low (rating 1, §©©0) after considering
the low risk of bias in all studies, the virtually absent heterogeneity, the lack of indirectness,
the relatively low imprecision, the relatively moderate effect size, and the lack of assessment
of publication bias (downgrade one level).

3.5. Vitamin By,

Vitamin By, was measured in three studies including a total of 125 patients (mean age:
71 years, 84% males) and 85 healthy controls (mean age: 71 years, 83% males) [91,92,99].
One study was conducted in Africa [91], one in Europe [92], and one in Asia [99]. One
study used liquid chromatography with ultraviolet detection [91], the second a chemilumi-
nometric immunoassay [92], and the third did not provide relevant details regarding the
analytical method used [99]. Two studies assessed serum [91,92], and the third plasma [99].

There were non-significant differences in vitamin By, concentrations between COPD
patients and controls (SMD = —0.20, 95% CI —0.48 to 0.08, p = 0.16; 12 = 54.7%, p=0.11;
Figure 15). The limited number of studies prevented sensitivity analysis, the assessment of
publication bias, and the conduct of meta-regression and subgroup analyses.

The level of certainty was downgraded to very low (rating 1, §©66) after considering
the low risk of bias in all studies, the moderate heterogeneity, the lack of indirectness, and
the lack of assessment of publication bias (downgrade one level).
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Study
Name

Abdallah GM et al.

Fimognari FL et al.

LinCHetal.

Overall (I-squared = 54.7%, p =0.110)

Year

2009

2009

2018

COPD CTRL %
SMD (95% Cl) N, mean (SD) N, mean (SD) Weight
? -0.71(-1.32,-0.10) 24, 299 (44) 20,335(58)  20.65
—‘i—— -0.26 (-0.73,0.22) 42, 324 (144) 29,369 (211)  34.30
—é—-’— 0.08 (-0.34,0.49) 59, 653 (327) 36,628 (323) 45.05
<§>> -0.20(-0.48,0.08) 125 85 100.00

Study
Name

Abdallah GM et al.

Fimognari FL et al.

Lin CHet al.

Figure 15. Forest plot of studies investigating vitamin By, concentrations in COPD patients and
controls [91,92,99].

3.6. Folic Acid

Three studies measured folic acid in a total of 125 COPD patients (mean age: 71 years,
84% males) and 85 healthy controls (mean age: 71 years, 83% males) [91,92,99]. One study
was conducted in Africa [91], one in Europe [92], and one in Asia [99]. One study used
liquid chromatography with ultraviolet detection [91], the second a chemiluminometric
immunoassay [92], and the third did not provide relevant details regarding the analytical
method used [99]. Two studies assessed serum [91,92], and the third assessed plasma [99].

Folic acid concentrations were significantly lower in COPD patients compared to
controls (SMD = —0.37, 95% CI —0.65 to —0.09, p = 0.009; 2 = 0.0%, p = 0.88; Figure 16).
The limited number of studies prevented sensitivity analysis, the assessment of publication
bias, and the conduct of meta-regression and subgroup analyses.

COPD CTRL %
Year SMD (95% Cl) N, mean (SD) N, mean (SD)  Weight
2009 E -0.45(-1.05,0.15) 24, 4.85(2.9) 20,6.18 (3) 21.46
2009 E -0.43(-0.90,0.05) 42,2.33(1.56)  29,2.97 (1.41) 33.87
2018 —.-.—— -0.29(-0.71,0.12) 59, 11 (6.52) 36,12.9 (6.29) 44.68
Overall (I-squared = 0.0%, p = 0.881) <> -0.37 (-0.65, -0.09) 125 85 100.00

0

Figure 16. Forest plot of studies investigating folic acid concentrations in COPD patients and
controls [91,92,99].

The level of certainty was downgraded to very low (rating 1, OO©) after considering
the low risk of bias in all studies, the virtually absent heterogeneity, the lack of indirectness,
the relatively low imprecision, the relatively moderate effect size, and the lack of assessment
of publication bias (downgrade one level).
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Study
Name

Pow EM et al.

Yoneda T et al.

Ruzsics | et al.

Zinellu A et al.

Year

1998

2001

2016

2016

3.7. Arginine

Arginine was measured in four studies including a total of 117 COPD patients (mean
age: 67 years) and 111 healthy controls (mean age: 64 years) [86,88,94,95]. Three were con-
ducted in Europe [86,94,95], and the remaining one in Asia [88]. Three studies used liquid
chromatography with fluorimetric detection [86,88,94], and the remaining one capillary
electrophoresis with ultraviolet detection [23]. Three studied assessed plasma [88,94,95],
whilst the remaining one assessed serum [86].

There were non-significant between-group differences in arginine concentrations
(SMD = 1.53, 95% CI —0.69 to 3.75, p = 0.18; I = 97.7%, p < 0.001; Figure 17). The limited
number of studies prevented sensitivity analysis, the assessment of publication bias, and
the conduct of meta-regression and subgroup analyses.

COPD CTRL %
SMD (95% ClI) N, mean (SD) N, mean (SD) Weight
L g 0.00 (-0.89, 0.89) 12, 90 (14) 8,90 (14) 24.99
H— : 0.24 (-0.27, 0.75) 30, 103 (21.6) 30,97.7 (22.8) 25.70
——+—— 7.43(6.01, 8.85) 32, 106 (3.5) 30, 80 (3.5) 23.54
—-— -1.10 (-1.55,-0.64) 43, 64 (13) 43, 80 (16) 25.77

Overall (I-squared = 97.7%, p = 0.000) <<> 153 (-0.69,3.75) 117 11 100.00

NOTE: Weights are from random effects analysis

0

Figure 17. Forest plot of studies investigating arginine concentrations in COPD patients and con-
trols [86,88,94,95].

The level of certainty was downgraded to extremely low (rating 0, ©©©0©) after
considering the low risk of bias in all studies, the high and unexplained heterogeneity
(downgrade one level), the lack of indirectness), and the lack of assessment of publication
bias (downgrade one level).

3.8. Asymmetric Dimethylarginine

ADMA was measured in six studies including a total of 314 COPD patients (mean
age: 67 years, males 69%) and 218 healthy controls (mean age: 66 years, males 63%) were
evaluated [94-98,101]. Four studies were conducted in Europe [94,95,97,98], and two
in Asia [96,101]. Four studies used liquid chromatography [94,97,98,101], one capillary
electrophoresis with ultraviolet detection [95], and the remaining one used an enzyme-
linked immunosorbent assay [96]. Among the liquid chromatography studies, three utilized
a fluorimetric detection [94,98,101], whereas the remaining one did not provide relevant
information [97]. Plasma was assessed in four studies [94,96,97,101], and serum in the
remaining two [95,98].

ADMA concentrations were significantly higher in COPD patients compared to con-
trols (SMD = 1.27, 95% CI 0.08 to 2.46, p = 0.037; 2 = 97.2%, p < 0.001; Figure 18). The
limited number of studies prevented sensitivity analysis, the assessment of publication
bias, and the conduct of meta-regression and subgroup analyses.

The level of certainty was downgraded to very low (rating 1, §©©0O) after considering
the low risk of bias in all studies, the high and unexplained heterogeneity (downgrade one
level), the lack of indirectness, the relatively low imprecision, the relatively large effect size
(upgrade one level), and the lack of assessment of publication bias (downgrade one level).
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Study

Name

Ruzsics | et al.

Zinellu A et al.

Aydin M et al.

Costanzo L et al.

Urban MH et al.

Telo S etal.

Overall (I-squared = 97.2%, p = 0.000)

Year

2016

2016

2017

2017

2017

2018

COPD CTRL %
SMD (95% Cl) N, mean (SD) N, mean (SD)  Weight

——— 5.99(4.81,7.18) 32, 0.502 (0.026) 30, 0.349 (0.025) 14.90

s 0.15(-0.27,0.58)  43,0.511(0.13)  43,0.495 (0.067) 17.09

274 (214, 3.34) 58,70.7(9.08)  30,47.9(6.48) 16.72

0.00 (-0.45, 0.45) 41,3.19 (2.87) 35,3.18(3.39) 17.04
-0.71(-1.12,-0.30) 60, 0.477 (0.089) 40, 0.542 (0.096) 17.10
0.07 (-0.31, 0.45) 80, 0.427 (0.047) 40, 0.424 (0.04) 17.16

1.27 (0.08, 2.46) 314 218 100.00

NOTE: Weights are from random effects analysis '

Study
Name

Ruzsics | et al.

Zinellu A et al.

Cosma B et al.

Overall (I-squared = 98.1%, p = 0.000)

NOTE: Weights are from random effects analysis

Year

2016

2016

2019

0

Figure 18. Forest plot of studies investigating ADMA concentrations in COPD patients and con-
trols [94-98,101].

3.9. Symmetric Dimethylarginine

Three European studies measured SDMA in a total of 104 COPD patients (mean age:
67 years, males 59%) and 88 healthy controls (mean age: 62 years, males 63%) [94,95,102].
Two studies used liquid chromatography with fluorimetric detection [94,102], and the
remaining one used capillary electrophoresis with ultraviolet detection [95]. Two studies
assessed serum [94,102], and the remaining one used plasma [95].

SDMA concentrations were significantly higher in COPD patients compared to controls
(SMD = 3.94, 95% CI 0.79 to 7.08, p = 0.014; I? = 98.1%, p < 0.001; Figure 19). The limited
number of studies prevented sensitivity analysis, the assessment of publication bias, and
the conduct of meta-regression and subgroup analyses.

COPD CTRL %

SMD (95% Cl) N, mean (SD) N, mean (SD) Weight

i — = 1221(9.97,1445) 32,0648 (0.019)  30,0.416 (0.019) 29.98

- ! 0.22 (-0.21, 0.64) 43,051 (0.112) 43,0482 (0.144) 35.15

to— : 0.57 (-0.06, 1.21) 29,0.53 (0.14) 15,045 (0.14)  34.87

3.94 (0.79, 7.08) 104 88 100.00

0

Figure 19. Forest plot of studies investigating SDMA concentrations in COPD patients and con-
trols [94,95,102].

The level of certainty was downgraded to very low (rating 1, §©©6) after considering
the low risk of bias in all studies, the high and unexplained heterogeneity (downgrade one
level), the lack of indirectness, the relatively low imprecision, the relatively large effect size
(upgrade one level), and the lack of assessment of publication bias (downgrade one level).

3.10. Ornithine

Plasma ornithine was measured in three studies including a total of 117 COPD patients
(mean age: 69 years) and 82 healthy controls (mean age: 58 years) [86,88,103]. Two studies
were conducted in Asia [88,103], and one in Europe [86]. Liquid chromatography with
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fluorimetric detection was used in two studies [86,88], and liquid chromatography with
ultraviolet detection was used in the remaining one [103].

Ornithine concentrations were significantly higher in COPD patients than controls
(SMD = 0.67, 95% CI 0.13 to 1.22, p = 0.015; I? = 62.9%, p = 0.067; Figure 20). The limited
number of studies prevented sensitivity analysis, the assessment of publication bias, and
the conduct of meta-regression and subgroup analyses.

COPD CTRL %
SMD (95% Cl) N, mean (SD) N, mean (SD) Weight

:

; > 0.77 (-0.16, 1.70) 12,74 (21) 8,61(6) 21.11
i
\

——— 1.07(0.53,1.61) 30, 112 (32.1) 30,83.9(19.7) 3546
i

o S 0.30 (-0.07, 0.68) 75,99.1(32.3) 44,90.6 (18.3) 4344

Overall (l-squared = 62.9%, p = 0.067) <> 0.67 (0.13,1.22) 17 82 100.00

NOTE: Weights are from random effects analysis !

0

Figure 20. Forest plot of studies investigating ornithine concentrations in COPD patients and
controls [86,88,103].

The level of certainty was downgraded to very low (rating 1, §©©0) after considering
the low risk of bias in all studies, the moderate heterogeneity, the lack of indirectness,
the relatively low imprecision, the moderate effect size, and the lack of assessment of
publication bias (downgrade one level).

3.11. Vitamin Bg and Citrulline

In a study comparing 42 COPD patients (71 &£ 8 years) and 29 age-matched healthy
controls (71 £ 6 years), COPD patients had significantly lower vitamin Bg concentrations
compared to controls (5.6 = 5.1 vs. 9.1 £ 6.4 pg/mL, p = 0.036) using a radioimmunoassay
method [92].

In a study comparing 12 COPD patients (66 + 2 years) and eight age-matched healthy
controls (64 & 3 years), there were non-significant differences in plasma citrulline concen-
trations between the two groups (48 £ 6 vs. 54 £ 7 pmol/L) using a liquid chromatography
assay with fluorimetric detection [86].

4. Discussion

We observed significant alterations in the circulating concentrations of key metabolites
within the arginine, transsulfuration, and folic acid metabolic pathways in COPD using
targeted metabolomic analysis. Compared to healthy controls, patients with stable COPD
had significantly lower concentrations of methionine and folic acid, and higher concen-
trations of homocysteine and cysteine. In the context of arginine pathways, COPD was
also associated with significant elevations of ADMA, SDMA, and ornithine. Subgroup
analysis, which was only possible for studies investigating homocysteine, showed that the
SMD of this metabolite was significantly associated with the biological matrix assessed
(plasma vs. serum) and the FEV; to FVC ratio, but not with age, study location, or analytical
method used.

Homocysteine, a highly reactive sulfur-containing amino acid and a metabolite of
methionine (Figure 1), has been extensively investigated in view of its capacity to disrupt
vascular homeostasis through the inhibition of NO synthesis, endothelial dysfunction, and
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stimulation of pro-inflammatory and pro-oxidative pathways in the vascular wall and sys-
temically [68,107-115]. Not surprisingly, higher circulating homocysteine concentrations
have been associated with an increased risk of cardiovascular morbidity and mortality in
several observational studies [68,116,117]. Notably, homocysteine can also inhibit DDAH1
with a consequent accumulation of ADMA [109], whereas folic acid and vitamin By, stimu-
late the conversion of homocysteine into methionine [68], with consequent homocysteine
lowering. These effects further highlight the complex interplay between the arginine,
transsulfuration, and folic acid metabolic pathways (Table 1).

The results of our systematic review and meta-analysis, particularly the increased
circulating concentrations of homocysteine and ADMA, and the reduced concentrations
of folic acid and methionine suggests a significant dysregulation of these pathways in
COPD. Such dysregulation would manifest biologically as an impaired synthesis of NO
via ADMA accumulation, a pro-oxidative state via homocysteine accumulation, and an
overall pro-atherosclerotic state. Furthermore, epidemiological studies have reported that
higher ADMA concentrations are independently associated with a significant reduction in
FEV; and FVC [118]. Similar negative associations with FEV; and FVC have been reported
specifically in healthy smokers [119]. In further support of these observations, a study
has also reported that patients with COPD have a significantly lower dietary intake of
folic acid compared to healthy controls (231 £ 90 vs. 261 £ 110 ug/day, p < 0.001) [120].
Notably, in this study, COPD patients in the upper quartile of folic acid intake had sig-
nificantly lower breathlessness and higher FEV; and FVC values compared to patients
in the bottom quartile. In a more recent nationwide survey of COPD patients, folic acid
concentrations were positively associated with FEV; and FVC values, particularly in males
and in current smokers [121]. Given the well-known homocysteine-lowering effects of folic
acid supplementation [68,71,112], and the emerging evidence of additional lowering effects
on circulating ADMA [122-126], further studies are warranted to determine whether folic
acid supplementation, with or without vitamin By, can improve symptoms, lung function,
and clinical outcomes in patients with COPD.

The observed increases in circulating SDMA and cysteine in COPD are intriguing.
Like ADMA, SDMA is derived from the methylation of arginine residues in proteins by
PRMT 2 [127,128] (Figure 1). However, unlike ADMA, SDMA does not directly inhibit
NOS nor is metabolized by DDAH1 and is eliminated in the urine unchanged [56,58].
In experimental studies, SDMA has been shown to indirectly reduce NO availability by
favoring the uncoupling of NOS and by competing with the transport of the essential
NOS substrate arginine [129-131]. The relatively high prevalence of chronic kidney dis-
ease in patients with COPD might potentially account for the reduced renal elimination
and consequent accumulation of SDMA in this group [132-134]. However, recent studies
have also reported an association between COPD and PRMTs. For example, an increased
expression of PRMT 7, which has also been demonstrated to synthesize SDMA [135-137],
has been observed in lung tissue macrophages of patients with COPD. Furthermore, a
reduced expression of PRMT 7 in mice models of COPD was associated with a reduc-
tion in markers of lung injury [137]. The increase in cysteine concentrations in COPD is
counterintuitive, given that this thiol is essential for protein synthesis, exerts antioxidant
effects, and is a precursor of the major antioxidant glutathione and another metabolite
with antioxidant effects, taurine [48,138-140]. Additional research is required to confirm
these findings and elucidate the mechanisms involved in cysteine elevations, including a
selective dysregulation of enzymes responsible for its synthesis and degradation [48].

Another interesting observation in our systematic review and meta-analysis was
the higher concentration of circulating ornithine in patients with stable COPD compared
to healthy controls. As previously described (Figure 1), ornithine is the end product of
the arginase 1 and 2 enzymes [60]. Therefore, an increase in ornithine concentrations is
suggestive of an increased expression and/or activity of arginase which, in turn, reduces
the availability of arginine as a NOS substrate for the synthesis of NO. However, this
theory has been recently challenged by an elegant in vitro study investigating enzyme
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kinetics, which reported that the competition between arginase and NOS for the same
substrate, arginine, does not occur in the presence of a maintained supply of extracellular
arginine, which more adequately reflects the cellular physiological conditions. In the
same study, the investigators reported that alterations in arginine transport and/or protein
synthesis are more likely to influence NOS activity [141]. Pending additional studies
investigating the possible involvement of arginase on NO synthesis, arginase upregulation
has been reported in experimental models of COPD and clinical studies. For example,
mice exposed to cigarette smoking for 13 weeks showed a significant increase in the
expression of arginase [142]. Similar smoking-mediated increases in arginase expression
have been observed in rabbits, with a concomitant reduction in NOS expression and
activity [143]. Furthermore, treatment with arginase inhibitors significantly suppressed
bronchial reactivity in patients with COPD [144]. An increased arginase activity has also
been reported in platelets and erythrocytes in this group [145]. Pending confirmatory
studies, this observation suggests that pharmacological strategies downregulating arginase
might provide beneficial effects in COPD, independently of NO synthesis [146-149].

Our study had several strengths, including the comprehensive assessment of arginine,
transsulfuration, and folic acid metabolomics in stable COPD and the robust evaluation
of the risk of bias and the certainty of evidence for each studied metabolite. Limitations
included the small group of selected studies for most metabolites, with the exception of
homocysteine, which prevented sensitivity analysis, the assessment of publication bias,
and the conduct of meta-regressions and subgroup analyses to investigate associations
between the effect size and several clinical and demographic variables, e.g., age, sex, and
markers of inflammation, and to identify possible sources of heterogeneity. Further studies
are also necessary to investigate the potential pathophysiological role of citrulline and
vitamin Bg, given that our systematic search identified only one relevant study for each
metabolite. Another significant limitation was the paucity of data reported in the selected
studies regarding specific comorbidities, e.g., neurological and cardiovascular disease states,
dietary patterns, and medications, factors which could also affect the concentrations of the
studied metabolites [55,56,68,126,150-156]. At the same time, however, the assessment of
the concentrations of folic acid, vitamin Bg, and By, may indirectly reflect dietary behaviours
given their associations with specific food sources [157,158].

5. Conclusions

Our study showed significant alterations in the circulating concentrations of me-
thionine, homocysteine, and cysteine (transsulfuration pathway), folic acid (folic acid
pathway), and ADMA, SDMA, and ornithine (arginine pathway) in COPD. These alter-
ations are suggestive of impaired NO synthesis and redox balance and may also explain the
frequent occurrence of specific comorbidities, particularly atherosclerotic cardiovascular
disease, in this patient group. Further research is warranted to confirm these findings,
to investigate further associations between these metabolites and age, sex, markers of
inflammation, specific comorbidities, dietary patterns, and medications, and to assess
the effects of ADMA /homocysteine-lowering therapies and arginase inhibitors on lung
function, symptom burden, disease progression, and mortality in COPD.
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