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Abstract: Androgen has been shown to regulate male physiological activities and cancer proliferation.
It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evi-
dence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and
ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-
induced cancer growth and metastasis link with different types of integrins. Integrin αvβ3 is predom-
inantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed
death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with
androgen in cancer cells is not fully mechanically understood. To clarify the interactions between
androgen and integrin αvβ3, we carried out molecular modeling to explain the potential interactions
of androgen with integrin αvβ3. The androgen-regulated mechanisms on PD-L1 and its effects were
also addressed.

Keywords: breast cancer; androgen; androgen receptor; integrin αvβ3; PD-L

1. Introduction

Breast cancer is among the most common morbid cancers, exhibiting diverse mor-
phological and molecular characteristics. It is commonly classified based on the presence
or absence of the following hormone receptors expression (as determined by immuno-
histochemical analysis): estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor (HER2). Accordingly, four breast cancer subtypes are
widely recognized: luminal A, luminal B, HER2-positive, and triple negative. Among these
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subtypes of breast cancer, triple-negative breast cancer (TNBC) has a progressive biology,
resulting in a higher incidence of recurrence and metastasis, due to its special molecular
phenotype which causes it to be insensitive to endocrine therapy or molecular targeted
therapy [1]. TNBC is notably invasive, with around 50% of patients experiencing distant
metastasis [1]. It is unresponsive to endocrine or targeted therapies, ultimately leading to
tumor recurrence from residual metastatic lesions [1]. In addition to traditional nuclear
receptors such as estrogen receptors (Erα and ERβ), cell surface-bound hormone receptors
may contribute to normal breast development and mammary stem cells [2] and breast
cancer as well [3].

Androgen, a steroid hormone, has been reported to regulate cancer progression dur-
ing its receptor activation. However, the role of androgens in cancer cell progression is
controversial in the specific types of cancer, including ER-positive breast cancer [4–10].
Compared to ER-positive breast cancer cells, androgens including dihydrotestosterone
(DHT) stimulate the proliferation and migration of ER-negative breast cancer cells. This
indicates that different levels of ER, PR, or HER expressed in the breast cancer cause an-
drogen receptor (AR)-dependent or -independent cancer progression [9,10]. In addition
to the well-known AR and ER, integrins have also been found to play roles in androgen
functions (Table 1). Integrin-mediated cell adhesion to the extracellular matrix (ECM) is
essential for normal tissue development and function. However, this adhesion process
is often disrupted in cancer, leading to pathological changes. Indeed, the loss of integrin
expression or the inhibition of integrin activity promotes cancer cell metastasis. Integrin-
induced programmed death-ligand 1 (PD-L1) expression on cancer cells can help them
avoid T cell killing, thereby enhancing cell migration and proliferation. PD-L1 binds to its
receptor, PD-1, found on activated T cells and B cells, to play a vital pathogenetic role in
breast cancer progression [11]. Distinct subtypes of integrins expressed on breast cancer
cell membranes have been described. However, the role of the interaction of androgen
and integrin in breast cancer development is not clarified. Additionally, the involvement
of PD-L1 in the androgen/integrin-mediated cancer progression is still unknown. In this
current review article, we have presented compelling evidence supporting the role of andro-
gen in stimulating various biological activities in cancer cells through different receptors.
Furthermore, we have highlighted the potential of PD-L1 as a therapeutic target for treating
integrin-mediated AR-positive breast cancer cells.

Table 1. Androgen receptors and their functions in non-cancer/cancer cells.

Receptor Cancer Type Functions Reference

AR Prostate cancer

1. To form a ligand–AR complex and to control
gene expression
2. To stimulate the proliferation of prostate
cancer cells

[12]

ERα ER-positive breast cancer To stimulate the proliferation of ER-positive breast
cancer cells [9]

Integrin αv Prostate cancer To regulate tumor cell migration and growth [13]

Integrin β1 Hepatocellular carcinoma To induce cell adhesion through PI3K/AKT
signaling pathway [14]

Integrin β1C Prostate cancer To be correlated with prostate cancer progression [15]

Integrin α2 Prostate cancer To regulate metastasis mediated by adhesion to ColI
through RANKL/RANK signaling [16]
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Table 1. Cont.

Receptor Cancer Type Functions Reference

Integrin α2β1

Periosteum-derived progenitor cells To involve cancer cell migration [17]

Prostate cancer
To regulate cancer progression [18]

To be controlled its expression by AR [19]

Integrin α3 Prostate cancer To regulate tumor cell growth [13]

Integrin α3β1 Prostate cancer To repress cell proliferation and EMT in prostate
cancer by CD151 [20]

Integrin α5β1 Prostate cancer To promote prostate cancer growth [21]

Integrin α6β1 Prostate cancer
To promote the survival of CRPC cells selectively on
laminin through the
induction of autophagy and mitophagy

[22]

Integrin α6β4 Prostate cancer

To be involved in invasion [23]

To promote the survival of cancer cells [24]

To repress cell proliferation and EMT by CD151 [20]

To promote an osteolytic program in cancer cells by
upregulating MMP2 [25]

Integrin αvβ3

ER-negative breast cancer To stimulate proliferation of ER-negative breast
cancer cells [10]

Breast cancer To regulate cell proliferation [9]

Prostate cancer

To regulate cell proliferation through the
p66Shc/VEGF pathway [26]

To induce neuroendocrine differentiation through
NOGO receptor NgR2 [27]

Neuroendocrine prostate cancer To promote cancer metastasis [28]

Integrin αvβ6

Prostate cancer

To promote an osteolytic program in cancer cells by
upregulating MMP2 [25]

To induce cell adhesion and migration [29]

Castration-resistant prostate cancer
To promote cancer cell survival [24]

To promote survival and resistance to PI3K inhibition [30]

2. Androgen-Induced Signal Transduction in Breast Cancer Cells

Androgen is a steroid hormone crucial in developing and maintaining male character-
istics in vertebrates. The most common androgens are testosterone, DHT, and androstene-
dione [31]. These androgens exert their effects by binding to and activating ARs, which
are present in various tissues throughout the body. Activation of ARs not only mediates
a variety of physiological responses but also participates in cancer progression [32]. ARs
have been found in multiple cancer cells, particularly in prostate and breast cancers [33].

The primary function of ARs is to exert their effects through direct regulation of gene
transcription [34–36]. In human prostate cancer LNCaP cells, the activation of classical
intracellular ARs by androgens regulates cell growth [35]. However, the role of the AR in
breast cancer is more complex. The AR is expressed in about 60% of early breast cancer
cases, with a higher prevalence in ER-positive tumors compared to ER-negative tumors. It
is detected in 90% of ER-positive breast cancers and 12–50% of TNBC cases [37,38]. The
activation of the AR plays a central role in regulating breast cancer progression, although
its specific function in TNBC is still under debate. The signaling pathways involved in the
classical intracellular androgen-induced activation of specific receptors contribute to the
cell progression in breast cancer, as shown in Figures 1 and 2. In ER-positive breast cancer,
AR signaling acts as a counterbalance to the growth stimulatory effect of ER signaling.
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Additionally, biased ligands can induce AR signaling, compensating for the progression
effect in both the ER-positive and ER-negative breast cancer cells through the activation of
classical intracellular AR (iAR) or cell membrane AR (mAR). In molecular apocrine tumors,
characterized by ER-negative and AR-positive status, androgens have an established onco-
genic role [39,40]. AR signaling also promotes proliferation in ER-negative, HER2-positive
breast cancer [41]. In the luminal AR subtype of TNBC, which shares similarities with molec-
ular apocrine tumors, the AR appears to drive tumor progression [41,42]. Moreover, DHT
activates the cell surface integrin αvβ3, rather than the iAR, to enhance the proliferation of
TNBC cells [9,10,43].
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Figure 1. Schematically representing the signal transduction and biological activities induced by 
androgen in ER-positive breast cancer cells. Endogenous androgen, DHT, activates ER-mediated 
Figure 1. Schematically representing the signal transduction and biological activities induced by
androgen in ER-positive breast cancer cells. Endogenous androgen, DHT, activates ER-mediated
PI3K/Akt and ERK1/2 signaling pathways to regulate cell proliferation. Moreover, the process of
ERK1/2-mediated cell proliferation is controlled by the activation of EGFRs stimulated by EGF, as
well as the activation of iAR induced by the synthetic androgen, R1881. Upon EGFRs activation, it
not only involves the formation of an association between iAR and Src complex but also triggers
cell proliferation through PI3K/Akt/ERK1/2 signaling. Stimulation of mAR by TAC triggers the
phosphorylation of FAK and Akt, resulting in enhanced cell apoptosis. In this mAR-mediated
apoptosis, SGK1 plays a role in improving the apoptotic effect. Cell motility is downregulated
upon mAR activation through the FAK/PI3K/Rac1 signaling pathway. In the absence of AR-driven
signaling, EGFR induces PKC-mediated ERK1/2 activation and PN-1 expression to suppress cell
motility. ERβ also inhibits cell motility through induction of integrin α1β1. The red arrows indicate
Erβ/ integrin α1β1 pathway; The purple arrows indicate EGF/EGFR/PKC/ERK1/2/PN-1 pathway.
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Figure 2. Schematically representing the signal transduction and biological activities induced by
androgen in ER-negative breast cancer cells. Activation of iAR by DHT stimulates ERK1/2-mediated
cell proliferation either directly or through cross-talk with EGFRs. Additionally, DHT binding to
integrin αvβ3 activates the FAK/ERK1/2 signaling pathway, resulting in phosphorylated ERK1/2
translocation to the nucleus and subsequent cell proliferation. The association of iAR, PI3K, and
Src induced by R1881 leads to cell motility through the FAK/Akt/paxillin signaling pathway. The
function of mAR activated by TAC is similar to that in ER-positive breast cancer cells. Without AR-
driven signaling, EGFR enhances cell motility and proliferation by triggered Rac1/PI3K/Akt/PAK1
signaling and Src/ERK1/2 signaling, respectively. Integrin α3β1 or β1 can direct activate PI3K/Akt
signaling to regulate cell motility. After binding of TGF-βR with TGF-β, integrin αv phosphorylates
Smad2/3 to increase cell motility. The red arrows indicate integrin α3β1/PI3K/Akt/BRN2 pathway;
The blue arrows indicate EGF/EGFR/Src/ERK1/2 pathway.

Androgen also directly bind to the ARs in the cell membrane. Activation of this
mAR induces cellular processes. Exposure of prostate cancer cells to the non-internalized
testosterone albumin conjugates (TAC) regulates the actin reorganization through focal
adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K) signaling. Activation of PI3K
modulates the small guanosine triphosphatases cell division control protein 42 (Cdc42)/ras-
related C3 botulinum toxin substrate 1 (Rac1) to secrete prostate-specific antigen (PSA).
This process ultimately results in the redistribution of actin [44]. Furthermore, TAC can
activate extracellular signal-regulated kinase 1/2 (ERK1/2), but not p38 mitogen-activated
protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), to mediate a prostate cancer
cell response [45]. In melanoma A375 cells, the FAK/PI3K/Rac1/actin signaling pathway,
which is induced by a different membrane opioid receptor, is also involved in regulating
actin reorganization [46]. This evidence indicates that this pathway plays an important role
in controlling the cell motility through various receptors. Similarly, in the ER-positive MCF-
7 cells, TAC rapidly activates non-genomic FAK/PI3K/Rac1/Cdc42 signaling, triggers
actin reorganization, and inhibits cell motility [47]. In addition, this mAR activation
induced by TAC in combination with serum and glucocorticoid inducible kinase (SGK1)
inhibition triggers pro-apoptotic responses [47]. Thus, the different cellular responses
induced by androgens are caused by the activation of mAR or iAR. This evidence indicates
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that androgen elicits different signaling pathways activated by mAR or iAR in ER-positive
breast cancer (Figure 1) and ER-negative breast cancer (Figure 2).

In breast cancer, EGF signaling regulates cancer progression through different signal-
ing mechanisms such as cell motility and proliferation, regardless of the ER participation.
Activation of the epidermal growth factor receptor (EGFR) induces the migration and
proliferation of ER-negative breast cancer cells via Rac1/PI3K/Akt/p21-activated kinase 1
(PAK1) signaling and Src/MAPK/ERK/cyclin D1 signaling, respectively [48,49]. Addition-
ally, in ER-positive MCF-7 cells, EGF-induced proliferation is mediated by PI3K/Akt and
MEK/MAPK pathways, and this EGFR-driven proliferation is not influenced by ER [50].
In addition, protein kinase C (PKC)/MEK/ERK/early growth response protein 1 (EGR1)
signaling is related to EGF-induced cell migration and invasion of MCF-7 cells [51]. Thus,
the signaling pathway of EGF-induced cancer progression is parallel with the ER-driven
cancer progression. In molecular apocrine tumors, in addition to the classical androgen-
induced signaling transduction, an overexpression of HER2 associates with AR positivity
that suggests a cross-talk between the AR and HER2 signaling pathways [52]. EGF could
elicit the downstream molecules of the AR through transactivation. These two, in turn, act
in synergy to stimulate cell proliferation [52–54]. Activation of EGFR triggers the formation
of AR/Src complex and induces Src-dependent cell proliferation and migration [55]. Addi-
tionally, cross-talk between EGFR signals and the AR signal is also observed in ER-positive
breast cancer [56].

The action of androgens can vary depending on the background of hormone receptors
in different types of cancers. In ER-positive breast cancer MCF-7 cells, DHT induces cell
growth via the ER and the ERK1/2-dependent signaling pathway [10]. Inhibition of the
ER activity or downregulation of ERα reduces the DHT-induced proliferation [9]. The ER
induces proliferation by recruiting other co-regulators, forming a transcriptional regulatory
complex, or by modulating other transcription factors and developmental pathways [57].
The general ER signaling of cancer progression involves both genomic and non-genomic
mechanisms [58]. Genomic signaling includes the activation of intracellular ERs upon
ligand binding, causing their translocation to the nucleus. These nuclear ERs act as ligand-
activated transcription factors, binding to the ER response elements on the target genes
associated with various cellular processes [58]. Non-genomic estrogen effects engage the
plasma membrane receptors like ER variants and the G protein-coupled estrogen receptor.
Estrogen binding to these membrane receptors triggers non-genomic actions, characterized
by intracellular second messengers, cAMP regulation, and protein kinase activation. These
events lead to indirect alterations in gene expression through the binding of CREB to cAMP
response elements on DNA [58].

The synthetic androgen R1881 rapidly stimulates the assembly of the AR/Src
complex [59], leading to distinct cell progression in breast cancer. This complex pro-
motes proliferation in ER-positive breast cancer cells through the PI3K/FAK/paxillin
signaling pathway, while it enhances motility in ER-negative breast cancer cells through
ERK1/2 signaling [60]. These findings highlight the role of the hormone receptor context
in determining the cellular responses to androgens. Additionally, androgens exert diverse
effects in different organs. For instance, they promote cell proliferation by upregulating
fibroblast growth factor 8 (FGF8) and downregulating thrombospondin 1 (TSP1) expression
in S115 mouse mammary tumor cells [61,62]. On the other hand, in bladder cancer cells,
cell proliferation can be induced by DHT stimulation, even in the absence of AR expres-
sion, suggesting that the AR is not the only receptor responsible for this effect [63]. These
observations suggest that the same effector, androgen, can induce different downstream
effects in different organs.

Evidence revealed that the differential expression of the AR and ER plays a reverse
role in cancer progression in ER-positive breast cancer [64]. The activation of the ER
induced by estrogen in ER-positive/AR-negative cells or the AR induced by androgen
in ER-negative/AR-positive cells promote tumor growth. In the absence of androgen,
estrogen promotes the proliferation of ER-positive and AR-positive cells. However, when
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agonists activate the AR, it suppresses estrogen-driven cancer growth by altering the
genomic distribution of the ER and essential coactivators such as p300 and steroid receptor
coactivator 3 (SRC-3) [65]. This finding is controversial compared to other published
studies, as it contradicts the notion that activation of the AR stimulates the growth of ER-
positive and AR-positive breast cancer cells. This debatable issue may be attributed to the
differences in the activation of mAR or iAR. Biased ligands such as DHT or testosterone can
selectively activate distinct forms of the AR to modulate cell growth in ER-positive breast
cancer. Therefore, conducting context-specific molecular studies that focus on biologically
significant and clinically relevant pathways regulated by the AR can provide a better
understanding of the contradictory effects of the AR in breast cancer.

3. Integrin-Related Signals in Breast Cancers

Integrins are heterodimeric structural proteins located in the plasma membrane. They
facilitate cell–cell adhesion and mediate the interactions between the cells and ECM proteins
upon ligand binding. Integrins are composed of α and β subunits, resulting in the formation
of 24 different heterodimers. Integrins are a superfamily of cell adhesion receptors that
bind to the ECM ligands on the cell surface and soluble ligands [66–72].

Integrins have been widely recognized and extensively studied for their role in medi-
ating cancer cells’ proliferation, invasion, and metastasis, particularly in breast cancer. The
survival rate for women diagnosed with metastatic breast cancer is generally lower than
those with non-metastatic breast cancer. Numerous studies have provided evidence high-
lighting the significant involvement of integrins in breast cancer metastasis [73]. Outside-in
signaling in integrin-mediated cell adhesion includes the activation of kinases in response
to the adhesion process [74].

In ER-positive breast cancer cells, specific integrins, including integrin α1β1 and
integrin α2β1, play a role in mediating cancer progression. In the early stage of breast
cancer, integrin α1β1 is upregulated by ERβ to enhance cell adhesion for preventing
cell migration [75]. On the other hand, in the late stage of breast cancer, the expres-
sion of integrin α2β1 is increased, along with the upregulation of mesenchymal markers
such as vimentin, twist1, and N-cadherin. This is consistent with the progression of
epithelial–mesenchymal transition (EMT) [76].

Compared to ER-positive cells, ER-negative cells exhibit the involvement of different
integrin subtypes in cancer progression. Talin-1 (TLN1), a cytoplasmic adapter protein,
mediates cell–cell adhesion by interacting with integrin β1 in breast cancer cells. It binds
to and activates integrin β1, thereby regulating the dynamic formation of focal adhesions
(FAs). This activation of integrin β1 promotes tumor metastasis through the involvement of
the PI3K/AKT and FAK signaling pathways [77]. In addition, integrin α3β1 also regulates
tumor metastasis through the PI3K/AKT/Brn-2 signaling pathway [78]. Breast cancer cells
release many extracellular vesicles (EVs), facilitating intercellular communication in the
tumor microenvironment and promoting metastasis. Galectin-3 assists in the export of
integrin αvβ1 into these EVs. Integrin αvβ1 on the surface of EVs enables it to bind to
fibronectin in the ECM, thereby supporting tumor metastasis [79]. Integrin β3 is essential
for early and effective spontaneous breast cancer metastasis to the bone and soft tissue [80].
It promotes migration, expression of proteases, and trans-endothelial migration in vitro and
enhances vascular dissemination in vivo. However, it is not essential for bone colonization
in experimental metastasis assays. In addition, studies analyzing the differential gene
expression in cohorts of breast cancer patients show a strong association between the high
expression of integrin β3, early metastasis, and shorter disease-free survival in patients with
ER-negative tumors [80]. In addition, the integrin αv is essential for efficient transforming
growth factor-β (TGF-β)/Smad signaling and TGF-β-induced migration of breast cancer
cells [81]. Additionally, knocking down integration with paclitaxel offers a more effective
therapeutic option than combining cilengitide with paclitaxel [81]. These findings suggest
that integrin αv could be a potential clinical therapy target for breast cancer treatment.
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Integrin αvβ3, a member of Arg-Gly-Asp (RGD)-recognizing integrin, binds with
ligands such as ECM proteins and growth factors [66–69,82]. Integrin αvβ3 expression
is essential in developing bone metastasis in breast cancer [83]. Legumain (LGMN), an
endo-lysosomal cysteine protease, has been found to exhibit a positive correlation with
the metastatic progression of breast cancer. Motile breast cancer cells secrete legumain
in its zymogen form. When the autocrine pro-legumain binds to the cell surface integrin
αvβ3 through an RGD motif, it activates FAK-Src-ras homolog family member A (RhoA)
signaling within cancer cells. This signaling pathway promotes cancer cell migration
and invasion, and interestingly, this effect is independent of legumain’s protease activity.
Angiogenesis involves recruiting new blood vessels and plays a crucial role in the metastatic
pathway. It has been reported that the inhibition of integrin αvβ3 activity suppresses breast
cancer cell angiogenesis [84,85]. In the presence of integrin αvβ3, neuropilin-1 minimally
contributes to the vascular endothelial growth factor-induced angiogenic processes in vivo
and in vitro [86].

X-ray diffraction has successfully demonstrated the crystal structure of the interaction
between the RGD binding site of integrin αvβ3 and its ligand [87]. Integrin αvβ3 is
expressed by high-growth endothelial cells, vascular smooth muscle cells, bone cells, and
cancer cells [69]. Functions of this integrin in breast cancer cells include modulating cancer
cell proliferation, tumor metastasis, and tumor-relevant angiogenesis [88]. Activation of
integrin αvβ3 by DHT triggers phosphorylation of ERK1/2, which subsequently induces
cell proliferation [43]. However, the effect of integrin αvβ3 on cell proliferation can be
reversed by doxycycline treatment [89]. Extracellular connective tissue growth factor
(CTGF) regulates cell proliferation and the migration of TNBC through the activation of
integrin αvβ3. When CTGF binds to integrin αvβ3, it activates the FAK/Src/nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 signaling axis, which
leads to the upregulation of glucose transporter 3 (Glut3) transcription [90]. Various
integrin αvβ3 antagonists have been developed to inhibit cancer cell proliferation. The
RGD motif is a potent target used in anti-tumor lipid microbubble (MB) therapy for breast
cancer. Paclitaxel (PTX)@RGD-MBs, an MB with the outer lipid membrane containing an
RGD motif and the inside space with PTX, has been designed to treat TNBC cells more
effectively [91]. Ultrasonic targeted microbubble destruction (UTMD) is applied to improve
MB penetration into the cell membrane, thereby increasing the concentration of PTX@RGD-
MBs within the cells [91]. This PTX@RGD-MBs provides a better approach for diagnosing
and treating TNBC cells. In another study by Ping Zhong et al., they used RGD-MBs to
deliver a mertansine prodrug (cRGD-MMP) to suppress tumor growth. This study was
conducted on nude mice with xenografts of MDA-MB-231 TNBC cells that overexpress
integrin αvβ3 [92]. cRGD-MMP exhibited high potency against MDA-MB-231 cells in vitro,
with a low half-maximal inhibitory concentration of 0.18 µM, which was 2.2-fold lower than
that of the nontargeted MMP control. The tumor weights demonstrated that cRGD-MMP
achieved an almost 2-fold higher tumor inhibition rate compared to the nontargeted MMP
control. Consequently, cRGD-MMP displayed extended circulation time, enhanced tumor
selectivity, and increased drug accumulation within the tumor.

4. Interaction between Androgen and Integrins

Hormones, including androgens, have demonstrated their ability to interact with
integrins, thereby regulating various cellular processes (Figure 3). For example, androgen-
stimulated AR signaling activates the AR/AR-associated protein 55 (ARA55)/FAK complex.
This activation leads to the induction of collagen-integrin α2β1 gene expression, which
is essential for promoting the migration of AR-mediated periosteum-derived progenitor
cells (refers to integrin α2β1 in Table 1) [17]. Not only non-tumor cells but also tumor cells
contribute to cell migration through the interaction of androgen and integrin. Migration
is a fundamental process involved in cancer cell metastasis. Thus, androgen may interact
with integrins to modulate cell invasion and metastasis.
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Figure 3. Diagram illustrating the androgen-mediated signal transduction via integrins and the
resulting biological activities. (A) Integrin-induced cell motility and adhesion are mediated by AR.
Activation of iAR by DHT or R1881 affects different subtypes of integrin expression to regulate
cell adhesion and motility. RANK/RANKL promotes iAR expression through integrin α2β1 and
induces integrin α2β1-involved cell adhesion via FAK/Akt signaling pathway. In AR-expressing cells,
FAK signaling modulates integrin α5β1-induced cell adhesion and integrin αv-induced cell motility.
(B) Integrin-induced cell growth and survival are mediated by AR. Activation of iAR by R1881 induces
the expression of integrin α6β1, which in turn regulates cell survival through HIF-1α-promoted
BNIP3 expression. Furthermore, iAR activity is up-regulated by integrin αvβ6, leading to increased
survivin expression and enhanced cell growth. The activation of IGF-IR suppresses the degradation
of integrin α5β1 through endocytosis, allowing this remaining integrin α5β1 to induce cell growth.
The brown arrows indicate RANK/integrin α2β1/ transcription factor (TF)/iAR and RANK/integrin
α2β1/FAK/Akt pathways; The dark blue arrows indicate integrin α5β1/FAK/Akt pathway; The
purple arrows indicate integrin αv/FAK/mTOR pathway; The light blue arrows indicate IGF-1R/
integrin α5β1 pathway; The red arrows indicate R1881/iAR/integrin α6β1 pathway; The green
arrows indicate integrin αvβ6/JNK/iAR (activity)/survivin pathway; The orange arrows indicate
integrin α6β1/HIF-1α/BNIP3 pathway.
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Indeed, different subtypes of integrins have been implicated in regulating cell metasta-
sis in various types of cancer (Figure 3A) (Table 1). In AR-negative prostate cancer cells, the
integrin αvβ6 has been identified as a functionally active receptor for fibronectin and the
latency-associated peptide of TGF-β1 [25]. Upon activation, this integrin selectively upreg-
ulates the expression of matrix metalloproteinase 2 (MMP2) and the activation of JNK1 in
multiple prostate cancer cells in vitro, which plays a crucial role in promoting the osteolysis
of bone metastasis (refers to integrin αvβ6 in Table 1) [25]. However, the expression of
ARs in these AR-negative prostate cancer cells reduces the expression of integrin αvβ6,
thereby leading to decreased cell interactions with the substrate and impaired migration
ability (refers to integrin αvβ6 in Table 1) [29]. In contrast to the role of integrin αvβ6 in
prostate cancer, integrin α6β1 is involved in the survival of castration-resistant prostate
cancer (CRPC) cells in response to AR signaling [30]. Specifically, under both normoxic
and hypoxic conditions, integrin α6β1 promotes AR-dependent cell survival by inducing
the expression of Bnip3 [22]. Integrin α6β1 and Bnip3 have been identified to selectively
promote the survival of CRPC cells on laminin through the induction of autophagy and
mitophagy mechanisms (refers to integrin α6β1 in Table 1) [22]. After analyzing a prostate
cancer tissue microarray patient cohort, CD151-associated integrin α3β1 and integrin α6β4
exhibited an inverse correlation with AR expression. This downregulation of the AR was
associated with the reduced proliferation of cancer cells (refers to integrin α3β1 and inte-
grin α6β4 in Table 1) [20]. SENL, a supercritical extract of neem leaves, has shown a similar
anti-proliferative effect on prostate cancer. It exerts its suppressive effect on cell growth
by inhibiting the expression of integrin β1 and the activation of AR and FAK, thereby
impeding cancer cell proliferation [93]. This integrin β1 also mediates the AR-induced
PI3K/AKT signaling pathway for suppressing the migration of hepatocellular carcinoma
cells (refers to integrin β1 in Table 1) [14]. Studies have revealed that the AR can regulate
the progression of prostate cancer cells by activating other receptors. One such receptor
is the type 1 insulin-like growth factor receptor (IGF-IR) downstream of the AR signaling.
IGF-IR can exert a pro-survival effect on prostate cancer by controlling the stability of the
integrin α5β1 through a proteasomal pathway (refers to integrin α5β1 in Table 1) [13,21].
In LNCaP cells with a high expression of receptor activator of NF kappa-B ligand (RANKL),
downregulation of the AP-4 transcription factor leads to the restoration of AR expression.
In a 3D suspension culture model, both the AR and RANK regulate the expression of inte-
grin α2 and enhance adhesion to collagen type 1 by activating the FAK and AKT signaling
pathways (refers to integrin α2 in Table 1) [16]. Treatment of prostate cancer cells with
DHT leads to the suppression of cell progression by altering the expression levels of key
molecules involved in cell adhesion. Specifically, DHT treatment increases the expression
of the anti-adhesion mucin 1 (MUC-1) while decreasing the expression of integrin α2β1
(refers to integrin α2β1 in Table 1) [18].

Androgen deprivation therapy (ADT) is a standard treatment for prostate cancer
aimed at reducing the levels of androgen hormones, which are necessary for the growth
of prostate cancer cells. By lowering the androgen levels, ADT inhibits the growth and
spread of prostate cancer cells, thus helping to manage the disease. However, a highly
aggressive subtype of prostate cancer known as neuroendocrine prostate cancer (NEPrCa)
can emerge because of ADT. In NEPrCa cells, integrin αvβ3 and its effector, Nogo receptor
NgR2, promote increased cell motility through the activation of RhoA (refers to integrin
αvβ3 in Table 1) [27,28]. These findings may open the possibilities for developing new
therapeutic strategies and identifying the risk factors in prostate cancer patients.

Integrin αvβ3 also regulates androgen-driven cell progression in breast cancer [9,10].
The interaction between integrin αvβ3 and DHT promotes cell proliferation induced by
DHT in ER-negative breast cancer cells but not in ER-positive breast cancer cells (refers
to integrin αvβ3 in Table 1) [9]. The effect of integrin αvβ3 on cell growth is mediated
through the ERK1/2 signaling pathway [89]. In addition, DHT activates FAK leading to the
reorganization of actin in breast cancer cells via the FAK, PI3K, and the Rac1 pathways [94].
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FAK, a nonreceptor tyrosine kinase, generates signals upon activation to modulate
important cell functions such as cell proliferation and migration. Activated FAK contributes
to the activation of p66 Src homolog and collagen homolog (p66Shc), an isoform of Shc,
promoting cell proliferation through rat sarcoma virus (Ras) and ERK1/2 [26,95,96]. The
levels of p66Shc are higher in cancer cells than adjacent non-malignant cells in various
cancer types, including breast, prostate, ovarian, thyroid, and colon carcinoma tissues [97].
Steroids-induced elevation of p66Shc and functional steroid receptors are required to prolif-
erate prostate and ovarian cancer cells [98]. Integrin αvβ3 facilitates the recruitment and
phosphorylation of β3-associated p66Shc, leading to the upregulation of vascular endothe-
lial growth factor (VEGF) expression [26,98]. VEGF is an important protein involved in
angiogenesis. Thus, integrin αvβ3 likely promotes tumor cell angiogenesis through the
p66Shc/VEGF signaling pathway (refers to integrin αvβ3 in Table 1). Indeed, DHT binds
to integrin αvβ3 and stimulates proliferation in ER-negative breast cancer cells, potentially
through the direct or indirect activation of p66Shc phosphorylation via the VEGF signal
pathway [26,96].

To our knowledge, no direct evidence shows how androgen interacts with integrin
αvβ3. Here, based on our studies of DHT on breast cancer cells, we predict the relationship
between integrin αvβ3 and DHT by the docking model. The docking conformation of
DHT is shown in Figure 4. The DHT molecule employs its 17-OH to form a conventional
hydrogen bond with the ASN215 residue of the β3 subunit (Figure 4C,D). The conformation
of DHT places its steroid backbones underneath the cyclic RGD (cRGD)-binding site on the
integrin (Figure 4B). A previous report indicated that the RGD-binding domain of integrin
αvβ3 has three main binding pockets: a thyroid hormone pocket, a resveratrol pocket,
and a steroid pocket [99,100]. This modeling of DHT is consistent with previous reports
indicating that these steroid hormones bind to the lower region of the cRGD molecule.
DHT exhibits metal interactions between the 17-OH and magnesium and forms hydrogen
bonds with the amino acid residues of the β3 integrin subunit. These interactions are
found in the aspartate (Asp) region of the cRGD peptide, which plays a crucial role in sex
hormone binding. Thus, this predicted docking result could develop specific drugs for
treating integrin αvβ3-dependent cancer progression.
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5. Androgen, Integrin αvβ3, and PD-L1 Expression in Cancer Cells

PD-L1 is a transmembrane protein implicated in suppressing the adaptive immune sys-
tem. It interacts with its receptor, PD-1, in activated T, B, and myeloid cells, to regulate their
activation and inhibition. This PD-1/PD-L1 pathway has a subtle role in maintaining the
peripheral T-lymphocyte tolerance and regulating inflammation [101]. Additionally, PD-L1
plays a significant role in various tumors by attenuating the host immune response to tumor
cells. The PD-1/PD-L1 axis is responsible for cancer immune evasion and significantly
impacts cancer therapy. An elevated level of PD-L1 is found in various cancers, including
melanoma, lung, bladder, prostate, and breast [102,103]. The interaction of PD-L1 expressed
on cancer cells and PD-1 expressed on T cells promotes cancer cell proliferation, EMT, inva-
sion, and metastasis [102,104–106]. Silencing of PD-L1 not only reduces the proliferation
and migration of cancer cells but also triggers apoptosis through intrinsic and extrinsic
pathways [102,107]. PD-L1 expression in TNBC cells is higher than that in other subtypes
of breast cancer cells [108,109]. In TNBC MDA-MB-231 cells, this increased level of PD-L1 is
mediated by integrin αvβ3-induced BRAF/transforming growth factor-β-activated kinase
1 (TAK1)/ERK/E26 transformation-specific variant transcription factor (ETV4) signaling
for inhibiting T cell function and evading T cell-mediated killing [110]. In addition, integrin
αv expressed in non-small cell lung cancer (NSCLC) has a similar effect in preventing T
cell-mediated killing [111]. This integrin activates autocrine TGF-β to regulate CD8 T cell
immunity [111]. Patients with NSCLC receiving anti-PD-1 and anti-PD-L1 therapies have
shown higher CD8+CD103+ tumor-infiltrating lymphocytes [111]. Thus, integrins may be
biomarkers to predict the response to T cell-based cancer immunotherapies.

In various cancers, the expression of the AR is negatively correlated with the overall
immune composition and is inversely associated with PD-L1 expression [112]. Furthermore,
the AR is linked to a reduction in total macrophage infiltration [112]. However, this
negative correlation between the AR and PD-L1 is not observed in aggressive or metastatic
cancers [113–115]. Thus, these conflicting results might be due to the prior exposure of
patients to anti-androgen hormone therapy or immunotherapy.

In TNBC MDA-MB-231 cells, the expression of the AR is not the highest among other
breast cancer subtypes, but it still indirectly influences the face of PD-L1, which regu-
lates cell progression. A positive correlation exists between the increased expression of
hepatitis B X-interacting protein (HBXIP) and reduced macrophage infiltration with AR
expression [112,116]. The transcription of PD-L1 is regulated by HBXIP-induced activation
of E26 transformation-specific proto-oncogene 2 (ETS2) [116]. Additionally, HBXIP inter-
acts with acetyltransferase p300 to induce acetylation of PD-L1 at the K270 site, thereby
stabilizing the PD-L1 protein [116]. Depletion of HBXIP or aspirin treatment has been
shown to attenuate PD-L1-induced tumor growth. These findings provide new insights
into the mechanisms underlying the regulation of tumor PD-L1 and highlight the potential
for targeting PD-L1 in breast cancer therapy [116]. Therefore, the expression of the AR is
associated with specific immunological profiles in the breast cancer microenvironment at
both the gene and protein expression levels.

6. Conclusions

Androgens induce closely related non-genomic and genomic signals in various cancers.
Activation of the AR mediates cancer progression through the interaction of integrins.
Indeed, the binding domain of the Asp residue of the cRGD ligand plays a pivotal role
in the interactions between the hormones and the heterodimeric integrin αvβ3, as was
predicted by molecular docking. In addition to integrin αvβ3, other subtypes of integrins
also play essential roles in signal transduction, cell recruitment, and interactions with ECM
proteins. Both in genomic and non-genomic actions, androgen-mediated integrins regulate
nuclear transcription through different pathways, including classical nuclear receptor
localization and changes in the phosphorylation of critical nuclear signaling molecules. PD-
L1 expression affects cancer cell proliferation, interferes with chemotherapy, and negatively
correlates with cancer progression. PD-L1-induced target genes are involved in cancer
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growth and metastasis. Integrins play a role in activating signal transduction pathways that
can regulate the expression of PD-L1. Although the relationship between the expression of
PD-L1 and the level of AR is controversial in cancers, PD-L1 probably controls androgen-
mediated cancer behaviors through integrins. This regulation can occur through direct or
indirect interactions with the AR. Understanding how androgens interact with integrins,
such as integrin αvβ3, to induce PD-L1-mediated cellular processes in cancer can provide
valuable insights for developing targeted therapeutic strategies.
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ERα: Estrogen Receptor-α; ERK1/2: Extracellular signal-regulated kinase 1/2; ETS2: E26
transformation-specific proto-oncogene 2; ETV4: E26 transformation-specific variant 4; EVs:
Extracellular vesicles; FAs: Focal adhesions; FAK: Focal adhesion kinase; FGF8: Fibroblast
growth factor 8; Glut3: Glucose transporter 3; HBXIP: Hepatitis B X-interacting protein;
HER2: Human epidermal growth factor receptor 2; iAR: Intracellular ARs; IGF-IR: Insulin-
like growth factor receptor; JNK: c-Jun N-terminal kinase; LGMN: Legumain; MAPK:
Mitogen-activated protein kinase; mARs: Membrane ARs; MB: Microbubble; MMP2: Ma-
trix metalloproteinase 2; MUC-1: Mucin 1; NEPrCa: Neuroendocrine prostate cancer;
NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NSCLC: Non-small
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protein kinase C; PR: Progesterone receptor; PSA: Prostate-specific antigen; PTX: Paclitaxel;
Rac1: Ras-related C3 botulinum toxin substrate 1; Ras: Rat sarcoma; RANKL: Receptor
activator of NF kappa-B ligand; RGD: Arg-Gly-Asp; RhoA: Ras homolog family member
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3; TAC: Testosterone albumin conjugates; TAK1: Transforming growth factor-β-activated
kinase 1; TF: transcription factor; TLN1: Talin-1: TNBC: Triple-negative breast cancer; TSP1:
Thrombospondin 1; VEGF: Vascular endothelial growth factor; UTMD: Ultrasonic targeted
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