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Abstract: In the emerging era of cancer immunotherapy, immune checkpoint blockades (ICBs) and
adoptive cell transfer therapies (ACTs) have gained significant attention. However, their therapeutic
efficacies are limited due to the presence of cold type tumors, immunosuppressive tumor microenvi-
ronment, and immune-related side effects. On the other hand, dendritic cell (DC)-based vaccines have
been suggested as a new cancer immunotherapy regimen that can address the limitations encountered
by ICBs and ACTs. Despite the success of the first generation of DC-based vaccines, represented by
the first FDA-approved DC-based therapeutic cancer vaccine Provenge, several challenges remain un-
solved. Therefore, new DC vaccine strategies have been actively investigated. This review addresses
the limitations of the currently most adopted classical DC vaccine and evaluates new generations of
DC vaccines in detail, including biomaterial-based, immunogenic cell death-inducing, mRNA-pulsed,
DC small extracellular vesicle (sEV)-based, and tumor sEV-based DC vaccines. These innovative DC
vaccines are envisioned to provide a significant breakthrough in cancer immunotherapy landscape
and are expected to be supported by further preclinical and clinical studies.
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1. Introduction

Immunotherapy has rapidly advanced for clinical cancer treatment, highlighting
the importance of tumor–immune interactions in tumor regulation [1,2]. Despite recent
significant progress in immune checkpoint blockades (ICBs) and adoptive cell therapies
(ACTs) across a broad range of solid tumors, limited therapeutic efficacies and severe
immune-related adverse events have rendered them from wide applications [3,4]. The
highly immunosuppressive tumor microenvironment (TME), in which the numbers and
functions of immunostimulatory cells such as effector T cells (TEFF) and antigen-presenting
cells (APCs) are downregulated, remains one of the key determinant factors that subverts
the therapeutic efficacies of existing cancer immunotherapies [5,6]. Although the cancer
immunotherapy landscape is currently dominated by ICBs and ACTs, cancer vaccines that
are supported by clear rationale and encouraging preclinical data for further development
also appear promising [7,8].

Cancer vaccines carry distinct benefits that address the limitations of currently popular
ICBs and ACTs. They can target an additional broader set of intracellular antigens, unlike
ACTs that target distinguished tumor-specific surface antigens and require optimal target
selection to circumvent antigen escape and “on-target off-tumor” toxicity [9,10]. They
can also prime naïve tumor-reactive CD8+ T cells unlike ICBs, which are only responsive
in patients with pre-existing antitumor immunity [11,12]. Cancer vaccines can also be
implemented as a part of multimodal immunotherapeutic regimens.

Cells 2023, 12, 2147. https://doi.org/10.3390/cells12172147 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12172147
https://doi.org/10.3390/cells12172147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-5637-121X
https://doi.org/10.3390/cells12172147
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12172147?type=check_update&version=1


Cells 2023, 12, 2147 2 of 36

Therapeutic cancer vaccines are designed to stimulate the patient’s antigen-specific
adaptive immune response to eliminate cancer cells and generate durable patient re-
sponses [13]. Their purpose to eradicate cancer cells via antigen-specific cellular immunity
is what makes them different from traditional preventative vaccines [14,15]. Cancer vaccine
activity is mostly dependent on activated antigen-specific CD8+ T cells that differentiate
into CD8+ TEFF or cytotoxic T lymphocytes (CTLs) to reject cancer cells [15]. Therefore,
vaccine-elicited CD8+ T cells should ideally be of high T cell avidity or antigen-triggering
sensitivity to recognize immunogenic peptide-major histocompatibility complex class I
(pMHC I) complexes and effectively eliminate cancer cells [16,17]. In addition, vaccination
should generate long-lived memory CD8+ T cells to prevent tumor relapse [18]. To achieve
the ideal vaccine-elicited immune responses, the protective role of immune system com-
ponents, including antigen presentation by appropriate APCs, induction of CD4+ TEFF or
T helper (Th) cells, and suppression of immunosuppressive regulatory T cells (Treg) and
TME, are also required [18–20].

Dendritic cells (DCs) are the most potent group of specialized APCs with key roles in
initiation and regulation of innate and adaptive immune responses [21,22]. DCs comprise
heterogenous populations, which can be broadly classified into conventional DCs (cDCs),
consisting of two subsets (cDC1, cDC2), plasmacytoid DCs (pDCs) and monocyte-derived
DCs (MoDCs), based on their ontogeny [23–25]. Recently, additional subsets and states
of DCs such as DC3 are being revealed with advances in high-throughput single-cell
analysis, which would facilitate a more accurate understanding of the functions and
development of DCs [26–34]. As DCs initiate and modulate antigen-specific immunity
and tolerance, the exploitation of their antigen-presenting capacities and heterogeneity
provides great potential for improving antitumor immune response elicited by therapeutic
vaccines [7,18,35].

DCs patrol their environment until they become activated upon encountering foreign
pathogens or altered cells such as cancer cells as illustrated in Figure 1 [36]. Exogeneous
danger signals, such as pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs), activate and determine DC functions via pattern
recognition receptors (PRRs), including Toll-like receptors (TLRs) [37,38]. DCs then mi-
grate to tumor-draining lymph nodes (TDLNs) and perform cross-presentation, which is a
process where the acquired exogenous antigens are presented on MHC I molecules [39].
Activated, mature, antigen-loaded DCs cross-prime naïve T cells into antigen-specific TEFF
cells, including CD4+ Th cells and CD8+ CTLs via T cell receptors (TCRs), and regulate
immunogenic responses depending on the DC-derived cytokine environment [40–43].
Cross-presentation is essential to activate and cross-prime CTLs for defense against tu-
mors [44]. However, the challenge to enhance cross-presentation abilities of DCs for
effective cross-priming of CTLs often remains unmet in cancer immunotherapy [39,45]
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Figure 1. Schematic diagram of tumor antigen cross-presentation by DCs to T cells in TDLNs. DAMPs
from tumor cells activate DCs by binding to PRRs in the TME. Mature DCs capture tumor antigens
and migrate to TDLNs to perform cross-presentation by presenting acquired tumor antigens on MHC
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I molecules. Activated, mature, antigen-loaded DCs then cross-prime naïve T cells into antigen-
specific TEFF cells including CD4+ Th cells and CD8+ CTLs via TCRs. Cross-presentation allows the
activation and cross-priming of CTLs to induce effective antitumor responses. DC: dendritic cell;
TDLNs: tumor draining lymph nodes; DAMP: damage-associated molecular patterns; PRRs: pattern
recognition receptors; TME: tumor microenvironment; MHC I: major histocompatibility complex I;
MHC II: major histocompatibility complex II; TEFF: effector T cells; CD4+ Th cells: CD4+ T helper
cells; CD8+ CTLs: CD8+ cytotoxic T lymphocytes; TCR: T cell receptor.

2. Classical DC Vaccine

The two conventionally adapted methods for preparing DC-based vaccination are ex
vivo differentiation of DCs from CD14+ monocyte precursors or CD34+ hematopoietic stem
and progenitor cells (HSPCs) and direct targeting of antigens to DCs in vivo [20,46].

Reinfusion of ex vivo manipulated DCs is the most explored preparation method
of DC-based vaccines, which is used in approximately 97% of clinical trials [47]. In this
approach, CD14+ monocytes or CD34+ HSPCs are collected from patients by leukaphere-
sis, differentiated into immature DCs in the presence of granulocyte macrophage-colony
stimulating factor (GM-CSF) and interleukin-4 (IL-4), and simultaneously pulsed with
tumor-associated antigens (TAAs) or tumor cell lysates while being stimulated in a mat-
uration cocktail (Figure 2A) [46,48–50]. In most clinical studies, CD14+ monocytes are
preferentially used to be differentiated into MoDCs because it is relatively easier to col-
lect enough CD14+ monocytes as they represent 10% of peripheral blood mononuclear
cells (PBMCs) [47]. Although CD34+-derived heterogenous APC populations were shown
to stimulate CTLs more significantly than MoDCs (NCT00700167, NCT01456104), the
limited numbers of CD34+ HSPCs (represent 0.1% of PBMCs) that can be isolated from
apheresis products hinder them from clinical applications [51–53]. Due to the absence of
standardized preparation of ex vivo manipulated DC vaccines, different studies follow
various methods for DC sourcing, maturation, antigen loading, and administration [47].
So far, only sipuleucel-T (Provenge), the first FDA-approved therapeutic cancer vaccine,
has demonstrated a satisfactory efficacy in phase III trials as an autologous ex vivo DC
vaccine for metastatic castration-resistant prostate cancer (NCT00065442) [54–56]. The com-
bination of Provenge with ICBs and a homeostatic cytokine IL-7 that enhances T and B cell
development and proliferation has demonstrated encouraging clinical efficacies (Phase I,
NCT01832870; Phase II, NCT01804465, NCT01881867) [57–59].

Another strategy that aims to directly target antigens to endogenous DCs in vivo has
been explored to overcome the limitations of ex vivo manipulated DC vaccines [60]. This
strategy involves antigen coupling to monoclonal antibodies (mAb) that are specific to
DC surface molecules, including Clec9A, CD40, or DEC-205, to directly pulse DCs with
antigens in vivo [61–65]. Despite effective TEFF-mediated antitumor responses and humoral
immunity demonstrated in preclinical and clinical studies, clinical implementations have
been discouraging [66]. Some of the drawbacks of this approach may be the requirement
to ensure expressions of targeted receptor in the selected DC subpopulation and to co-
administer DC maturation agents to prevent antigen tolerance in steady state [46,64,67].
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Figure 2. Schematic diagram of conventional ex vivo MoDC-derived DC vaccine and new gener-
ations of DC vaccines. (A) Patient’s PBMCs are obtained by leukapheresis and CD14+ monocytes
are selected by plastic adherence or immunomagnetic beads. Monocytes are differentiated into
immature DCs in the presence of GM-CSF and IL-4 on day 6. Immature DCs are then matured in a
maturation cocktail consisted of TNF-α, IL-1β, IL-6, and PGE2, while being simultaneously pulsed
with autologous tumor cell lysates or antigens on day 7 for 48 hours. The mature, antigen-loaded DCs
are reinfused to the patient. (B) Biomaterial-based DC vaccine uses PLG scaffold and hydrogel, which
can encapsulate chemoattractant, TLR agonist, tumor cell lysates, and/or metabolism inhibitors
or checkpoint inhibitors. PLG scaffold and hydrogel can be implanted or injected, respectively,
into the patient to recruit, mature, and activate endogenous DCs in situ. ICD-based DC vaccines
use radiotherapy, PDT, or PTT to generate an in situ DC vaccine, which may be facilitated by other
adjuvants, immunotherapies, and/or chemotherapy, and combined with biomaterials to enhance
the vaccine-induced immune response. mRNA-pulsed DC vaccines involve the electroporation of
immature DCs with mRNAs that encode tumor antigens, adjuvants, immunostimulatory ligands,
and/or cytokines. DCsEV-based vaccines also make use of immature DCs, which are matured and
antigen-loaded with maturation cocktail and tumor peptides or proteins. sEVs secreted from matured,
antigen-loaded DCs are collected and undergo surface modifications to enhance their immunogenicity
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and are injected to the patient. Tu-sEV-based DC vaccines manipulate cancer cells and/or Tu-sEVs to
increase the levels of cross-presentation by Tu-sEVs. This may be achieved by transducing tumor cells
with viral vectors transfected with genes encoding immunogenic antigens, performing surface modifi-
cations, and/or directly modifying Tu-sEV surface. DC: dendritic cell; MoDC: monocyte-derived DCs;
PMBC: peripheral blood mononuclear cells; GM-CSF: granulocyte-macrophage colony-stimulating
factor; IL-4: interleukin 4; Ag: antigen; TNF-α: tumor necrosis factor α; PGE2: prostaglandin
E2; PLG: poly(lactide-coglycolide); TLR: toll-like receptor; CpG-ODN: CpG oligodeoxynucleotides;
ICD: immunogenic cell death; PDT: photodynamic therapy; PTT: photothermal therapy; sEV: small
extracellular vesicle; DCsEV: DC-derived sEV: Tu-sEV: tumor-derived sEV.

3. Limitations of Classical DC Vaccine

Despite the early success of Provenge and generally accepted safety of conventional
DC-based cancer vaccines, their clinical implications have generally been unsuccessful,
with only 5–15% of patients benefiting from an objective immune response [68]. The limited
efficacy of cancer vaccines may be mainly due to the presence of multiple immunosup-
pressive factors in the TME that act as immune rheostats or immunostats in short. In
other words, the immunosuppressive factors modulate the antitumor T cell responses
and act as a common rate-limiting step in clinical studies that altogether limit the clinical
efficacies of cancer vaccines [69]. New generations of DC vaccines must therefore over-
come multiple immunosuppressive mechanisms in the TME to improve TEFF-mediated
antitumor responses.

Solid tumors produce soluble immunosuppressive mediators, such as indoleamine
2,3-dioxygenase (IDO), transforming growth factor beta (TGF-β), and vascular endothelial
growth factor (VEGF), which not only suppress Th1 cells and CTL activity but also impair
DC functions [70–72]. In addition, the TME attracts immunomodulatory populations such
as Tregs and myeloid derived suppressor cells (MDSCs) and suppresses TAA expression
to achieve immune evasion [73–75]. Tumor cells may also evade immune recognition
by the overexpression of immune checkpoints such as cytotoxic T-lymphocyte antigen-
4 (CTLA-4) and programmed cell death protein 1 (PD-1) [76]. Therefore, combination
therapies incorporating ICBs and DC-based vaccines are being actively studied as potential
improved therapeutic regimen (NCT01067287, NCT03035331, NCT04203901). Altogether, it
is important to note that the effectiveness of DC vaccines may be altered post-administration
of in vitro-modulated DCs to an in vivo immunosuppressive environment [21].

Despite MoDCs being the most adopted subset in clinical trials for DC vaccines, it
remains unclear which subset is the most effective. Ex vivo generated MoDCs are suggested
to be functionally dissimilar to the steady-state DC subsets present in the body, revealed
by the disparities between their immune system-related transcripts at both transcriptional
and phenotypical levels [20,77]. Moreover, the immunosuppressive TME limits the cross-
presentation and T cell stimulation abilities of tumor-associated MoDCs [78]. In fact, studies
suggest that endogenous DCs are required for T cell priming, as the capacity of ex vivo
manipulated MoDCs as effective APCs in vivo is obscure [79]. In addition, MoDCs in the
TME have limited capacity in migration to TDLNs [80,81]. The optimization of effective DC
migration is thus another obstacle in the conventional DC vaccine regimen. To circumvent
the complex migration cascade required for efficient homing of DCs to the TDLNs, in situ
targeting of DCs has been proposed as an attractive alternative [82].

Therefore, a new generation of DC-based vaccines that incorporates heterogenous
subsets of DCs to resemble the in vivo environment more closely may be beneficial [83].
For instance, both cDCs and pDCs have the potential to directly activate T cells in certain
environmental cues [83]. Therefore, vaccines that can enhance the function of all DC subsets
and cells that crosstalk with them may maximize tumor-specific T cell priming efficacy
and vaccine longevity. In addition, ex vivo manipulation of MoDCs also requires extensive
in vitro culture, which often disturbs their functionalities [68]. On top of this, despite the
good safety profile of MoDC-based vaccines, their production according to good manu-
facturing procedure is highly expensive and laborious with inconsistent success [47]. The
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ultimate goal is to design new generations of immunotherapies that sustainably increase the
magnitude of DC cross-presentation presentation and TEFF-derived antitumor immunity.
Figure 2B illustrates the recent advances in DC-based vaccine regimen, which are discussed
in detail below.

4. Biomaterial-Based DC Vaccines

The limited efficacies of conventional ex vivo differentiated DC vaccines were partially
due to their inefficient migration to TDLNs and cross-presentation abilities when compared
to endogenous DCs [51,52,81]. To overcome such limitations, several biomaterial-based
strategies that directly target antigens to endogenous DCs have been developed [84].
These new strategies consist of implantable or injectable biomaterial-based scaffolds that
allow in situ trafficking and the modulation of endogenous DCs [46]. The biomaterials
are established to provide a spatiotemporally controlled delivery of chemoattractants,
antigens, and adjuvants to recruit and activate desired endogenous DC populations [85].
The biomaterial-based scaffolds also regulate the kinetics of antigen exposure, which
is critical in developing antigen-specific T cell response [86–88]. Moreover, unlike the
traditional bolus vaccination strategy that delivers vaccine components in suspension over
a short period of time, biomaterial-based scaffolds offer a new biomimetic immunogenic
microenvironment in the body where DCs are activated and sustainably provided with
antigens and stimulatory molecules over a period of at least two weeks [89,90].

Several implantable three-dimensional biomaterial-based scaffolds are based on a
porous structure composed of poly(lactide-coglycolide) (PLG) [89]. PLG is FDA-approved
for clinical use, prone to surface modification to enhance its unique scaffold characteristics,
biocompatible, and biodegradable [91]. It has been shown that PLG scaffolds can encap-
sulate DC chemoattractants such as GM-CSF, and gradually release them over 15 days
post-implantation [89,92]. In addition, PLG matrices are able to immobilize CpG-rich
oligodeoxynucleotides (CpG-ODN), which are agonists of TLR9, as danger signals to
activate DCs [9,93]. The spatiotemporal delivery of GM-CSF and CpG-ODN formula-
tion via PLG matrices have successfully attracted and activated DCs in situ and induced
prophylactic immunity against inoculations of murine B16-F10 melanoma cells [89].

In a subsequent study, a PLG scaffold that contained GM-CSF, CpG-ODN, and
melanoma tumor lysates were assayed in B16-F10 murine melanoma models. Of note, the
scaffold successfully recruited and activated heterogenous DC subsets, both pDCs and
CD8+ cDCs [94]. Moreover, simultaneous trafficking and activation of pDCs and cDCs led
to local accumulation of CTLs and superior antitumor responses than targeting a single DC
subset [83]. Conventional ex vivo-developed cancer vaccines are unable to fully recapitu-
late the broad DC responses in vivo. Therefore, in situ generation of a heterogenous DC
subsets by implantable immunostimulatory PLG matrices to activate robust CTL responses
against established tumors is remarkable [94]. In addition, two-time vaccination with the
PLG matrices led to a complete regression of established melanoma in ~47% of mice in
preclinical studies, supporting the therapeutic efficacies of PLG scaffold vaccines [94]. The
PLG matrices also increased the local production of IL-12, a Th1-promoting cytokine, which
may be attributed to the CD8+ cDCs recruited that are adept at IL-12 production and CTL
induction [95–97]. Vaccine efficacy highly correlated to the quantities of recruited CD8+

cDCs and pDCs, together with local GM-CSF and IL-12 concentrations [98]. Of note, the
accumulation of CD8+ cDCs at the vaccine site is a marked feature of this strategy as CD8+

cDCs typically localize at secondary lymphoid structures [99]. It is suggested that the
recruited pDCs supported the activation of CD8+ cDCs and priming of Th1 cells and CTLs,
thereby inducing prophylactic immunity against tumor. In contrast to other vaccines that
only incorporated GM-CSF as an adjuvant and showed a significant Treg increase at the
vaccine site, the PLG matrix also incorporating CpG-ODN counteracted the immunosup-
pressive mechanisms as CD8+ CTLs outnumbered Tregs [100]. This acellular PLG scaffold
in concert with GM-CSF, CpG-ODN, and TAAs may also be adapted for other types of
solid cancers. A human version of this vaccine, named WDVAX, is currently in a phase I
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clinical trial for stage IV melanoma (NCT01753089) [90]. Furthermore, a combination of
this PLG matrix with anti-CTLA-4 mAbs augmented vaccine-induced CTL activity and
overall survival and led to tumor regression in B16-F10 melanoma mouse models [101].
This combination approach also obviated the need for multiple PLG vaccination, which
may be attributed to the synergistic activation of multiple DC subsets and tumor-infiltrating
CD8+ T cells [101].

The biomaterial-based vaccination system has expanded to injectable biomaterials
such as hydrogels [46,102–104]. Alginate hydrogels are often obtained by cryogelatination,
a technique which augments mechanical stability, pore connectivity, and shape memory to
the injected hydrogels [105–108]. Injectable alginate gels are biocompatible and elicit a mild
host response in vivo while providing sustained release of molecules [109–111]. In addition,
these gels do not require surgical implantation, unlike PLG scaffold vaccines, to provide
a niche for immunomodulation [112]. One of the challenges of ex vivo differentiated DC
vaccine is the short half-life of pMHC on short-lived DC [113]. The alginate matrix may act
as a local depot for antigens or pMHC to attract local DCs and sustain TEFF cell stimulation.
Notably, the total number of local DCs recruited into the alginate gel was sustained [114].
Moreover, similar to the PLG scaffold that delivered GM-CSF and CpG-ODN, alginate
hydrogel loaded with irradiated B16-F10 melanoma cells, GM-CSF, and CpG-ODN also
elicited local infiltrations of cDCs and pDCs into the gel in a spatiotemporal manner in
syngeneic mice [89,115]. The accumulation of a larger spectrum of DC subsets in situ
elicited by these biomaterial scaffolds confer sustained DC functions and numbers, in
contrast to conventional adoptive transfer ex vivo vaccines [79,93,116].

Combinatory strategies of loading other immunomodulatory agents in hydrogel-based
platforms such as metabolism inhibitors or checkpoint blockades were found to augment
antitumor immune response [117–119]. Metabolism inhibitors are envisioned as alterna-
tives to more toxic cytokines that can counteract the immunosuppressive T cell activities.
For instance, epacadostat, a small molecule inhibitor of IDO that suppresses TEFF, activated
CD8+ T cells and suppressed the proliferation of Tregs [72,120,121]. Spatiotemporal con-
trolled delivery of metabolism inhibitors via biomaterial scaffolds facilitated in improving
poor pharmacokinetics and metabolic interventions [117,118,122]. Peritumoral injection
of a hydrogel encapsulating GM-CSF and epacadostat in mice with subcutaneous (s.c.)
4T1 breast cancer cells recruited greater intratumoral (i.t.) cDCs with a 12-fold increase
and upregulated expressions of a DC maturation marker CD86 compared to those injected
with blank gels [123]. Moreover, the hydrogel successfully regulated the TME, as increased
CTLs/Treg ratio and upregulated expression of T cell activation and proliferation marker
CD69 on tumor-infiltrating CD8+ T cells was observed [123]. However, epacadostat does
not completely inhibit the production of kynurenine (Kyn), a tryptophan catabolite by
IDO, which promotes Treg and tumor-associated macrophage differentiation. Thus, epaca-
dostat has failed to improve survival in Phase III clinical trials (NCT02752074) [124–127].
To address this limitation, one study reported a synergistic effect of alginate gels and a
localized chemo-immunometabolic therapy in augmenting T cell activity and systemic anti-
tumor immunity in poorly immunogenic 4T1 breast cancer and B16-F10 melanoma mouse
models [128]. Enzyme-mediated Kyn elimination and chemotherapeutics were achieved
by integrating kynureninase (KYNase) and a chemotherapeutic drug doxorubin (DOX)
in alginate gels loaded with GM-CSF and CpG-ODN [128–130]. Previous studies have
demonstrated increased in situ DC recruitment and systemic tumor-specific CD8+ T cells
upon injection of alginate gels loaded with GM-CSF, CpG-ODN, and DOX conjugate [131].
The combinatory approach with chemo-immunometabolic therapy via alginate-based DC
vaccine extended the systemic antitumor response, as numbers of tumor-specific CD8+ T
cells increased in TDLNs, which could also induce abscopal effect in untreated tumors [128].

The spatiotemporal control of tumor antigens and different immunoadjuvants by
the biomimetic biomaterial-based scaffolds successfully recruited endogenous DCs in situ
and produced a more robust antitumor response. The scaffolds may incorporate different
immunostimulatory molecules, metabolism inhibitors, and/or checkpoint blockades to
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maximize DC recruitment and activation, along with tumor-specific T cell responses, as
well as modulating other immunosuppressive cells to modulate the TME. Although some
scaffolds require surgical implantation and multiple doses, the recent development of
injectable 3D structures and combination therapies alleviates such limitations and bypasses
multiple immunizations [132,133]. Further studies are expected to provide more promising
results of clinical implications of biomaterial-based DC vaccines.

5. Combinatory Immunogenic Cell Death-Inducing DC Vaccines

Conventional DC vaccines encounter unresponsiveness in cold tumors in which
DC recruitment is defective, and thus T cell priming, activation, and infiltration are im-
paired [134–136]. Recently, increasing numbers of studies have shown that the induction
of immunogenic cell death (ICD) is promising in converting cold tumors into hot tumors,
thereby improving the immunogenic potential of DC vaccines in cold tumors [137–139].
ICD is a form of stress-induced regulated cell death response via different organellar and
cellular stressors [140–142]. ICD is induced in cancer therapy by most common clinical
treatments such as chemotherapy and radiotherapy, or emerging therapies such as photo-
dynamic therapy (PDT) and photothermal therapy (PTT) [143–147]. ICD-inducing therapy
is an attractive antitumor strategy for various solid tumors in view of its consequent anti-
genicity and adjuvanticity [144,148–150]. The antigenicity of ICD is determined by the
level of tumor antigens from dying tumor cells [151–153]. The induction of ICD stimulates
tumor cells to secrete, release, or surface-expose DAMPs and cytokines as adjuvants or
danger signals [154–156]. Once emitted by dying cells, DAMPs recruit and activate innate
and adaptive immune cells to elicit a specific antitumor immune response [155,157–159].
Antigenicity and adjuvanticity of anticancer treatment-induced ICD are critical for the de-
velopment of long-term immunological memory against residual cancer cells and metastatic
cells [160–162].

Canonical immunostimulatory DAMPs include, but are not limited to, calreticulin
(CRT), heat shock proteins 70 (HSP70), high-mobility group box 1 (HMGB1), and ATP, and
are associated with immunogenicity induced by DCs [140,161]. CRT confers immunogenic-
ity by promoting phagocytosis of dying cells by DCs as an ‘eat-me’ signal [163,164]. Exoge-
nous ATP, on the other hand, constitutes a ‘find-me’ signal that promotes DC recruitment
and migration [165,166]. HMGB1 promotes activation, maturation, and cross-presentation
abilities of DCs, while HSP70 increases the uptake of tumor cells and stimulates the migra-
tion and maturation of DCs [167–170]. Therefore, ICD activates tumor-specific immunity
by tipping the cancer-immunity balance towards antitumor immunity while eradicating
cancer cells and generating antigens in situ, which is in line with the objectives of cancer
vaccines [69,139,171].

Radiotherapy not only induces ICD and abolishes highly proliferative cancer cells, but
also promotes an abscopal effect, which is a rare phenomenon of tumor regression outside
the field of local therapy [135,172,173]. However, tumor-specific immune response and
abscopal effect induced by standalone radiotherapy are limited in immunosuppressive
TME [137,174]. Moreover, radiotherapy can further exacerbate negative regulatory mech-
anisms by insufficient T cell priming and enhanced levels of Tregs and MDSCs [175,176].
To overcome the complex interaction between TME and radiotherapy, a combination of
radiotherapy and immunotherapy is envisioned to generate an in situ cancer vaccine
and enhance antitumor responses and abscopal effects [177]. Local administrations of
immunostimulatory agents, along with radiotherapy, are increasingly being investigated to
activate immature tolerogenic DCs into immunogenic DCs in established tumors. Many
preclinical studies provided evidence that TLR agonists targeting TLR3, TLR9, and TLR4
together with local radiotherapy led to enhanced antitumor immunity [178]. The TLR3
agonist poly-ICLC was utilized to activate endogenous DCs together with Fms-like tyrosine
kinase 3 ligand (Flt3L) as an adjuvant along with local radiotherapy as a treatment strategy
for indolent non-Hodgkin’s lymphoma (iNHL) [179]. Such a combination functioned as
an in situ vaccine, inducing greater i.t. infiltration of CD8+ T cells, DC activation, and



Cells 2023, 12, 2147 9 of 36

cross-presentation [179]. Similarly, i.t. administration of Flt3L, local radiotherapy, and TLR3
stimulation followed by surgical resection demonstrated a potential multimodal therapy
that can generate tumor-specific CTLs, achieve improved systemic tumor remission from
40% to 80%, and delay metastases in highly metastatic tumors [180]. Of note, both regi-
mens observed increased expressions of PD-1 on CD8+ T cells, and thus synergized with
PD-1/PD-L1 blockade to improve systemic tumor control and prolong survival [179,180].

These preclinical studies prompted a phase I/II trial of i.t. injection of Flt3L and
poly-ICLC combined with radiotherapy in lymphoma patients (NCT01976585), which
consistently demonstrated increased levels of PD-1+ CD8+ T cells and clinical efficacies.
Furthermore, to confirm that ICB and radiotherapy synergistically facilitate antitumor
immune response, a follow-up phase I/II clinical trial (NCT03789097) was performed. This
demonstrated tolerability and early signs of efficacies in patients with iNHL, metastatic
breast cancer, and head and neck squamous cell carcinoma [181]. Several clinical studies
have also demonstrated that the combination of TLR9 agonist CpG-ODN and radiotherapy
in various cancer models achieved systemic antitumor immunity and patient responses
(phase I/II, NCT00185965; phase II, NCT00880581) [182,183]. These studies altogether
support the combination of radiotherapy and immunotherapy in inducing synergistic
effects that restrain not only local tumor growth but also distant metastases. The expansion
of radiotherapy combined with immunotherapy may yield superior antitumor immunity
compared to combination immunotherapies, which may result in increased toxicity [179].
While the combination of radiotherapy with other ICBs, such as CTLA-4, has also been
robustly investigated (phase I/II, NCT00323882, NCT02221739; phase III, NCT00861614),
further preclinical and clinical studies will demonstrate the promise of various combination
strategies to build a robust in situ radiotherapy-based DC vaccine [184–187].

PDT-induced therapeutic ICD strategies have also been shown to be effective in
various types of cancer and were approved by FDA [188]. PDT involves the use of a
photosensitizer which is excited by a light of specific wavelength corresponding to the
absorption spectrum of the photosensitizer in the presence of oxygen [151,189]. This results
in the generation of singlet oxygen and other cytotoxic oxidants that trigger ICD in cancer
cells [190]. Photosense (PS), a clinically approved photosensitizer, was found to successfully
trigger ICD in several cancer cell types, including GL261 glioma cells [191]. ICD induced by
PS-mediated PDT (PS-PDT) emitted CRT, HMGB1, and ATP, which successfully matured
and activated DCs in vitro that produced IL-6 for T cell priming [191,192]. To demon-
strate the efficacy of PS-PDT as a vaccine regimen, DCs were loaded ex vivo with GL261
glioma cells undergoing ICD post-PS-PDT (DC-GL261_PS-PDT) [160]. DC-GL261_PS-PDT
not only protected mice against orthotopic challenge with GL261 cells prophylactically
but also protected them therapeutically [160]. Moreover, the vaccinated mice showed
significantly lower tumor mass, later onset of symptoms, and a significantly increased
survival compared to control mice which were vaccinated with either PBS or freeze-thawed
(F/T) GL261 cells [160]. Importantly, the DC vaccine pulsed with PS-PDT-induced dy-
ing cancer cell is proposed as an attractive approach for producing whole-tumor derived
tumor-specific antigens (TSA) that may provide superior efficacy compared to conventional
F/T cell lysates which often lead to weak immunogenicity and unregulated cell death by
accidental necrosis [160,163,193,194]. In contrast to non-mutated self-antigen TAAs, TSAs
or neoantigens are recognized as non-self-antigens that are generated by cancer cells as a
result of tumor-specific alterations, such as mutation, RNA splicing, and post-translational
modification [195]. Several studies have shown that using F/T cells as vaccines failed to
generate antigen-specific CD8+ T cell-mediated immune responses [163,196–199].

It is noteworthy that autologous tumour cells possess a full repertoire of personal
mutant TSAs including those that could be crucial for tumour rejection, which are ab-
sent in allogeneic tumor cell lines [200]. To promote antitumour immunity in a patient-
personalized manner, a study developed an in situ DC vaccine that is administered via
a single low-dose intravenous (i.v.) injection of an artificial vesicle polymersomal com-
bination along with PDT without the need of loading DCs ex vivo [143]. A chimeric



Cells 2023, 12, 2147 10 of 36

polymersome (CCPS) co-encapsulated a low-dose of DOX and PS. Chemotherapeutic agent
DOX and PS-PDT induced ICD by releasing HMBG1 and CRT and forming reactive oxygen
species [143,201]. Moreover, CCPS embedded with amine groups served as adjuvants and
enhanced DC maturation and cross-presentation abilities by 19-fold compared to negative
control group [202]. MC38 colorectal cancer-bearing mice treated with a single i.v. injection
of CCPS_DOX_PS-PDT showed the highest serum levels of proinflammatory cytokines,
IL-6, IL-12, and TNF-α, and the prominent elimination of primary tumors [143,203,204].
Furthermore, levels of mature migratory DCs and tumor-infiltrating CTLs were elevated
in CCPS_DOX_PS-PDT vaccinated mice compared to those vaccinated with CCPS encap-
sulating DOX or PS alone, suggesting the importance of co-encapsulation of DOX and
PS in developing immunogenicity via PDT. In addition, a significant abscopal effect was
observed in mice treated with CCPS_DOX_PS-PDT [143]. Such a combination in in situ DC
vaccines incorporating synthetic delivery vehicles, chemotherapeutic drugs, and PDT may
potentially enhance DC maturation and therapeutic vaccine efficacy.

PTT induces ICD for tumor ablation with the heat converted from near-infrared laser
(NIR) absorbed by photothermal agents that are accumulated in the tumor [205]. Recently,
combinations of PTT with other therapeutic modalities such as nanomaterials, immunother-
apies, or even PDT and conventional chemo- and radiotherapy were demonstrated to
provide additive or synergistic therapeutic efficacies [206–209]. In particular, multiple stud-
ies have demonstrated that PTT combined with immunotherapy augmented the immune
response by ICD of local cancer cells and the release of TSAs and cytokines, and inhibited
metastases [210–212]. One study established a combination of PTT with immune-adjuvant
nanomaterial that co-encapsulated a photothermal agent, indocyanine green (ICG), and
an immune adjuvant TLR7 agonist imiquimod (R837) in a PLG scaffold, forming a PLG-
ICG-R837 nanoparticle [213]. Upon NIR-induced PTT on primary tumors injected with
PLG-ICG-R837, enhanced levels of DC recruitment into the tumor site, DC maturation in
TDLNs, and sera levels of proinflammatory cytokines were observed [213]. Furthermore, it
was shown that this combination with ICB established abscopal effects after the ablation of
primary tumors and long-term anti-tumor immunogenicity, as secondary tumor growth of
4T1 breast cancer and CT26 colorectal cancer were completely inhibited [213]. Systemic ad-
ministration of this formulation followed by PTT also offered a strong antitumor response
without observable cytokine-storm-like side effects, supporting its efficacy in tumors that
can hardly be reached [213]. Synergistic interactions between PTT and other therapeutic
modalities, particularly immunotherapy, appear promising to enhance antitumor vaccine
efficacy and immunological memory besides minimizing metastases, encouraging further
studies [214].

6. mRNA-Pulsed DC Vaccines

The pulsing of DCs with tumor antigens is a widely used vaccination strategy in
which autologous DCs are loaded with antigenic information and matured under favorable
conditions [215]. The resulting DCs are then administered back into the patient to initiate
antitumor immune responses [215]. Antigens that are used to pulse DCs are commonly
obtained as whole-cell antigens from repeated F/T cancer samples and synthetic cancer
antigenic peptides [215–217]. Cancer antigenic peptides are used in many clinical trials,
but they involve substantial weaknesses [218]. For example, the selected peptides to be
synthesized require prior identification of human leukocyte antigen (HLA) types and have
HLA restriction of patients [219]. In addition, peptides may only serve to elicit either CD4+

or CD8+ T cell response, and the short half-life of HLA-antigenic peptide complex limits
durable antigen presentation [21,113].

mRNA has emerged as an appealing candidate that offers both antigen delivery and
innate immune activation under spatiotemporal control that circumvents the limitations
of common tumor antigen sources [220]. mRNA pulsing of DCs is widely recognized
due to its multiple advantages: the introduction of exogenous mRNA activates innate
immune cells by stimulating various TLRs such as TLR3, TLR7, and TLR8, presenting
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strong intrinsic adjuvanticity; does not integrate into the genome, avoiding any insertional
mutagenesis; can be readily produced in large amounts in vitro; can be engineered to
increase immunogenicity and reduce inhibition of its translation; not subject to splicing,
eliminating any uncertainty in protein products due to alternative splicing [215,221–224].

Since the feasibility of ex vivo mRNA-pulsed DC vaccine was first demonstrated
27 years ago, numerous preclinical and clinical studies have explored loading DCs with
mRNAs as a new vaccination strategy [218,225]. Multiple studies have confirmed the
ability of mRNA-pulsed DCs to induce potent tumor antigen-specific T cell responses
in vivo [226–229]. Among several strategies developed to introduce mRNA directly into DC
cytosol, electroporation has been demonstrated to be the most efficient method [230,231]. By
means of weak electric pulse, mRNA is rapidly integrated into the cytosol, which prevents
mRNA from degradation by ubiquitous extracellular ribonucleases [218]. Electroporation
also alleviates the potential alteration of DC immunophenotype, maturation potential,
migration capacity, and T cell-stimulatory potential [232,233].

DCs may be pulsed with mRNA from either source: whole tumor-derived mRNA
or in vitro transcribed mRNA [218,234]. Tumor-derived mRNAs allow the delivery of
complete repertoire of epitopes expressed in tumor, which circumvents immune escape due
to antigen loss or downregulation [218]. The safety of autologous tumor mRNA-pulsed
DC vaccines was demonstrated in clinical trials of various cancer types, including renal
cell carcinoma (Phase I, NCT00006431) and advanced malignant melanoma (Phase I/II,
NCT01278940) [235,236]. The latter study demonstrated vaccine-elicited T cell responses in
about 51% of the patients and significantly enhanced survival in immune respondents [237].
However, relatively large amounts of autologous tumor cells and adequate accessibility
of the tumor site are required to prepare whole tumor-derived mRNA [220]. In addition,
tumors express many other molecules besides TSAs, such as self-antigens and inhibitory
molecules [234]. These irrelevant peptides may become more abundant after a multitude
of steps involved in the in vitro amplification of tumor-derived mRNAs and promote the
under-representation and loss of immunogenic antigens or epitopes [238].

Therefore, in vitro generated mRNAs are preferentially employed in preparations
of DC vaccines [238]. Although the safety profiles of in vitro generated mRNAs have
been demonstrated in numerous clinical studies (Phase I/II, NCT00243529; Phase II,
NCT00965224, NCT01446731, NCT02285413) [219,239–242], general clinical efficacies have
been low due to the weak induction of T cell responses [220]. Thus, modifications to
enhance the expression of mRNA-encoded antigen and translational efficiency and to
diminish mRNA extracellular degradation level were performed [243]. Moreover, it has
become increasingly clear that CD4+ T cells, especially Th1 cells, are important contributors
in the antitumor activity on top of CD8+ T cells, and that they are essential for the formation
of memory CD8+ T cells [244–246]. However, antigenic peptides that are processed from
mRNA-encoded antigenic proteins in the cytosol of DCs and presented onto MHC I are
only capable of stimulating CD8+ T cells. Since the activation of CD4+ T cells depends
on MHC II presentation pathway, antigens are targeted to lysosomes by means of fusion
to lysosomal sorting signals such as lysosome-associated membrane protein-1 (LAMP-1)
or MHC I trafficking signal (MITD) [247–249]. Such LAMP-1- or MITD-fused chimeric
proteins are processed and presented onto both MHC I and II to expand both CD4+ and
CD8+ T cell responses and improve effector functions [219,250]. Clinical studies investi-
gating the effect of LAMP-1 mRNA-loaded DC vaccines in glioblastoma have observed
exceptional tumor-specific CD4+ and CD8+ T cell response and extended overall patient
survival (Phase I, NCT00626483, NCT00639639; Phase II, NCT02366728) [251,252].

To further ameliorate DC vaccine efficacy, strategies that co-transfect DCs with mRNAs
encoding immunostimulatory ligands and receptors to enhance DC maturation and T cell
co-stimulation have been developed [220]. In preclinical studies, co-transfection with mR-
NAs encoding CD83, OX40 ligand (OX40L; CD134), 4-1BB ligand (4-1BBL; CD137L), CD40
ligand (CD40L), and glucocorticoid-induced tumor necrosis factor receptor ligand (GITRL)
have shown enhanced DC co-stimulation and T cell priming [253–257]. Co-administration
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of antigenic and 4-1BBL mRNA significantly increased tumor-specific CTL response com-
pared to only antigenic mRNA administration [256]. Another study demonstrated the
synergistic effect of 4-1BBL and CD40L mRNA co-stimulation on enhancing both CD4+

and CD8+ T cell responses and alleviating Treg-suppressed CD8+ T cell proliferation [258].
Rocapuldencel-T is currently the most clinically advanced mRNA-pulsed DC vaccine,
which integrates the co-transfection of autologous tumor-mRNA and CD40L mRNA [259].
However, it has failed to improve the overall survival of metastatic renal cell carcinoma
patients in combination with standard treatment despite its tolerability and capability to
increase T effector memory cells (TEM) [260]. Therefore, it led to withdrawal or termi-
nation of the clinical studies (Phase II, NCT02662634; Phase III, NCT01582672) [259,260].
Of note, TriMix formulation, a cocktail of mRNA-encoded adjuvants (CD70, CD40L, and
constitutively active TLR4) that can be electroporated together with antigenic mRNA(s)
was developed as an alternative approach [261–263]. Importantly, the electroporation of
mature DCs with TriMix demonstrated its ability to reprogram Tregs to Th1-like cells with
enhanced IL-12 secretion, therefore alleviating Treg inhibition of CD8+ T cells in vitro and
in vivo [263,264].

The combination of mRNA-pulsed DCs and ICBs has also been investigated to maxi-
mize vaccine efficacies. In a single-arm phase II clinical study (NCT01302496), patients with
stage III/IV malignant melanoma were treated with DCs, electroporated with TriMix, and
mixed with multiple LAMP-1-fused melanoma-associated tumor mRNAs (TriMixDC-MEL),
along with ipilimumab (IPI; CTLA-4 inhibitor) mAb [265]. The combination of TriMixDC-
MEL and IPI was well tolerated and resulted in durable tumor reduction in patients with
recurrent or refractory melanoma [266]. These promising preclinical data of co-transfection
with antigenic tumor mRNA and IPI mAb may also encourage ICBs of CTLA-4 and/or
PD-1 pathways [218]. Synergistic effects were observed in the co-transfection with mRNAs
encoding anti-CTLA-4 and anti-PD-1 mAbs, which were associated with higher overall
response rates and greater changes in tumor burden compared to single agent treatment,
conferring it as the first FDA-approved treatment for advanced-staged melanoma [267,268].
However, the association of anti-CTLA-4 mAb with severe adverse effects and the superior
efficacy and safety of anti-PD-1 mAb over IPI are encouraging more studies to focus on the
combination of TriMixDC-MEL with anti-PD-1 treatment [269–272].

Co-transfection of DCs with mRNAs encoding stimulatory cytokines was also em-
ployed to enhance DC maturation and T-cell priming in autologous DC vaccines loaded
with antigenic mRNA. Several stimulatory cytokines were explored, including GM-CSF,
IL-12, and IL-15 [273–277]. IL-12 is a potent cytokine that mediates the differentiation of Th1
cells and stimulates the cytotoxic abilities of natural killer (NK) cells and CTLs [278,279].
However, electroporation of IL-12 mRNA alone into DCs did not affect cell survival or
maturation status [280]. Bcl-2 is a critical pro-survival factor that exerts anti-apoptotic
functions [281,282]. One study demonstrated the synergistic effects of electroporation of
DCs with IL-12 and Bcl-2 mRNAs on priming CD8+ T cells and DC viability to assist
vaccine potency and clinical efficacy [280]. In addition, an ongoing phase I clinical trial, in
which IL-12 mRNA is administered intratumorally in combination with anti-PD-L1 mAb
durvalumab in patients with advanced solid tumors, has shown the safety and tolerability
of such combinational therapy (NCT03946800) [283,284].

In addition to ex vivo electroporation, several in vivo delivery methods to pulse DCs
using “naked” mRNA have been developed because the administration route and delivery
format considerably determines immune response [285]. For example, i.t. delivery of TriMix
induced the maturation and migration of tumor infiltrating DCs toward TDLNs, stimulating
antitumor responses against spontaneously acquired mRNAs [262,286,287]. The curative
potential of i.t. delivery of TriMix is suggested to exploit autologous tumor antigenic
repertoire without the need of tumor antigen co-delivery, and to stimulate CTLs against
various tumor antigens in situ [220,287,288]. A phase I study of i.t. delivery of TriMix in
patients with early breast cancer lesions is ongoing (NCT03788083) [287]. Intranodal (i.n.)
injection delivers mRNA directly into the secondary lymphoid structure, which offers the
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advantage of targeting antigen delivery at the site of T cell activation, obviating the need for
DC migration, and selective uptake by DCs to elicit prophylactic or therapeutic antitumor
responses [285,289]. Simultaneous i.n. co-delivery of TriMix and antigenic mRNA recruited
antigen-specific CD4+ and CD8+ T cells, and CTLs against various TAAs [264]. Clinical
trials have also demonstrated the safety and tolerability of i.n. administration of TriMix
combined with mRNAs, encoding melanoma-specific TAAs in patients with resected
melanoma (Phase I, NCT03394937) [290,291]. Intradermal (i.d.) administration offers an
ideal site of delivery, as various APCs reside in the skin [285,292], and the efficacies of i.d.
delivery of self-adjuvanted mRNA-encoded TAAs have been established in various mouse
cancer models and clinical studies [293–295]. On the other hand, i.v. administration of
mRNA vaccines was concerned with rapid degradation of mRNAs by ribonucleases and
poor target expression in secondary lymphoid structures [285,288]. An mRNA–liposome
complex (mRNA-lipoplex) platform was generated to protect mRNA integrity and deliver
mRNAs to target DCs in lymph nodes based on the net charge of the platform particles upon
i.v. injection [13,296,297]. Since the safety of mRNA-lipoplex was demonstrated in animal
models, several clinical trials were initiated (Phase I, NCT02410733, NCT02316457) [298,
299]. Although numerous studies have shown efficacies of different mRNA-pulsed DC
vaccine administration strategies, it has yet to come to a consensus as to which elicits a
superior prophylactic or therapeutic response [218]. Recently, combining multiple routes
has been proposed to induce a more systemic immune response in clinical trials of i.d.
and i.v. administration of TriMix-MEL as a single agent (Phase Ib, NCT01066390; Phase II,
NCT01676779) and in combination with IPI (Phase II, NCT01302496) [265,300–302].

7. DC-Derived Small Extracellular Vesicle (sEV) Vaccines

The major limitations of using conventional MoDCs to prepare DC vaccines are the
immunosuppression in the TME, off-target toxicities, and the need for autologous cells [303].
To address such challenges encountered by conventional DC-based immunotherapies, cell-
free DC-based vaccines incorporating DC-derived small extracellular vesicles (DCsEV)
which are more resistant to immunosuppression are proposed [304]. Extracellular vesicles
(EVs) are lipid-bound vesicles released by all cellular organisms and play key roles in
intercellular crosstalk via the delivery of EV cargo, cell surface modifications, and target-
cell modulation [305]. Small EVs (sEVs) are one of the heterogenous subsets of EVs,
characterized by their size, and are of 30–150 nm or less than 200 nm in diameter [306].
EVs contain diverse cargo, including DNA, mRNA, non-coding RNAs, proteins, and
lipids [307]. DCs process exogenous antigens in endosomal compartments that can fuse
with the plasma membrane to release inert sEVs. DCsEVs play a significant role in DC-to-
cell communications via transferring cargos that contain proteins, metabolites, and nucleic
acids [304,308]. They carry functional surface antigenic pMHC I and pMHC II, as well as
co-stimulatory molecules (CD80/86), and are thus capable of priming antigen-specific CD8+

T cells [309]. Of note, DCsEVs present more pMHC complexes, especially 10 to 100 folds
greater pMHC II than DCs [304,310]. Additionally, they are highly biocompatible [309].
While maintaining the essential immunostimulatory properties of DCs, DcsEVs allow
for frozen storage and are more amenable to strict vaccine manufacturing processes, and
lack the risks associated with viable cellular or viral therapies such as the risk of in vivo
replication [304,311].

Despite the strong safety profiles of DCsEVs as cancer immunotherapy, previous
clinical trials of first-generation peptide-loaded DCsEVs from autologous MoDCs showed
limited efficacies (Phase II, NCT01159288) [312–314]. Such a limited immunizing capacity
may be due to the insufficient antigen presentation, elevation of Treg level, unknown effi-
ciency of in vivo DCsEV trafficking, and surface expression of immunoregulatory molecules
such as PD-L1 [312–314]. The second generation of DCsEVs were derived from IFN-γ-
matured MoDCs [312,315]. Notably, the maturation status of donor DCs influenced the
function of DCsEVs and shaped opposing immune responses [304,316]. DCsEVs derived
from mature, stimulated MoDCs promoted the exchange of functional pMHC complexes
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with DCs and enhanced antigen-specific T cell responses, while DCsEVs constitutively
released from immature DCs advanced T cell tolerance, Treg proliferation, and the sup-
pression of CD4+ T-helper 17 cells and their production of immunostimulatory cytokine
IL-17 [317,318]. IFN-γ-matured MoDCs generated DCsEVs that expressed elevated levels
of pMHC II, costimulatory molecules, and intercellular adhesion molecules (ICAMs; impor-
tant for DC homing to LNs), which thereby enhanced the immunostimulatory properties
of DCsEVs [304,317]. However, the antigen-specific T cell immune response of the second
generation of DCsEVs was still impeded, likely due to insufficient antigen presentation
ability and poor in vivo distribution [304]. Several clinical trials on the basis of autologous
DCsEVs are in the developing stages, as the safety of DCsEVs have been proved in clinical
trials and their prospects in cancer therapy remain promising.

Many studies focus on peptide- or protein-loaded DCsEVs from MoDCs. Other
types of DCsEVs that are capable of priming CD8+ T cell responses in vivo are needed
to expand the studies of DCsEVs. Despite the presumed tolerogenic role of pDCs in
tumors, several clinical trials have shown that vaccination with pDCs possibly leads to
the induction of antitumor CD8+ T cell immunity [319,320]. Recently, a new subset of
DCsEVs was discovered as the cross-presenting pDCs required bystander cDCs to cross-
prime CD8+ T cells in vitro and in vivo by transferring antigens via pDC-derived small
EVs (pDCsEVs) [321]. Therefore, pDCsEVs are suggested as a mean to integrate both cDCs
and pDCs in cancer vaccines to achieve better anti-tumor efficacy [319]. Although further
studies are needed to investigate whether pDCsEVs generated with pDC-targeted antigens
exhibit enhanced cross-presentation capacity similar to DCs targeted with antigens and are
capable of priming allogeneic CD8+ T cell response similar to protein-loaded DCsEVs, a
new subset of DCsEVs suggests a significant mechanism to enhance T cell cross-priming
and induce antitumor efficacy. While DCsEVs can potentially overcome the limitations
of MoDC-based vaccine, further investigations are needed to elucidate the underlying
mechanisms between DCsEVs and CD8+ T cell priming in vivo to advance their clinical
application [68].

Recently, a third generation of DCsEV-based cancer vaccines has been developed
using nanotechnology and molecular engineering [322]. DCsEVs are engineered to amplify
certain immunostimulatory characteristics [304]. A novel DCsEV engineering approach
has formed a “designer” vaccine as a universal immunotherapeutic strategy for hepa-
tocellular carcinoma (HCC) [309]. These engineered DCsEVs present an HCC-targeting
peptide P47, an antigenic epitope AFP212-A2, and a functional domain of high mobility
group nucleosome-binding domain (HMGN1; N1ND) as an immunoadjuvant to recruit
and activate DCs [309,323]. These engineered DCsEVs were i.v. injected and successfully
enabled tumor-targeted N1ND-mediated recruitment and activation of endogenous cross-
presenting DCs in the tumor of orthotopic HCC mice [309]. Moreover, antigen-specific
induction of tumor-specific T cell responses and tumor suppression was achieved, sup-
ported by the elevated levels of IFN-γ-expressing CD8+ T cell and decreased levels of
immunosuppressive cytokines such as IL-10 and TGF-β [324]. This study highlighted
the capacity of engineered DCsEVs to induce tumor-specific immune response and to be
presented as a generalizable approach as a personalized immunotherapy without having
to identify patient-specific TSAs [309].

In addition to engineering immunostimulatory activities of DCsEVs, the incorporation
of ICBs has been developed. A combination of DCsEVs and ICBs (anti-CTLA-4 therapy
or PD-1/PD-L1 blockade) may further enhance the cross-priming of CD8+ T cells and
alleviate the suppression of tumor-infiltrating CTLs [304,325]. For instance, anti-CTLA-4
mAb were anchored to the surface of DCsEVs derived from ovalbumin (OVA) antigen-
pulsed, activated, and TLR-3 agonist poly(I:C)-matured immature DCs. Poly(I:C) is also
a TLR-3 agonist from which its derivative poly-ICLC is generated [326]. This approach
generated a bifunctional CTLA-4-mAb-modified DCsEVs (DCsEV-OVA-mAb) [327,328].
Poly(I:C) was demonstrated to effectively activate DCs, augment cross-presentation to
CD4+ and CD8+ T cells, and enhance antitumor response in cervical cancer and melanoma
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immunotherapies. These poly(I:C)-matured DCs secreted DCsEVs with similar enhanced
antitumor functions [329]. These functionalized DCsEV-OVA-mAb were enriched in MHC I
and II and co-stimulatory molecule CD80. Compared to DCsEVs pulsed with OVA without
mAb engineering, DCsEV-OVA-mAb induced a stronger T cell activation and proliferation
in vivo, highlighting the importance of CTLA-4 mAb in the vaccine efficacy [327]. They
also quickly migrated to TDLNs upon s.c. injection, increased i.t. CD4+ and CD8+ T cell
migration, and significantly increased CTLs/Treg ratio in tumor [327]. Importantly, vacci-
nation with DCsEV-OVA-mAb generated the most TEM cells, in line with previous studies
that showed enhanced generation and function of CD8+ TEM cells post-CTLA-4 blockade
therapy [330–332]. Altogether, surface modification of DCsEV with the incorporation of
anti-CTLA-4 mAb provides a promising strategy to induce potent antitumor efficacy of
DCsEV vaccination against cancer [327].

Moreover, a platform of genetically engineered DCsEVs incorporated with anti-PD-1
antibody on the surface which allows a direct presentation of tumor antigens to CD8+ T
cells and stimulate strong CTL responses has been developed [333]. An immature DC2.4
cell line was engineered to display anti-PD-1-single-chain antibody fragment on their
membrane surface. These α-PD-1-DCs were then activated and matured by recombinant
adenovirus transduction of melanoma TSAs. The matured DCs were upregulated in
the expressions of pMHC I, anti-PD-1 antibody, costimulatory molecules (CD80/86), and
ICAM-I. The resultant DCsEVs collected and purified from these modified DCs were named
ASPIRE [333]. Importantly, ASPIRE expressed the same immunostimulatory molecules
as the engineered DCs. ASPIRE stimulated antitumoral CTL response in mice via direct
transfer of pMHC I complex to endogenous DCs instead of intermediate DCsEV uptake by
DCs, contrary to the mechanisms proposed by earlier studies [304,334,335]. When ASPIRE
was inoculated into B16-F10 melanoma tumor-bearing mice, complete tumor rejection was
achieved in all mice by successful migration of ASPIRE to TDLNs, where it contacted
and activated CTLs. In addition, ASPIRE resulted in less PD-1+ dysfunctional CTLs
in tumor-bearing mice than a combinatory treatment of unmodified antigen-presenting
DCsEVs along with a free PD-1 mAb. The potential clinical translation of ASPIRE needs
further investigation as it is currently unknown whether ASPIRE preparation can also
be implemented in standard source of human autologous MoDCs for clinical use and
whether it will establish similar immunostimulatory properties as the murine cell line
preparation [336]. Nonetheless, ASPIRE presents a novel therapeutic vaccine platform to
stimulate enhanced CTL immune response and overcome the immunosuppressive TME by
the incorporation of anti-PD-1 ICB in DCsEV vaccines.

To develop novel cancer vaccines using DCsEVs, which is a highly heterogenous
population that is often extremely difficult to obtain from a specific immune cell population
without contamination with sEVs from other cell types, detailed characterization and careful
collection of the sEVs are critical [306]. Recent progress in molecular engineering and the
delivery of immune modulatory adjuvants have indeed promoted the antitumor response
of DCsEV-based vaccines. Further understanding of sEVs, especially in their biogenesis
from immune cells and interactions with tumor and other cell types as well as in vivo
biodistribution tracking of them, are deemed as providing a significant breakthrough in
sEV-based therapeutics.

8. Tumor-Derived sEV Vaccines

In addition to DCsEVs, tumor-derived sEVs (Tu-sEV) are proposed to be utilized as a
source of tumor antigens to develop cancer vaccines [337]. Tu-sEVs share several similar
functional characteristics with DCsEVs, but they shuttle information between tumor cells
and the TME and are highly enriched in parental tumor antigens [338,339]. They also
express distinct sets of proteins that facilitate their binding to and uptake by DCs, such as
MHC, LAMP-1, CD9, and CD54 [340–343]. They can therefore stimulate a broad range of
tumor-specific CTL responses against multiple antigenic epitopes [339,344]. Moreover, Tu-
sEVs are easily isolated and purified by non- or minimally-invasive methods from patient’s
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plasma, ascites, and pleural effusions [338]. Tu-sEVs also have significant advantages such
as antigen sources, attributed to their high immunogenicity from stressed tumor cells, more
than irradiated tumor cell lysates [345,346]. Successful uptake and processing of Tu-sEVs by
DCs can enhance the expression levels of co-stimulatory molecules, MHC, and CD11c, and
lead to phenotypically and functionally mature DCs [347–349]. These features altogether
support Tu-sEV as an attractive cell-free cancer vaccine candidate in a patient-personalized
manner [350–353].

However, it is important to note that Tu-sEVs regulate immune responses through
both immunosuppressive and immunostimulatory functions, promoting either immune
escape or tumor regression [354–356]. Specifically, Tu-sEVs can induce the production
of inhibitory cytokines, decrease the expression of co-stimulatory molecules, increase
STAT3 expression, modulate DC differentiation, and inhibit maturation and the T cell
stimulatory capacity of DCs [354,357,358]. Tu-sEVs impair DC maturation and antigen-
specific responses via the downregulation of MHC II expression as well as the expansion of
Tregs [357,359–361]. Earlier studies have, however, proven the feasibility and efficacy of
Tu-sEVs as prophylactic and therapeutic cancer vaccines that not only elicit CTL responses
but also prevent metastases in mouse models [339,345,351,362,363]. Meanwhile, possible
Tu-sEV-derived immunosuppression has redirected further investigations of standalone
Tu-sEV treatments to the development of Tu-sEV-engineering and DC loading to advance
the immunogenicity of Tu-sEV-based cancer vaccines [337].

Cancer cells or Tu-sEVs themselves may be manipulated to increase the expression lev-
els of tumor antigens or immunostimulatory molecules that are expressed on Tu-sEVs [337].
This may be achieved by transducing tumor cells with viral vectors transfected with genes
encoding immunogenic antigens, such as mucin 1 (MUC1), which is a transmembrane
glycoprotein that is overexpressed in many cancers, including prostate, breast, and ovar-
ian cancer [364–367]. MUC1-transduced CT26 colon and TA3HA breast murine cancer
cell lines secreted Tu-sEVs that successfully expressed target antigen MUC1 (MUC1-Tu-
sEVs) [368]. Both autologous and allogenic MUC1-Tu-sEVs stimulated immune responses
and inhibited tumor growth 2-fold greater than control Tu-sEVs, independent of their
MHC types in vivo [368]. Furthermore, MUC1-Tu-sEVs activated splenocytes via DCs
in a MUC1-dependent manner, inducing the secretion of Th1-type IFN-γ in vitro [368].
Recently, another study has directly anchored IFN-γ fusion protein onto the surface of
RM-1 prostate cancer cell-derived Tu-sEVs (IFN-γ-Tu-sEVs) [369]. Vaccination with these
IFN-γ-Tu-sEVs resulted in the highest levels of CD4+, CD8+, and IFN-γ+ CD8+ T cells [369].
Importantly, they decreased the levels of Tregs and PD-L1, and IDO expressions in the
TME [369]. IFN-γ-Tu-sEVs also significantly inhibited tumor growth and prolonged the sur-
vival time of tumor-bearing mice [369]. Furthermore, another study incorporated interferon
regulatory factor 1 (IRF-1), which is a tumor suppressor gene that regulates the expression
of target genes such as MHC I, IL-15, and IFN-α [370]. Of note, IRF-1-Tu-sEVs displayed an
enhanced antitumor response compared to IFN-γ-Tu-sEVs [370]. This functional response
was mediated through elevated expressions of MHC I and IL-15Rα, resulting in increased
tumor infiltrating CD4+ and CD8+ T cells [370]. These studies altogether support cancer
cells or Tu-sEVs may be genetically engineered to enhance antitumor responses of Tu-sEV-
based vaccines via elevated levels of immunostimulatory antigen and molecule expressions
as well as both CD4+ and CD8+ T cells.

In addition to immunogenic tumor antigens, MHC II is another important molecule
that could increase the immunogenicity of Tu-sEV-based vaccines [371]. Many cancer im-
munotherapies have focused on inducing MHCI I-restricted tumor-specific CTL responses
because most tumor cells constitutively express MHC I, but not MHC II [372,373]. However,
to optimally induce both humoral and cellular effector mechanisms, MHC II-restricted
CD4+ T cells that support the maturation, proliferation, and functionality of CD8+ CTLs
are also required [374]. Hence, a study transduced B16-F1 murine melanoma cells with
MHC class II transcription activator (CIITA) gene to generate Tu-sEVs enriched in MHC
II and tumor antigen TRP2 (CIITA-Tu-sEV) [375]. Compared to parental control Tu-sEVs,
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CIITA-Tu-sEVs exhibited greater DC maturation ability, which was reflected by higher
MHC II and CD86 expression, and higher mRNA levels of inflammatory cytokine, TNF-α,
maturation marker, CCR-7, and Th1-polarizing cytokine, IL-12 in vitro [375]. CIITA-Tu-
sEVs also improved the preventative and therapeutic antitumor immune response and
increased Th1 type antibody and IFN-γ levels in vivo in a dose-dependent manner [375].
Moreover, CIITA-Tu-sEVs exerted greater tumor rejection, increased survival rate, and
overall survival by 20% at 60 days post-treatment [375]. Taken together, MHC II-expressing
Tu-sEVs may be another potential candidate to be utilized in cancer vaccines to augment
both cellular and humoral antitumor immune responses.

Engineered Tu-sEVs and vaccine adjuvant co-delivery system is also proposed to
exhibit potent antitumor activity and to form an effective in situ DC vaccine. Murine
melanoma B16-BL6 cells were transfected with a plasmid vector that encoded a fusion
streptavidin (SAV)-lactadherin (LA) protein, which yielded genetically engineered SAV-Tu-
sEVs [376]. SAV is a protein that binds to biotin with high affinity, and LA is an sEV-tropic
protein that binds to the EV membrane [377,378]. SAV-Tu-sEVs were then incubated
with biotinylated CpG-ODN to prepare CpG-ODN-modified SAV-Tu-sEVs (CpG-SAV-Tu-
sEVs) [376]. These modified CpG-SAV-Tu-sEVs successfully delivered CpG-ODN to DCs,
and activated and enhanced tumor antigen presentation abilities of DCs in vitro. Signifi-
cantly increased levels of cytokine, such as TNF-α, IL-6, and IL-12p4, were also observed
from CpG-SAV-Tu-sEV-pulsed DCs [376]. Moreover, immunization with these CpG-SAV-
Tu-sEVs resulted in potent cellular and humoral immunity along with upregulation of
Th1-related antibody as well as protective and therapeutic antitumor immunity [376]. CpG-
SAV-Tu-sEVs demonstrated stronger in vivo antitumor effects in B16-BL6 tumor-bearing
mice than separate administrations of CpG-ODN and Tu-sEV, suggesting the co-delivery
of tumor antigens and adjuvants by genetically engineered Tu-sEVs as a potential im-
munotherapy approach.

The notion of Tu-sEV-mediated adjuvant delivery was supported by another study that
evaluated the immunogenicity of mouse breast cancer cell-derived Tu-sEVs which were
loaded with two immunoadjuvants, CpG-ODN and poly(I:C) (CpG-p(I:C)-Tu-sEV) [379,380].
These engineered CpG-p(I:C)-Tu-sEVs exhibited augmented immunostimulatory properties
by activating antigen-specific primary and memory T cell responses and promoting tumor
regression in tumor-bearing mice [379]. Similar to the Tu-sEV-mediated antigen-adjuvant
co-delivery system above, these also elicited Th1-biased immunity reflected by elevated
levels of Th1-related antibody and IFN-γ [379]. Altogether, this study also showed that
Tu-sEV-based therapeutic vaccine can promote strong cellular and humoral antitumor
immunity that can provide a personalized tumor therapy strategy.

In addition to genetic engineering of Tu-sEVs, their surface may also be modified
to present immunoadjuvant. One study painted the surface of Tu-sEVs with the func-
tional domain of HMGN1 (N1ND-Tu-sEV) via a vesicular anchor peptide [381]. DCs
pulsed with these N1ND-Tu-sEVs-pulsed were activated and boosted CD8+ T cell levels.
N1ND-Tu-sEVs also significantly increased DC migratory capacity and the generation and
amplification of TEM, which contributed to long-lasting antitumor immunity and tumor
suppression in different syngeneic immunogenic mouse models with large tumor burdens,
most notably in low immunogenic orthotopic HCC [382]. Importantly, N1ND-painted
serum sEVs from cancer patients could also induce tumor-specific cytolysis in vitro and
promote DC activation [376]. This study demonstrated the potency of surface-modified
Tu-sEVs to augment DC immunogenicity and to inhibit large established tumors, thus
providing a platform to load immunoadjuvants onto Tu-sEVs to amplify the antitumor
immunity of DC vaccines.

Tu-sEVs may also co-deliver ICD inducers and adjuvant to generate an in situ vaccine.
One study loaded an ICD inducer, human neutrophil elastase (ELANE), and a TLR3 agonist
Hiltonol onto breast cancer-derived Tu-sEVs to form an in situ vaccine (HELA-sEVs) [382].
These engineered HELA-sEVs were also enriched in breast-specific protein α-lactalbumin
(α-LA), which granted them an enhanced targeting capability to specifically induce ICD
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in breast cancer cells [382]. HELA-sEV-induced ICD of breast cancer cells followed by
TLR3 adjuvant-induced i.t. accumulation of cDC1s and cross-primed immunogenic CD8+

T cell responses. This significantly inhibited the tumor growth in a poorly immunogenic
breast cancer mouse xenograft model and patient-derived tumor organoids [382]. Tu-sEV
engineering strategies that allow the co-delivery of ICD inducer and adjuvant to trigger in
situ ICD and cross-priming are promising for generating an effective in situ DC vaccine
and may be extended to other types of solid cancers.

In the meantime, it is critical to carefully investigate the possible adverse roles of
Tu-sEVs in impairing differentiation, maturation, and functions of DCs to harness their im-
munostimulatory capacity while avoiding immune escape [350,383]. Several mechanisms
underlying the immune inhibitory effects of Tu-sEVs have been proven and more are being
postulated, such as the interaction between Tu-sEV, PD-L1, and DC PD-1, reduced antigen
sensing and costimulatory molecule expressions in DCs, and the production of VEGF
and IL-10 to inhibit DC differentiation maturation [355,384–389]. Although numerous
preclinical data support Tu-sEV as a potential source for cancer vaccine, and therapeutic
interventions to harness Tu-sEV to stimulate antitumor response are being investigated,
significant challenges remain to reject the opposing notion of Tu-sEVs as potential immune
suppressors [383].

9. Conclusions and Perspectives

Cancer vaccines have emerged as an important breakthrough in solid cancer im-
munotherapy, supported by their safety and promising clinical potential. Despite being
employed in most clinical trials, a MoDC-based conventional DC vaccine regimen has
shown limited efficacies. In this review, several novel vaccine approaches that are capa-
ble of addressing the limitations of conventional DC vaccine have been discussed. The
biomaterial-based and ICD-inducing DC vaccines have unique advantages to recruit and
activate endogenous DCs, which may be combined to achieve synergistic effects to spa-
tiotemporally provide immunoadjuvants and antigens in situ. In addition, in vitro gener-
ated adjuvant and antigen mRNAs are loaded onto DCs to enhance DC immunogenicity.
On top of cell-based cancer vaccines, DC- and tumor-derived sEVs are also found to have
comparable, if not greater, immunogenicity and induce promising antitumor responses,
although further understanding of sEVs is needed. In addition to the discussed novel DC-
based therapeutic approaches, combinations with other immunotherapies, including ICBs,
recapitulation of heterogenous DC populations, DC maturation with various adjuvants,
and different modes of vaccine delivery should also be considered. Despite significant
advantages of the selected novel DC vaccines over the conventional DC vaccine, their
clinical implications may require further improvements. Multimodal therapies are being
robustly investigated to address some of the limitations of monotherapies in Table 1. For
instance, limitations of ICD-inducing DC vaccines have been overcome by combinatory
approaches with other ICD-inducing and biomaterial-based DC vaccines, as well as ICBs.
In addition, biomimetic nanoparticles that can reverse the local immunosuppressive TME
have been reported to exert synergistic antitumor responses with the new generations of
DC vaccines [390–392]. Furthermore, recent advances in next generation sequencing-based
patient-specific mutanome mapping have allowed for the identification of the entirety of
somatic cancer mutations [393]. Such technology development and further understanding
of DC immunogenicity are envisioned to further alleviate immune escape and induce effec-
tive antitumor immune responses, which are being investigated in several clinical trials
with high frequency of T cell responses reported (Phase I, NCT02035956, NCT03289962,
NCT02316457) [394–396]. Although much work remains to be done to achieve optimal
universal or personalized DC-based immunotherapy, recent significant advances in novel
DC vaccine regimen and upcoming clinical trials are expected to encourage therapeutic
implementations of DC-based vaccines in the future.
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Table 1. Advantages and limitations of conventional MoDC-based vaccine and new generations of
DC vaccines.

DC Vaccine
Type Advantages Limitations Reference

Conventional
MoDC-based

• Biocompatibility and safety well
demonstrated in multiple clinical trials

• Satisfactory efficacy seen in phase III
clinical trial of Provenge (4.1-month
improvement in median survival, 8.7%
increased 36-month survival probability
in men with metastatic prostate cancer)

• Immunosuppressive TME hinders
MoDC-induced antitumor responses
and migration

• No standardized DC preparation
• Functional differences between ex

vivo generated MoDC and
endogenous DCs

• Unresponsive in cold tumors
• Requires leukapheresis
• Expensive, labor intensive

NCT01832870
(Phase I);

NCT01804465,
NCT01881867

(Phase II);
NCT00065442

(Phase III)
[56–59]

Biomaterial-
based

• Prone to surface modification to
enhance characteristics, biocompatible,
biodegradable, and FDA-approved

• Allows spatiotemporal control of
immunostimulatory microenvironment
to recruit and activate endogenous
heterogenous DC subsets in situ
(recapitulation of broad DC responses)

• Dual role as a sustained vaccine carrier
and biomimetic platform

• Can be combined with ICBs and
ICD-inducing therapies to overcome
immunosuppressive TME

• Can inhibit other immunosuppressor
cells (MDSCs, Tregs, macrophages)

• In situ implantation avoids
systemic toxicity

• Some ex vivo fabricated 3D scaffolds
require either surgery or large
invasive needle for implantation

• May require multiple doses
• Further clinical studies required

NCT01753089
(Phase I)

[89,94,101,103,
114,115,123,128,

131–133,397]

Combinatory
ICD-inducing

• Can convert cold tumors into
hot tumors

• Can generate abscopal effects; i.t.
injection with lower dose may also lead
to effective treatment and less
systemic toxicity

• Can be combined with ICBs, bio- and
nano-materials, and other ICD-inducing
therapies to achieve additive or
synergistic antitumor responses

• Can generate whole-tumor derived
TSAs to elicit greater immunogenicity
in situ

• Minimally invasive and highly specific

• Standalone ICD-inducing vaccine
often insufficient to overcome the
immunosuppressive TME; require
combination with other therapies
(ICD-inducing, biomaterial-based,
and/or immunotherapies) and
additional immunostimulatory
adjuvants and cytokines

• PDT and PTT efficacy may be
hindered by deep-seated and large
established tumors due to physical
and biological barriers

NCT01976585,
NCT03789097,
NCT00185965,
NCT00323882,
NCT02221739,
(Phase I/II);

NCT00880581
(Phase II);

NCT00861614
(Phase III)

[143,160,181–
185,187,202,208,

211,213]

mRNA-based

• No HLA restriction
• Introduction of exogenous mRNA

stimulates various TLRs; strong
intrinsic adjuvanticity

• Does not integrate into genome;
avoiding insertional mutagenesis

• Can be readily produced in
large amounts

• Can be engineered to increase
immunogenicity and mRNA-encoded
antigen expression efficiency, and to
avoid degradation

• Not subject to splicing; certain protein
products

• Co-transfection of antigen- and
immunostimulatory molecule-encoding
(ICB mAbs or cytokines) mRNAs

• Safety demonstrated in clinical trials

• Ex vivo pulsing of MoDCs
• Rocapuldencel-T as the most clinically

advanced autologous
tumor-mRNA-pulsed DC vaccine did
not improve overall survival of
metastatic renal cell carcinoma
patients; TriMix developed as an
alternative

• No standard administration/injection
method

• Naked mRNA delivery in vivo may
be concerned with rapid degradation
and poor target expression in
secondary lymphoid structures

NCT00626483,
NCT00639639,
NCT03946800,
NCT03788083,
NCT03394937,
NCT02410733,
NCT02316457

(Phase I);
NCT01066390

(Phase Ib);
NCT02366728,
NCT01302496,
NCT01676779

(Phase II)
[248,252,256,258,
263,265,266,280,
283,284,287,289,
291,298,299,302]
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Table 1. Cont.

DC Vaccine
Type Advantages Limitations Reference

DCsEV-based

• Cell-free vaccine; more resistant to
immunosuppression by TME

• 10–100 folds greater pMHC II than DCs
• Allows frozen storage, lack risks

associated with viable cellular or
viral therapies

• Can be engineered to amplify
immunostimulatory characteristics

• Can be combined with ICBs to enhance
antitumor immune response

• Some approaches utilize autologous
ex vivo manipulated MoDCs

• The utilization of allogenic DC cell
line needs further
clinical investigation

• Immune modulation dependent on
maturation status of donor DCs; must
be mature and stimulated to elicit
antitumor immune response

NCT01159288
(Phase II)

[309,312–315,318,
321,327,333]

Tu-sEV-based

• Cell-free vaccine; more resistant to
immunosuppression by TME

• Stimulate a broad range of
tumor-specific CTL response against
multiple antigenic epitopes

• Easy isolated and purified by non- or
minimally-invasive methods

• High immunogenicity; more than
irradiated tumor cells or tumor lysates

• Can be manipulated by genetic or
surface modifications

• Can co-deliver ICD inducers
and adjuvants

• Possible Tu-sEV-derived
immunosuppression; can induce the
production of inhibitory cytokines,
decrease co-stimulatory molecule
expression, and impair DC
maturation and
immunogenic functions

[368–370,376,379,
381,382]
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