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Abstract: (1) Background: Breast cancer is a frequent heterogeneous disorder diagnosed in women
and causes a high number of mortality among this population due to rapid metastasis and disease
recurrence. Ferroptosis can inhibit breast cancer cell growth, improve the sensitivity of chemotherapy
and radiotherapy, and inhibit distant metastases, potentially impacting the tumor microenviron-
ment. (2) Methods: Through data mining, the ferroptosis/extracellular matrix remodeling literature
text-mining results were integrated into the breast cancer transcriptome cohort, taking into account
patients with distant relapse-free survival (DRFS) under adjuvant therapy (anthracyclin + taxanes)
with validation in an independent METABRIC cohort, along with the MDA-MB-231 and HCC338
transcriptome functional experiments with ferroptosis activations (GSE173905). (3) Results: Ferrop-
tosis/extracellular matrix remodeling text-mining identified 910 associated genes. Univariate Cox
analyses focused on breast cancer (GSE25066) selected 252 individual significant genes, of which
170 were found to have an adverse expression. Functional enrichment of these 170 adverse genes
predicted basal breast cancer signatures. Through text-mining, some ferroptosis-significant adverse-
selected genes shared citations in the domain of ECM remodeling, such as TNF, IL6, SET, CDKN2A,
EGFR, HMGB1, KRAS, MET, LCN2, HIF1A, and TLR4. A molecular score based on the expression
of the eleven genes was found predictive of the worst prognosis breast cancer at the univariate
level: basal subtype, short DRFS, high-grade values 3 and 4, and estrogen and progesterone receptor
negative and nodal stages 2 and 3. This eleven-gene signature was validated as regulated by ferrop-
tosis inductors (erastin and RSL3) in the triple-negative breast cancer cellular model MDA-MB-231.
(4) Conclusions: The crosstalk between ECM remodeling-ferroptosis functionalities allowed for
defining a molecular score, which has been characterized as an independent adverse parameter in
the prognosis of breast cancer patients. The gene signature of this molecular score has been validated
to be regulated by erastin/RSL3 ferroptosis activators. This molecular score could be promising to
evaluate the ECM-related impact of ferroptosis target therapies in breast cancer.

Keywords: basal breast cancer; extracellular matrix remodeling; ferroptosis; transcriptome; text mining

1. Introduction

In 2020, breast cancer was the most common cancer diagnosed in women in the United
States [1]. Breast cancer is a heterogeneous disease with different molecular subtypes,
defined by distinct molecular classes associated with the prognosis: claudin-low, normal-
like, luminal A, luminal B, HER2, and basal [2], and confirmed via gene quantification
in pam50 classification [3]. Breast cancer is the second leading cause of mortality in
women due to rapid metastasis and disease recurrence [4]. Breast tissue is in a unique
microenvironment, with plentiful adipocytes infiltrating. Previous studies have shown that
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adipocytes can regulate fatty acid metabolism, and enhance the invasion and metastasis of
breast cancer [5]. Ferroptosis is an iron-dependent regulated form of cell death caused by the
accumulation of lipid-based reactive oxygen species (ROS) [6]. Prerequisites for ferroptosis
include iron metabolism, mitochondrial metabolism, synthesis of polyunsaturated fatty
acid phospholipid (PUFA-PL), and lipid peroxidation [7]. Therefore, targeting ferroptosis
has been proposed to treat breast cancer. There is increasing evidence that ferroptosis can
inhibit breast cancer cell growth, improve the sensitivity of chemotherapy and radiotherapy,
and inhibit distant metastases [5]. From 2001 to 2003, the Stockwell Lab performed a screen
to identify compounds that kill cells engineered to be tumorigenic (harboring the RAS
mutant) without killing their isogenic parental precursors. One of the most efficient
compounds was identified and named “erastin” due to its ability to “Eradicate RAS-and
Small T transformed cells” [8]. Subsequently, they identified RSL3, which was also named
after its “oncogenic RAS-selective lethal” property in 2008 [9]. Small molecule-induced
ferroptosis has been shown to have a strong inhibitory effect on tumor growth in a drug-
resistant environment, which may increase the sensitivity of the tumor to chemotherapeutic
treatment [10]. Ferroptosis is also considered an important cell death mechanism caused
by several therapies, including chemotherapy, radiotherapy (RT), targeted therapy, and
immunotherapy [11]. Still, contrarily, the tumor cells with ferroptosis could diminish
anti-tumor immune response by inhibiting the antigen-presenting cells [12]. The tumor
microenvironment (TME) plays a notable role in cancer progression. It includes pH and
oxygen levels, the extracellular matrix (ECM), connective tissue, infiltrating immune cells,
and the vasculature of the tumor. Interaction between the ECM and the tumor cells activates
key signaling pathways that promote tumor proliferation, invasion, and metastasis. This
notably influences many tumors, as the ECM can comprise up to 60% of the tumor mass [13].

In the present work, through a text-mining approach integrated into transcriptome
experiments, a link between ferroptosis and ECM remodeling has been established through
gene-related regulation in the adverse prognosis of breast cancer but also in TNBC cellular
model stimulated by ferroptosis activators.

2. Materials and Methods
2.1. Determination of Ferroptosis in Breast Cancer-Related Genes

Using the keywords “Ferroptosis in breast”, a co-occurrence of citations with coding
gene identifiers was searched for in the article abstracts of the PUBMED database with the
“Génie” algorithm [14]. Bioinformatics analyses were realized in R software environment
version 4.2.1. Further investigations of text-mining associations with gene identifiers have
been confirmed with the “GeneValorization” application [15] to the National Center for
Biotechnology Information (NCBI) database [16]. The results of this text-mining were
drawn as circosplot of gene-keywords co-occurrence with circlize R-package version 0.4.15
and as alluvial plot.

2.2. Transcriptome Cohort of Breast Cancer for Patients Treated with Anthracyclin and Taxanes

Transcriptome normalized matrix of dataset GSE25066 [17] was downloaded at the
following address: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse25066 (ac-
cessed on 18 May 2023) and annotated with the corresponding technology platform GPL96
(HG-U133A) Affymetrix Human Genome U133A Array available at the following address:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96 (accessed on 18 May 2023).

2.3. Multi-Omics Validation Breast Cancer Cohort METABRIC

A multi-omics validation cohort of METABRIC [18–20] comprising 1666 samples of
breast cancer samples was analyzed through Cbioportal web server [21]. This applica-
tion allowed for validating at multi-omics level (transcription, mutation, methylation)
the eleven-gene signature selected in the training cohort according relapse-free survival
outcome, but also the associated breast cancer subtype clinical parameters associated.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse25066
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
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2.4. Transcriptome Dataset Testing Effect of Ferroptosis Inducers on Triple-Negative Breast Cancer
Cell Models

Fragments per kilobase of transcript sequence per million base pairs sequenced (FPKM)
transcript quantification performed using the original pipeline of dataset GSE173905 [22]
was downloaded at the following address: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE173905 (accessed on 18 May 2023). After sequencing on Illumina NovaSeq 6000
technology, the original pipeline-aligned reads on the human genome with the reference
genome were built using Hisat2 v2.0.5 [23], and paired-end clean reads were aligned
to the reference genome using the Hisat2 v2.0.5 software and FPKM, expected number
of fragments per kilobase of transcript sequence per million base pairs sequenced were
computed on the counts obtained with Feature Counts v1.5.0-p3 software [24].

The matrix of RNASEQ FPKM quantification from the dataset GSE162069 [25] was
downloaded at the following web address: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE162069 (accessed on 23 June 2023). Library preparation was performed using
the Truseq stranded mRNA library kit (Illumina, Illumina Inc., San Diego, CA, USA), fol-
lowed by poly-T-based RNA purification beads. Sequencing was performed on HiSeq2500
(Illumina, Illumina Inc., San Diego, CA, USA). The reads were aligned with the Tophat
algorithm [26] and transcript quantification was carried out with Cufflinks [27].

The normalized microarray matrix from dataset GSE154425 [28] was downloaded at
the following address: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154425
(accessed on 23 June 2023). The normalized data were gene annotated with technology plat-
form GPL17692: Affymetrix Human Gene 2.1 ST Array (Affymerix, Santa Clara, CA, USA)
available at the following address: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GPL17692 (accessed on 23 June 2023).

On the selected genes for Ferroptosis/Extracellular matrix remodeling signature,
unsupervised principal component analysis was performed with FactoMiner R package
version 2.8 [29] on the three respective datasets: GSE154425, GSE162069, and GSE173905.

2.5. Immunohistochemistry Protein Level Expression of Eleven Markers

For the eleven selected markers, protein expression on ductal breast carcinoma was
evaluated on the Protein Atlas server [30,31] at the following address: https://www.
proteinatlas.org/ (accessed on 23 June 2023). Representative images were downloaded for
each marker and quantification in tumor cells was estimated with its subcellular positivity.

2.6. Gene Expression Analyses and Association to the Breast Cancer Prognosis

Distant relapse-free survival (DRFS) from the GSE25066 dataset [17] was used as an
outcome to performed iterative univariate Cox analysis against the expression of the genes
identified as being significantly associated with the keyword “ferroptosis in breast”. During
the trial follow-up of adjuvant therapy in breast cancer, distant relapse-free survival (DRFS)
could be used as an endpoint [17]. DRFS was defined as the interval from initial diagnostic
biopsy until diagnosis of distant metastasis or death due to breast cancer, non-breast cancer,
or unknown causes [32]. This iteration of univariate Cox analysis was automatized with
loopcolcox R-package version 1.0.0 available at the following address: https://github.
com/cdesterke/loopcolcox (accessed on 18 May 2023). Univariate Kaplan–Meier and
survival-optimal threshold on variables were performed with survminer R-package version
0.4.9 and survival R-package version 3.3.1. On genes with adverse prognosis association,
functional enrichment was performed with the CPG signature from MsigDb database [33]
through Toppgene online application [34]. A breast-cancer-related signature network was
drawn with Cytoscape standalone software version 3.9.1 [35]. An expression molecular
score related to ferroptosis/extracellular matrix remodeling functionalities was performed
by computing the sum of the product between Cox beta-coefficients and expression of the
eleven selected genes. For the eleven genes belonging to the ferroptosis/extracellular matrix
remodeling signature, a multi-ROC analysis was performed against estrogen/progesterone
receptor status detected in immunohistochemistry with the R-package multirocauc version

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173905
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE173905
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162069
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE162069
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154425
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL17692
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL17692
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://github.com/cdesterke/loopcolcox
https://github.com/cdesterke/loopcolcox
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1.0.0 available at the address: https://github.com/cdesterke/multirocauc (accessed on
18 May 2023) (Supplemental Figure S1A). A multivariate Cox model was built with DRFS
as the outcome and with incorporation of the expression molecular score and relevant
clinical parameters. This DRFS multivariate model was assessed by testing the linearity of
residuals at a global level and for each individual included parameters with Schoenfeld
tests. Calibration of the DRFS multivariate model at 10 months of follow-up was carried out
by 500 iterations of bootstrap with rms R package version 6.7.0. The nomogram validated
at 10 months of follow-up was drawn for the DRFS multivariate model with regplot R
package version 1.1.

3. Results
3.1. Ferroptosis Gene Expression Associated with the Prognosis of Patients with Breast Cancer

A text-mining approach was employed to identify ferroptosis-related genes in breast
cancer literature. The scientific literature discussing genes, as stored in the MEDLINE
database of biomedical references, has been used to prioritize genes based on the input
supervised keywords to query the Pubmed database. The text-mining algorithm “Génie”
was employed via querying Pubmed with “ferroptosis in breast” as the keywords. This
query returned a list of 910 individual genes with a significant False Discovery Rate (FDR),
and was positive in at least 10 distinct articles (Figure 1A): TP53 was found as the top
ranked gene, followed by AKT1, EGFR, and HIF1A. Iterations of univariate Cox analyses
against distant relapse-free survival (DRFS) outcomes in patients from the transcriptome
dataset GSE25066 [17] was carried out for each of the 910 genes selected via text mining.
For the best fifty ranked genes associated in their expression to the prognosis of patients,
some were favorable and others adverse according to their beta-coefficients or hazard ratios
(Figure 1B).

Among the 252 significant genes associated with the prognosis, a filtration on the
positivity of Cox beta-coefficients was carried out to retain 170 genes associated with ad-
verse prognosis. This 170 adverse gene signature was significant in stratifying chemother-
apy response prediction, such as dld-30 preoperative chemotherapy response prediction
(Figure 2A, p-value = 7.48 × 10−113) [36] and neoadjuvant chemotherapy response by recur-
rent cancer burden (RBC) [37] (Figure 2B, p-value = 7.91 × 10−8). An expression molecular
score was calculated with these 170 genes to verify its association with the DRFS of the
patients. The optimal cutoff threshold was determined on this expression molecular score
at a value of 687.02 (Supplemental Figure S1A). This score threshold identified 67 patients
with a high score and 441 patients with a low score, and these two groups of patients were
found with a significant difference in terms of DRFS prognosis. Patients with a high score had
the worst prognosis and reached the DRFS median at 1.83 years (Supplemental Figure S1B).
Functional enrichment performed with these 170 adverse genes on the MsigDb CPG signa-
ture database highlighted the major enrichment of these genes in breast cancer published
signatures, such as SMID-breast cancer basal up [38] and SOTIRIOU-breast cancer grade
1 vs 3 up [39] (Figure 2C). A breast cancer network was drawn with ferroptosis, and a part
of the ferroptosis-related genes were shared between the two independent breast cancer
transcriptome cohort signatures (Figure 2D). These results suggest that the “ferroptosis in
breast”-related text-mining approach is well adapted to explore breast cancer transcriptome
cohorts according the prognosis of the patients.

To validate the Génie text-mining approach, an independent text-mining algorithm
“GeneValorization” was employed to query the PUBMED database with “ferroptosis” as
the keyword, but also some others with relevance in the context of the study, such as cancer
stem cell (CSC), extracellular matrix (ECM) remodeling, breast cancer, lipid peroxidation,
and regulated cell death. This validation allowed for highlighting the 15 top ranked-genes
in text-mining sharing these keyword associations (Figure 3A): SET (SET nuclear proto-
oncogene), TNF (tumor necrosis factor), HMOX1 (heme oxygenase 1), IL6 (interleukin
6), TRFC (transferrin receptor), ATF4 (activating transcription factor 4), HMGB1 (high
mobility group box 1), KRAS (KRAS proto-oncogene, GTPase), EGFR (epidermal growth

https://github.com/cdesterke/multirocauc
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factor receptor), TLR4 (toll like receptor 4), HIF1A (hypoxia inducible factor 1 subunit
alpha), ATG5 (autophagy-related 5), LCN2 (lipocalin 2), CDKN2A (cyclin dependent kinase
inhibitor 2A), and MET (MET proto-oncogene, receptor tyrosine kinase). These fifteen best-
ranked genes were verified having an adverse prognosis in the training cohort GSE25066
(Figure 3B). 
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Figure 1. Gene expression profile related to ferroptosis functionality is associated with disease-free
relapse survival in breast cancer. (A) Scatterplot of the text-mining normalized false discovery rate (FDR):
negative log10 q-values versus number of positive articles in Pubmed for genes related to ferroptosis
in breast cancer (green dots correspond to less significant selected genes); (B) Barplots of univariate
Cox beta-coefficients and negative log10 p-values for the 50 best ferroptosis-related genes according
disease-free relapse survival (DFRS) of breast cancer patients (transcriptome GSE25066, n = 508).
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Figure 2. Unfavorable ferroptosis-related genes were enriched in basal breast cancer. (A) Principal
component analysis based on the expression of 170 adverse ferroptosis genes and stratified on dld-30
response prediction. (B) Principal component analysis based on expression of the 170 adverse ferrop-
tosis genes and stratified by residual cancer burden response prediction. (C) Barplot of functional
enrichment performed on the “MSIGDB CPG” database with the 170 unfavorable ferroptosis genes.
(D) Functional enrichment network of 170 unfavorable ferroptosis genes enriched in advanced breast
cancer signatures.
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Figure 3. Top fifteen genes prioritized by text mining and having adverse prognosis. (A) Circosplot
of the 15 best ferroptosis genes most cited in literature associated with the following keywords:
extracellular matrix (ECM) remodeling, cancer stem cell (CSC), breast cancer, lipid peroxidation,
regulated cell death, and ferroptosis. (B) Barplot of Cox analyses of the top15 gene with DRFS (distant
relapse-free survival) as the outcome.
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3.2. Breast Cancer Eleven-Gene Signature Implicated in Ferroptosis and Extracellular
Matrix Remodeling

Among the fifteen best-ranked ferroptosis genes in breast cancer (Figure 3A), eleven
harbored some association with “extracellular matrix remodeling” literature in the PUBMED
database, especially TNF, SET, and IL6, found to be highly cited in this specific literature
(Figure 4A). Querying MiPanda RNAseq server [40], an application that contains nor-
malized transcriptome data from normal breast samples as the control versus primary
and metastatic breast cancer samples, it could be observed that nine of these genes, ex-
cept HIF1A and LCN2, were found significantly regulated in cancer samples (primary
and metastatic) as compared to normal breast control (Supplemental Figure S2). The
170 adverse ferroptosis-related genes were compared to the referent database of ferroptosis
genes, such as FerrDB V2 [41] and genesets of KEGG [42] and Wikipathways [43]. This
analysis highlighted that 8 of the 11 selected genes were also present in the FerrDB database,
and a majority of them were categorized as ferroptosis drivers (KRAS, TLR4, HMGB1,
EGFR, HIF1A, CDKN2A), except LCN2, which was categorized as a ferroptosis suppressor
(Figure 4B), IL6 was categorized both as a driver and a suppressor. The prediction of the
basal phenotype of breast cancer was tested against the expression of eleven genes via ROC
analysis. CDKN2A expression was found to have the best aera under the curve (AUC),
i.e., 0.83, followed by EGFR expression at 0.76 (Figure 4C). Contrastingly, for triple-negative
breast cancer (TNBC), the phenotype EGFR was the best predictor at 0.78 followed by
CDKN2A at 0.75 (Supplemental Figure S3).

The eleven-gene signature was evaluated also at a multi-omics level in the METABRIC
validation cohort of breast cancer. The proportion of affected patients comprised between
4 and 7 percent of the patients for each gene, and there was concordance between alterations
of each gene (Figure 5A). The maximumalterations were found in breast invasive ductal
carcinoma and the minimumalterations were found in lobular carcinoma (Figure 5B).
These alterations in the eleven-gene signature were present in patients with the worst
relapse-free survival (Figure 5C) and significantly stratified patients based on major clinical
parameters (Figure 5D) such as tumor histologic grade (Figure 5E) and Claudin-low/PAM50
classification (Figure 5F).

Through the Protein atlas server [30], the protein expression level of these eleven genes
was assessed in the tissue section of breast ductal carcinoma. Each marker was confirmed
as expressed in tumor cells at a protein level. Except HMGB1, the ten others were found
expressed at the cytoplasm and membrane levels. Three of them were expressed at a
nuclear level: HMGB1, SET, and HIF1A (Figure 6).

3.3. Ferroptosis/ECM Remodeling Signature Is Regulated by Ferroptosis Modifiers in
Triple-Negative Breast Cancer Cells

To verify the link between ferroptosis function and gene members belonging to the
eleven-gene signature, three distinct transcriptome datasets performed on MDA-MB-231
and HCC338 cells (cellular model of triple-negative breast cancer (TNBC)) were inves-
tigated. In the GSE173905 dataset, MDA-MB-231 cells were stimulated over 72 h with
RSL3 and erastin [22]. Based on the expression of the eleven genes belonging to the
ferroptosis/ECM molecular score, an unsupervised principal component analysis was
performed with samples of GSE173905. This multivariate analysis confirmed that gene
members composing the ferroptosis/ECM signature are regulated by the two distinct
ferroptosis activators: erastin and RSL3 (p-value = 1.08 × 10−5, Figure 7A,B). The second
dataset, GSE162069, comprised both in vitro stimulation and in vivo experiments. In the
GSE162069 dataset, only eight of the eleven genes were quantified in these experiments
(Figure 7C). For in vitro experiments, MDA-MB-231 were stimulated over 5 h with α-
eleostearic acid (αESA) and ML162, two distinct glutathione peroxidase 4 (GPX4) inhibitors
which induced ferroptosis [25]. In vitro, α-eleostearic acid (αESA) was found to be distinct
from its control in principal component analysis (Figure 7D). Regarding in vivo experi-
ments, an orthotopic xenograft was carried out in NSG mice for MDA-MB-231 cells, and
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the animals were treated orally with either 100 µL of safflower oil (control) or tung oil
5 days a week for 24 days [25]. In principal component analysis, in vivo treatment con-
ditions were found to be distinct from their control (Figure 7D). In the third dataset,
GSE154425, HCC38 cells were treated over 18 h with erastin (ferroptosis inducer), with or
without tubacin, a HDAC6 inhibitor [28]. In this dataset, the eleven genes were mapped
(Figure 7E). Upon principal component analysis, erastin had a specific action on the eleven-
gene signature, which is not the case for tubacin. However, in combination, erastin action
on the eleven-gene signature was modified by tubacin (Figure 7F).
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Figure 4. Eleven-gene signature shared between ferroptosis and extracellular matrix remodeling
functionalities. (A) Alluvial plot of literature citation counts for the best 11 genes with co-occurrence
in ferroptosis and extracellular matrix remodeling (ECM) functionalities. (B) Venn diagram testing
overlap between 170 adverse gene signature and the ferroptosis databases. (C) Multi-ROC analysis
of the expression (GSE25066) for the 11 genes against basal phenotype.
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Figure 5. Validation of the eleven-gene signature in the METBRIC breast cancer cohort. (A) Oncoprint
of alterations affecting the eleven genes. (B) Barplot of the alteration frequencies by subtypes of
breast cancer. (C) Relapse-free survival analysis stratified based on alterations. (D) Barplot of clinical
parameters associated with the eleven gene alterations. (E) Example of association with tumor
histologic grade. (F) Example of association with claudin-low/PAM50 classification.
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Figure 6. Immunohistochemistry of ductal breast carcinoma tissue section for testing the eleven
markers of the ferroptosis/ECM signature. Representative expression image section was extracted
from the Protein Atlas server, tumor cell expression was quantified according three levels of the cross
(tumor cell staining intensities: +++, strong; ++, moderate; +, weak), and subcellular localization in
the tumor cell was annotated as follows: NU: nuclear, CY: cytoplasm, MB: membrane.



Cells 2023, 12, 2176 12 of 23Cells 2023, 12, x FOR PEER REVIEW  7  of  9 
 

 

 Figure 7. Regulation of the ferroptosis/extracellular matrix remodeling signature by ferroptosis
inducers in triple-negative breast cancer cellular models. On principal component plots, the pink
colored square symbols represent the barycenters of the groups. (A) Principal component correlation
plot for the dataset GSE173905. (B) First principal map for the dataset GSE173905. (C) Principal
component correlation plot for the dataset GSE162069. (D) First principal map for the dataset
GSE154425 (in vitro and in vivo). (E) Principal component correlation plot for the dataset GSE162069.
(F) First principal map for the dataset GSE154425.



Cells 2023, 12, 2176 13 of 23

3.4. Ferroptosis/ECM Remodeling Molecular Score Is an Independent Adverse Parameter in the
Prognosis of Breast Cancer

Unsupervised principal component analysis based on the expression of the eleven
ferroptosis/extracellular matrix remodeling-related genes were well stratified into groups
of patients according to their histologic tumor grades (Figure 8A) but also their PAM50
subtype classification (Figure 8B) and triple-negative breast cancer (TNBC) phenotype
(Figure 8C). This eleven-gene signature also revealed discriminant power for the predic-
tion of preoperative chemotherapy based on the dld-30 classifier [36] (Figure 8D). Among
the eleven genes, CDKN2A was the best predictor of the dld-30 classifier, with an AUC
of 0.82, followed by EGFR with an AUC of 0.79 (Supplemental Figure S4A). For the
prediction of residual breast cancer burden [37], the eleven-gene signature was ineffi-
cient (Supplemental Figure S4B). A molecular score was computed on the expression of
the eleven ferroptosis/extracellular matrix remodeling-related genes. The optimal cut-
point was determined based on the DRFS residuals of the molecular score (Figure 8E).
This threshold cutpoint was at 48.74 to stratify the breast cancer cohort in two groups.
According the DRFS, the best age category stratification was found at 40.3 years old
(Supplemental Figure S5). No significant age difference was found between the two groups
of patients harboring low and high values of the ferroptosis/ECM remodeling molecu-
lar score (p-value = 0.28, Table 1). Concerning the immunohistochemistry status of the
estrogen receptor, a significantly higher proportion of negative patients was found in the
group of patients with high values of the molecular score (p-value < 1 × 10−4, Table 1),
and the observation was the same for progesterone receptor status (p-value < 1 × 10−4,
Table 1). Concerning the TNBC phenotype, the group of patients with high values of
the ferroptosis/ECM remodeling score presented a higher proportion of positive samples
(p-value < 1 × 10−4, Table 1). Concerning pam50 molecular classification, the group of
patients with high values of the ferroptosis/ECM remodeling score presented a higher
proportion of basal type samples (p-value < 1 × 10−4, Table 1). No significant difference
was observed on the tumor stages between the two groups of patients (p-value = 0.38,
Table 1), but a higher proportion of patients N3 for the nodal status was observed in the
group of patients with a high value of the molecular score (p-value = 0.013, Table 1). Con-
cerning clinical AJCC staging, a significant difference was observed with an increasing
proportion of stages IIIA, IIIB, and IIIC and inflammatory in the group of patients with a
high value of the molecular score (p-value = 0.03, Table 1). As observed via PCA on the
expression of the eleven genes which comprised the molecular score (Figure 4A), the grade
variable was significant between the two groups of patients (p-value < 1 × 10−4, Table 1).
The DRFS status and time parameters were also confirmed as significant between the two
groups of patients (p-value < 1 × 10−4, Table 1). Effectively, Kaplan–Meier with the DRFS
censor stratified based on ferroptosis/ECM remodeling was highly significant (Figure 8F),
with the worst prognosis for patients who harbored a molecular score over 48.74 as the
threshold, of which the median of the DRFS was 2.55 years. The type of taxanes (Taxol,
Taxotere) administrated during the follow-up of the patients presented no associations with
the ferroptosis/ECM remodeling groups of patients (p-value = 0.69, Table 1).

Relevant clinical parameters were integrated in a multivariable Cox model censored
in the DRFS with group stratification based on the ferroptosis/ECM remodeling molec-
ular score. This multivariable model, which harbored a concordant index of 0.77, was
highly significant according to the likelihood ratio test (p-value = 2 × 10−14) (Figure 9A).
The global and individual Schoenfeld test attested linear distribution residuals from the
included parameters: age of patients, nodal status, pam50 molecular classification, grading,
and ferroptosis/ECM remodeling molecular score (Supplemental Figure S6). In this multi-
variable model, high values of the nodal status (N1 and N2,3) were found as independent
adverse parameters of the DRFS (N1 versus N0 hazard ratio: 2.20, p-value = 5.91 × 10−3,
N23 versus N0 hazard ratio: 3.39, p-value = 7.15 × 10−5, Table 2 and Figure 9A). Among
molecular classification, the basal subtype appeared as an adverse group of breast cancer,
with similar values to the reference (hazard ratio: 2.92, p-value 4.45 × 10−2, Table 2 and
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Figure 9A). In the DRFS multivariate model, the ferroptosis/ECM remodeling molecular
score appeared as an adverse independent parameter in the prognosis of breast cancer pa-
tients (high score vs. low score hazard ratio: 2.69, p-value = 1.17 × 10−5). The multivariate
model could be calibrated at ten months of follow-up with five hundred iterations using
the Kaplan–Meier method (Figure 9B); this calibration showed that the multivariable model
is stable at 10 months of follow-up. The corresponding nomogram of the model was drawn
for a prediction at 10 months of follow-up (Figure 9C). This representation confirms the
important part of the molecular score in the multivariate model. Indeed, at 10 months of
follow-up, the molecular score appears dispersed between the range of point values of the
model (10–70), as the DRFS probability at 10 months was between 0.006 and 0.1 (Figure 9C).

Table 1. Breast cancer cohort from the GSE25066 dataset stratified between high and low levels of the
ferroptosis/extracellular matrix remodeling molecular score.

Variable Level Low (n = 426) High (n = 82) Total (n = 508) p-Value

age.years mean (sd) 49.7 (10.4) 50.5 (10.8) 49.8 (10.5) 0.524161
age.categories (40.3 yo) younger 79 (18.5) 20 (24.4) 99 (19.5)

older 347 (81.5) 62 (75.6) 409 (80.5) 0.283927
er.status.ihc Negative 144 (34.1) 61 (76.2) 205 (40.8)

Positive 278 (65.9) 19 (23.8) 297 (59.2) <0.0001
missing 4 2 6

pr.status.ihc Negative 192 (45.6) 66 (82.5) 258 (51.5)
Positive 229 (54.4) 14 (17.5) 243 (48.5) <0.0001
missing 5 2 7

TNBC no 289 (70.3) 22 (28.2) 311 (63.6)
YES 122 (29.7) 56 (71.8) 178 (36.4) <0.0001

missing 15 4 19
pam50.class Normal 42 (9.9) 2 (2.4) 44 (8.7)

Basal 123 (28.9) 66 (80.5) 189 (37.2)
Her2 33 (7.7) 4 (4.9) 37 (7.3)

LumA 152 (35.7) 8 (9.8) 160 (31.5)
LumB 76 (17.8) 2 (2.4) 78 (15.4) <0.0001

clinical.tumor.stage T-0,1,2 247 (58.0) 41 (50.0) 288 (56.7)
T-3 119 (27.9) 26 (31.7) 145 (28.5)
T-4 60 (14.1) 15 (18.3) 75 (14.8) 0.379010

clinical.nodal.status N-0 140 (32.9) 17 (20.7) 157 (30.9)
N-1 205 (48.1) 39 (47.6) 244 (48.0)

N-2,3 81 (19.0) 26 (31.7) 107 (21.1) 0.013986
clinical.ajcc.stage IIB 131 (30.8) 20 (24.4) 151 (29.7)

IIIA 99 (23.2) 22 (26.8) 121 (23.8)
IIIB 63 (14.8) 17 (20.7) 80 (15.7)
IIA 109 (25.6) 12 (14.6) 121 (23.8)
IIIC 16 (3.8) 7 (8.5) 23 (4.5)

Inflammatory 2 (0.5) 2 (2.4) 4 (0.8)
I 6 (1.4) 2 (2.4) 8 (1.6) 0.033976

grade G-1 32 (7.8) 0 (0.0) 32 (6.6)
G-2 167 (40.8) 13 (16.9) 180 (37.0)

G-3,4 210 (51.3) 64 (83.1) 274 (56.4) <0.0001
missing 17 5 22

drfs.status 1 70 (16.4) 41 (50.0) 111 (21.9)
0 356 (83.6) 41 (50.0) 397 (78.1) <0.0001

drfs.time.years mean (sd) 3.2 (1.6) 2 (1.2) 3 (1.6) <0.0001
type.taxane Taxotere 78 (45.6) 14 (51.9) 92 (46.5)

Taxol 93 (54.4) 13 (48.1) 106 (53.5) 0.691854
missing 255 55 310
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   Figure 8. Ferroptosis/extracellular matrix remodeling molecular score is associated with a worse
prognosis in breast cancer. For the transcriptome dataset (GSE25066), unsupervised principal com-
ponent analysis was performed with the eleven-gene signature and stratified based on: (A) tumor
grades (grades 3 and 4 were aggregated in one class), (B) pam50 molecular classification of breast
tumors, (C) TNBC phenotype, and (D) dld-30 preoperative chemotherapy response. (E) Optimal
threshold cutpoint determined for ferroptosis/ECM remodeling molecular score censored on the
DRFS (distant relapse-free survival). (F) Kaplan–Meier and log-rank analyses censored on the DRFS
and stratified based on the ferroptosis/ECM remodeling molecular score threshold.
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Figure 9. Ferroptosis/extracellular matrix remodeling molecular score is an independent adverse
parameter in the prognosis of breast cancer patients. (A) Forestplot of the multivariable model
censored based on the distant relapse-free survival, including the ferroptosis/extracellular matrix
remodeling and clinico-biological relevant parameters, such as age, nodular status, grade, and
molecule classes; significance: *: 0.01 < p < 0.05, **: 0.001 < p < 0.01, ***: p < 0.001. (B) Bootstrap
calibration plot of the DRFS multivariable model performed with 500 iterations using the Kaplan–
Meier method at 10 months of follow-up: grey line (optimal model). (C) Nomogram of the DRFS
multivariable model predicted at 10 months of follow-up.
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Table 2. Disease-free relapse survival multivariate model including the ferroptosis/extracellular
matrix remodeling molecular score.

Variables Hazard Ratios Confidence-Low Confidence-High p-Value

age.cat older 0.770 0.498 1.192 2.41 × 10−1

clinical.nodal.statusN1 2.202 1.255 3.862 5.91 × 10−3

clinical.nodal.statusN23 3.395 1.857 6.205 7.15 × 10−5

pam50.classBasal 2.924 1.027 8.327 4.45 × 10−2

pam50.classHer2 2.530 0.783 8.177 1.21 × 10−1

pam50.classLumA 1.071 0.356 3.221 9.03 × 10−1

pam50.classLumB 1.339 0.422 4.252 6.20 × 10−1

Grade.G2 4.526 0.603 33.950 1.42 × 10−1

Grade.G34 3.085 0.402 23.693 2.79 × 10−1

score.high 2.689 1.728 4.185 1.17 × 10−5

4. Discussion

During this study, a list of genes was defined using the text-mining approach related to
ferroptosis cellular functionality known as an important way of cellular death implicated in
tumor response to therapies [10]. Surprisingly, in the transcriptome of breast tumors under
therapies (GSE173905) [17], the majority of ferroptosis-related genes presented expression
associated with adverse distant relapse-free survival, whereby 170 of 252 significant genes
were found to have an univariate hazard ratio over 1 (Supplemental Table S1). Triple-
negative breast cancer (TNBC) is the breast cancer subtype with the worst prognosis, and it
has a strong invasive and metastatic capacity and easily invades into blood vessels, thus
increasing the recurrence rate [44]. Due to the lack of ER, PR, and HER2 receptor expression,
therapeutic methods for TNBC are much more limited compared with other breast cancer
types. Ferroptosis is a modality of regulated cell death driven by iron-dependent lipid
peroxidation [6] and TNBC cells are sensitive to ferroptosis inducers [45,46], suggesting
this new form of non-apoptotic cell death as an attractive target for the treatment of the
“difficult-to-treat” tumor [47].

TNBC is a heterogeneous disease which has been divided by transcriptome analy-
ses in seven TNBC subtypes: basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory
(IM), mesenchymal (M), mesenchymal stem-like, luminal androgen receptor, and unclas-
sified (UNS), with distinct proportions of mesenchymal remodeling, immune infiltration,
or androgen receptor expression between subtypes [48]. According to the expression
level of GPX4, a heterogenous response of TNBC was observed to ferroptosis therapy
(GPX4 inhibitor) in combination to immunotherapy with a better therapy response for the
LAR TNBC subtype [49].

With an independent text mining application querying the NCBI database, GeneVal-
orization [15], a Ferroptosis/ECM remodeling molecular score in basal breast cancer [17]
has been established based on the expression of eleven related genes, i.e., TNF, IL6, SET,
CDKN2A, EGFR, HMGB1, KRAS, MET, LCN2, HIF1A, and TLR4. These molecules
have been verified to be regulated by distinct ferroptosis inducers in TNBC cellular mod-
els [8,9,25,28] and expressed at a protein level in ductal breast carcinoma tissue sections.

For the majority of the genes contained in the eleven-gene signature, it could be
possible to link the literature individually to the ferroptosis and ECM remodeling context.

CDKN2A is frequently deleted by the DNA copy number variation analysis in luminal
androgen receptor (LAR) TNBC subtype [50]. During glioblastoma (GBM), CDKN2A dele-
tion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty
acids into distinct lipid compartments, and CDKN2A-deleted GBMs display higher lipid
peroxidation, selectively priming tumors for ferroptosis [51]. Cancer-associated fibroblasts
(CAFs), the most abundant and likely active cellular component of breast cancer-associated
stroma, promote carcinogenesis through paracrine effects. During breast cancer, CDKN2A
expression is reduced in 83% of cancer-associated fibroblasts as compared with their nor-
mal adjacent cancer-free counterpart tissues isolated from the same patients. CDKN2A
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downregulation using specific siRNA activated breast fibroblasts and increased the expres-
sion/secretion levels of stromal-cell-derived factor 1 (SDF-1) and matrix metalloproteinase
(MMP)-2 [52].

HIF-1α is an important regulator of lipid metabolism [53]. Hypoxia-induced lipid
metabolism reprogramming results in fatty acid accumulation, which promotes tumor growth
and survival upon reoxidation [54]. HIF1A is a negative regulator of erastin- or RSL3-induced
ferroptosis in human fibrosarcoma HT1080 and non-small cell lung cancer Calu-1 cells, and this
anti-ferroptosis effect is linked to the activation of clockophagy, a type of selective autophagy
for the degradation of the core circadian clock protein, ARNTL [55,56]. In the context of
increased hypoxia/HIF1A and ECM stiffness in chemoresistant tumors, a high expression
of HIF1A could be adverse because it leads to the upregulation of ITGA5, activation of
the downstream FAK/Src signaling pathways, and repression of miR-326, which targets
fibronectin (FN1), an extracellular matrix (ECM) central chemoresistance driver gene [57].

Adipokine lipocalin-2 (LCN2) has been demonstrated to be an ECM regulator through
its association with the ECM protease matrix metalloproteinase-9 (MMP-9) [58]. It has been
shown that LCN2 knockout in the human breast cancer cell line MDA-MB-231 ameliorates
erastin-mediated ferroptosis and increases cisplatin vulnerability [59].

Adipocytes constitute the main cell component of the ECM in breast cancer [60].
Cancer-associated adipocytes (CAAs) are localized at the invasive front of breast tumor
and exhibit a modified phenotype, loss of lipid content, decrease in late adipocyte dif-
ferentiation markers, and overexpression of inflammatory cytokines and proteases [61].
In breast tumors, IL6 is secreted via CAAs, which play essential roles in favor of prolif-
eration, angiogenesis, dissemination, invasion, and metastasis of breast cancer [62], and
its production is associated with therapy resistance [63]. Tumor-associated macrophages
(TAMs) are major components of the tumor microenvironment (TME), which are closely
associated with the tumor malignant progression. In TNBC, hepatic leukemia factor (HLF)
transactivated gamma-glutamyltransferase 1 (GGT1) promote the ferroptosis resistance
and interactive dialogue between TNBC cells, and TAMs promotes sustained activation of
HLF in tumor cells through the IL-6–TGF-β1 axis [64].

EGFR promoted TNBC cell clustering, and the blockade of EGFR successfully abol-
ished tumor cell cluster formation [65]. It has been shown that inhibition of the EGFR
signaling pathway significantly suppressed cell viability of TNBC cells and reduced the
fraction of CSCs with intracellular enhancement of lipid peroxidation when TNBC cells are
exposed to erastin [66]. The increased metastatic potential of TNBC is a combined result of
an extensive extracellular matrix (ECM) remodeling that leads to cytoskeleton rearrange-
ment and activation of epithelial-to-mesenchymal transition (EMT). The overexpression of
epidermal growth factor receptor (EGFR) in TNBC tumors has been linked to an induced
expression of EMT-related molecules [67].

MET is known to be implicated in chemotherapy resistance, including those targeting
EGFR, BRAF, and MEK, but also contributes to cytotoxic chemotherapy resistance [68]. Its
ligand, HGF, is a pleiotropic factor produced by mesenchymal cells in the stroma, and as
such, it is widely distributed in the extracellular matrix of most tissues [69]. Dysregulation
of the MET/HGF pathway leads to uncontrolled cell proliferation and oncogenesis, and is
observed in multiple tumor types [70]. HGF is known to exacerbate pancreatic cancer cell
ferroptosis resistance [71].

HMGB1 is implicated in regulating stress responses to oxidative damage and cell death,
and can be released into the extracellular space to act as a damage-associated molecular
pattern protein during ferroptosis [72]. HMGB1 is known to act via the NRF2/GPX4 axis
to repress ferroptosis in mesangial cells in response to high glucose [73]. In TNBC, the
downregulation of miR-205 contributes to epithelial–mesenchymal transition and invasion
of cancer cells by targeting the HMGB1-RAGE signaling pathway [74].

KRAS mutations are known as very infrequent in triple-negative breast tumors [75],
but in basal breast cancer, KRAS has been shown to promote the mesenchymal features of
this aggressive cancer [76]. In the tumor microenvironment, tumor-associated macrophage
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polarization could be driven by ferroptosis via the release and uptake of the oncogenic
KRAS protein [77].

The overexpression of Toll-like receptor-4 (TLR4) in human tumors often correlates
with chemoresistance and metastasis. The depletion of TLR4 in naturally overexpressing
MDA-MB-231 cells downregulated prosurvival genes concomitant with two- to three-
fold reduced IC(50) to paclitaxel in vitro and a six-fold decrease in the recurrence rate
in vivo [78]. The role of TLR4 in ferroptosis has been demonstrated in the hippocampal
hypoxic-ischemic context [79] and in renal ischemia [80].

The SET nuclear proto-oncogene is known to be upregulated in TNBC tumor sam-
ples with CIP2A. Ectopic expression of SET in MDA-MB-231 and MDA-MB-468 increased
pAkt, pERK, pElk-1, and CIP2A expressions. The use of a protein–protein binding antago-
nist (TD19) between SET and PP2A induced the downregulation of CIP2A through ERK
phosphorylation and downstream nuclear translocation of Elk-1, suggesting a molecular
regulation between SET and CIP2A via the MAPK pathway. Targeting SET to disrupt the
oncogenic CIP2A loop could be a promising TNBC therapy [81]. No evidence of relation
between the SET nuclear proto-oncogene and ferroptosis in the literature was found, but
our work showed (Figure 7) a regulation of SET nuclear proto-oncogene under ferroptosis
inducers in MDA-MB-231 and HCC338 TNBC cancer cells.

The activities of cancer-associated fibroblasts (CAFs) and mesenchymal stromal cells
(MSCs) in breast cancer are integrated within an intimate inflammatory tumor microenvi-
ronment (TME) that includes high levels of tumor necrosis factor α (TNF-α). During the
in vitro conversion process of mesenchymal stromal cells in cancer-associated fibroblast by
breast tumor cell (MDA-MB-231 and MCF-7)-conditioned media, TNF-alpha stimulation is
responsible for the chemokines released (CCL2, CXCL8, and CCL5) by the tumor stromal
cells [82]. During cancer immunostimulation, the secretion of TNF downregulates the
expression of SLC7A11 and SLC3A2, and reduces the absorption of cysteine, leading to
lipid peroxidation and iron deposition in cancer cells [83].

5. Conclusions and Perspectives

In the present work, the expression of the genes associated with bad breast cancer
prognosis was investigated employing a text-mining approach and transcriptome data
integration of relationships between ferroptosis and ECM remodeling functions. This
adverse regulated program allowed for computing a molecular expression score that could
be promising to evaluate the response to ferroptosis target therapies in breast cancer.
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