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Abstract: Common marmosets (Callithrix jacchus; CMs) are small New World primates widely used
in biomedical research. Early stages of such research often include in vitro experiments which
require standardized and well-characterized CM cell cultures derived from different tissues. Despite
the long history of laboratory work with CMs and high translational potential of such studies,
the number of available standardized, well-defined, stable, and validated CM cell lines is still
small. While primary cells and immortalized cell lines are mostly used for the studies of infectious
diseases, biochemical research, and targeted gene therapy, the main current applications of CM
embryonic stem cells and induced pluripotent stem cells are regenerative medicine, stem cell research,
generation of transgenic CMs, transplantology, cell therapy, reproductive physiology, oncology,
and neurodegenerative diseases. In this review we summarize the data on the main advantages,
drawbacks and research applications of CM cell lines published to date including primary cells,
immortalized cell lines, lymphoblastoid cell lines, embryonic stem cells, and induced pluripotent
stem cells.

Keywords: common marmosets; Callithrix jacchus; cell lines; iPS; embryonic stem cells; animal
models; lymphoblastoid cell lines; primary cells

1. Introduction

Common marmosets (Callithrix jacchus; CMs) are small New World primates that have
been increasingly used in many biomedical research areas including infectious diseases,
oncology, autoimmune diseases, age-related disorders, neuroscience, reproductive biology,
stem cell research, and toxicology [1–6].

CMs are naturally susceptible to multiple human viral, protozoan and bacterial
pathogens [7] including Yellow fever [8], Epstein-Barr virus (EBV) and other Herpesviruses,
hepatitis A virus [9], Junin virus, malaria, measles, hepatitis E virus [10]. With multi-
ple methods of assessment of humoral and cell-based immune response developed in
recent years, this makes CMs an optimal model for preclinical studies of safety and ef-
ficacy of novel regimens of prophylaxis and treatment of infectious diseases, including
vaccines, immunotherapeutics and cell-based therapies [11]. The main applications of CMs
in biomedical research are summarized in Figure 1A.
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Figure 1. Main advantages of common marmosets in biomedical research (A) and cell lines required 
for the corresponding research areas (B). 

Substantial advantages of using CMs in biomedical research include their small size 
(300–500 g), relative ease of maintenance and breeding in captivity, phylogenetic closeness 
to humans, and short gestation period combined with fast sexual maturation [3,7]. Many 
commercially available monoclonal antibodies used for differentiation of human cell pop-
ulations by flow cytometry cross-react with the corresponding CM antigens [12–15], 
which makes it possible to apply the well-established research methods commonly used 
in human immunological studies. 

Unlike most other primate species, marmoset litter predominantly contains two or 
more infants [2], which enables experimental design with matched twins in experimental 
groups. Moreover, members of the Callitrichidae family (marmosets and tamarins) are 
uniquely capable of producing polyzygotic twins with hematopoetic chimerism of the in-
fants from the same litter. Chorionic fusion of the placentas during gestation leads to for-
mation of a single chorion with anastomoses connecting the embryos. This fusion process 
allows for the exchange of hematopoetic progenitor cells via blood flow between the twins 
[16]. 

Another characteristic feature of the CMs is minimal diversity at both major histo-
compatibility (MHC) Classes I and II loci [17–19]. One consequence of this reduced 
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Figure 1. Main advantages of common marmosets in biomedical research (A) and cell lines required
for the corresponding research areas (B).

Substantial advantages of using CMs in biomedical research include their small size
(300–500 g), relative ease of maintenance and breeding in captivity, phylogenetic closeness
to humans, and short gestation period combined with fast sexual maturation [3,7]. Many
commercially available monoclonal antibodies used for differentiation of human cell popu-
lations by flow cytometry cross-react with the corresponding CM antigens [12–15], which
makes it possible to apply the well-established research methods commonly used in human
immunological studies.

Unlike most other primate species, marmoset litter predominantly contains two or more
infants [2], which enables experimental design with matched twins in experimental groups.
Moreover, members of the Callitrichidae family (marmosets and tamarins) are uniquely
capable of producing polyzygotic twins with hematopoetic chimerism of the infants from
the same litter. Chorionic fusion of the placentas during gestation leads to formation of a
single chorion with anastomoses connecting the embryos. This fusion process allows for the
exchange of hematopoetic progenitor cells via blood flow between the twins [16].

Another characteristic feature of the CMs is minimal diversity at both major histocom-
patibility (MHC) Classes I and II loci [17–19]. One consequence of this reduced variation is
that callitrichids are much more tolerant to transplantation [20,21], with xenografts between
species within the family surviving an average of three weeks, and allografts within species
often lasting months [22,23], potentially making it possible to perform allotransplantation
between CMs in the absence of immunosuppressive agents [24].

Still, however, the use of all of the abovementioned valuable properties of CMs in
biomedical research is hampered by the low number of available cell cultures (Figure 1B).
Therefore, development of standardized, well-defined, stable, and validated CM cell lines,
as well as effective cell immortalization protocols, opens access to new modelling systems
for a wide spectrum of human diseases in small non-human primates. In this review we
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summarize the data about all currently available CM cell lines, and the main areas of
their application.

2. Primary CM Cells

Different primary CM cell cultures are used in experiments without any modifications.
The first case was reported in 1978 by Falk et al. who used monolayer primary marmoset
kidney cells for propagation of Herpesvirus ateles and as a feeder layer for marmoset
lymphocytes during the development of lymphoblastoid cell lines (described below) [25].
Primary CM fibroblasts of different origin were widely used by researchers due to the ease
of obtaining. Primary skin fibroblasts were used in research on reactive oxygen species
production, and experimental testing of oxidative stress hypothesis of aging [26]. Primary
skin fibroblasts were obtained from skin biopsy samples and cultured for quantitative
assessment of chimerism in marmosets and tamarins [27], and lately cultured fibroblasts
obtained by trypsinization of small pieces of tissue from the ear were used to verify
transgene integration and expression in genetically modified CMs [28]. In a work by
Pogozhykh et al. isolation and systematic study of multipotent stromal cells (MSCs)
derived from human and CM amnion and bone marrow was described. The studied
human and CM samples share many similar features such as most MSC markers and
reduced MHC class I expression in amnion cells vs. bone marrow [29]. Cultured CM bone
marrow progenitor cells can be stimulated by human cytokines and differentiated into
adipocytes, osteocytes and chondrocytes in vitro [30,31].

The methods of obtaining primary CM cells were described in several studies. For
example, dendritic cells were isolated from blood, spleen and bone marrow in the amounts
sufficient for use in preclinical studies of cell therapy for central nervous system diseases
and cancer [32]. Cell cultures of CM reproductive system were also obtained, namely
peritubular cells [33] and ovarian cells [34]. Lately, Jang et al. described isolation and
characterization of the primary retinal pigment epithelial cells, where the quality of obtained
culture correlated with donor age [35]. The authors emphasize that while CMs are widely
used for modeling of age-related macular degeneration, no retinal pigment epithelial cells
had been previously described as an alternative to in vivo experiments.

Due to natural susceptibility to different hepatotropic viruses such as hepatitis
E virus [10], and other viruses causing liver pathology such as lymphocytic choriomeningi-
tis virus (causative agent of Callitrichid hepatitis) [36] and Lassa virus [37], the development
of CM hepatocytes culture is an important task. Primary CM hepatocyte cultures were
obtained in 1991 by Stephensen et al. Cells were characterized by stable expression of
apolipoproteins Al and E for over 66 days in culture and were used to characterize Cal-
litrichid Hepatitis associated virus as the etiologic agent of Callitrichid hepatitis [38].

GB virus-B (GBV-B) causing acute self-limiting infection in a variety of New world
monkeys is closely related to hepatitis C virus, and antiviral therapies effective against GBV-
B could be effective against HCV [39–41]. In 2000 Beames et al. described the development
of primary tamarin hepatocytes culture susceptible to GBV-B as surrogate model for HCV
infection [42]. Later several groups used this method for the purpose of obtaining primary
CM hepatocytes. The resulting cell cultures were used to study GBV-B infection and the
efficacy of antiviral drugs [41,43,44]. Additionally to the GBV-B surrogate models of HCV
infection, in 2006 Martyn et al. obtained primary marmoset hepatocytes and transduced
them with recombinant baculovirus vector encoding E1 and E2 envelope proteins of
HCV [45]. This experiment provides an in vitro model system for HCV gene expression
studies and confirms the possibility of highly effective transduction of primary marmoset
cells with baculovirus vectors.

In 2007 Chin et al. used primary hepatocytes of CMs for HBV studies. The authors
used adenovirus system to deliver replication competent HBV genome into primary cells to
dissect mechanisms of viral pathogenesis [46]. Importantly, the authors demonstrated that CM
hepatocytes are permissive to HBV replication, while it is not true for murine hepatocytes [47].
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Thus, primary CM cells could be used for modeling of viral infections and as a valuable
tool for reproduction research and other in vivo studies. However, in general the use of
primary cells is limited by relatively short life span in culture and variability between
batches, which demands the development of effective immortalization techniques.

3. Immortalization

Primary cell cultures have certain limitations including poor standardization of the
experiments due to short culturing period, and requiring for repeated cells isolation for
every experiment. Since after a certain number of mitotic divisions most cells enter the
phase of replicative senescence [48], the applicability of terminally differentiated somatic
cells in vitro for research or therapeutic use is limited. Progressive shortening of telomere
ends [49] leads to damage of genomic DNA, and activation of p53/p21-mediated cell
cycle control pathways [50–52] resulting in cell growth arrest (M1 senescence) and, if
cells continue to proliferate, in mass cell death (M2 senescence) [52]. Blocking of cell
cycle checkpoint pathways and restoration of telomerase activity are key factors for
cell immortalization.

The first successful attempts to immortalize CM cells were made in 2002 in ovarian
granulosa cells and theca cells by transfection with the classical oncogene, simian virus
40 large T antigen (SV40LT) [53]. The generated cell lines retained several tissue-specific
features (e.g., hormone responsiveness and specific enzyme expression) providing an ex-
tremely useful experimental test system for biomedical studies of reproductive physiology,
in particular, the process of luteinization.

Recently, several immortalized cell lines were developed. First, Petkov et al. showed
that marmoset fibroblasts were successfully immortalized with transposon-integrated
transgenic human telomerase reverse transcriptase (hTERT) and expanded in vitro for over
500 population doublings, while the wild-type fibroblasts only reached a maximum of
46 doublings. The immortalized cells exhibited differences in morphology as compared
to the control fibroblasts, and transcriptome analysis revealed changes in gene expression
patterns, but one sub-clonal line with normal karyotype was established. The results of this
study were an important step towards the development and optimization of methods for
the production of immortalized CM cells [54].

Guo et al. produced immortalized marmoset hepatic progenitor cells (MHPCs) by
lentivirus-mediated transfer of the SV40LT gene into fetal liver polygonal cells. These
cells possess hepatic progenitor cell-specific gene expression profiles with potential to
differentiate into both hepatocytic and cholangiocytic lineages in vitro and in vivo and can
be genetically modified for use in disease modeling, development of treatment regimens,
and allotransplantation therapy for liver diseases [55].

Recently, several groups reported immortalization of CM fibroblasts. Orimoto et al.
used piggyBac transposition of the mutated form of cyclin-dependent kinase 4, Cyclin
D1 and hTERT. The generated immortalized CMs fibroblasts (K4DT cell line) exhibited
telomerase activity and an accelerated cell proliferation rate [56]. Jeong et al. reported
that CRISPR-Cas9-mediated targeting of the p53 gene or CDKN2A locus is effective for
immortalizing primary CM skin fibroblasts. It was shown that CDKN2A gene knockout
could exert a comparable effect to introducing the CDK4R24C transgene which predisposes
humans to hereditary melanoma and abolishes the ability of CDK4 protein to bind to
p16INK4A protein [57,58]. CM cells immortalized by CDKN2A retain functional p53 as
opposed to immortalization with SV40LT [59].

The immortalized cell lines may become a useful tool for future studies on disease
modeling and targeted gene therapy. Such cell lines can be used for reproducible in vitro
studies in virology, drug metabolism, and oncology with a high potential of translation into
in vivo studies.
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4. Lymphoblastoid Cell Lines

CMs are a well-known animal model for Epstein-Barr virus (EBV) infection. In contrast
to the other New World monkey species, the cotton-top tamarin (Saguinus oedipus), EBV
causes persistent infection in CMs without tumor formation [60]. This led to mass develop-
ment of EBV-immortalized lymphoblastoid cell lines. In 1976 Desgranges et al. developed
the first two CM lymphoblastoid cell lines: M81 and M72. Leukocytes were transformed by
infection with EBV strain HKLY-28 derived from nasopharyngeal carcinoma. Generated
lymphoblastoid cell lines M81 and M72 support EBV infection and produce EBV viral
particles [61]. Later Wedderburn et al. used EBV produced by M81 cells to infect several
CMs and obtained a panel of EBV-immortalized lymphoblastoid cell lines, namely M232,
M242, M245 and M287 [62]. EBV-positive lymphoblastoid cell lines were mostly used
for EBV viral particles production [62–68]. However, several works based on these lines
were focused on EBV pathology. For example, Hotchin et al. used M245 B cells immortal-
ized with M81-derived EBV to define tumorigenicity of lymphoblastoid cells expressing a
constitutively activated c-myc gene [69]. Interestingly, the authors were able to inoculate
immortalized B cells of one animal into its immunocompetent siblings for tumorigenicity
assay, as CMs from the same litter are hematologically chimeric as a result of anastomoses
between placentas and are thus tolerant to each other’s haemopoietic cells. The authors
concluded that expression of c-myc is not sufficient to induce tumorigenic phenotype and
at the same time observed immune clearance of cells expressing EBV antigens in inoculated
animals. Also, using M81-derived EBV Wedderburn et al. have shown that EBV infection
of marmosets could be long-term (up to 10 years) and asymptomatic as in humans [60].
M81 cells in combination with cotton-top tamarin and human cell lines were also used to
define intracellular localization of EBV DNA during infection [70].

The other panel of lymphoblastoid cell lines was generated by immortalization following
Herpesvirus ateles [25] or H. saimiri infection [71–78]. These cell lines were widely used as
models of herpesvirus infection. Generation of herpesvirus-immortalized cell lines revealed
restricted viral lymphotropism to the population of lymphocytes with NK cell function and
phenotypic markers of both T cells and NK cells [71]. Using infection of CM lymphocytes with
H. saimiri Letvin et al. made first attempts to dissect oncogenic mechanisms of herpesvirus
infection. They established left-end L-DNA region of herpesvirus genome as a factor of
viral oncogenicity [72]. CM lymphoblastoid cell lines were used for the first description of
posttranscriptional regulation of herpesvirus U-rich microRNA [73] and its role in oncogenicity
as well as oncogenic properties of viral proteins [75,76] was later studied [74,79].

The possibility to transform lymphocytes of CMs with both EBV and herpesviruses
provided a model for studying functional properties of both transformed B and T cells from
the same species of non-human primates [25]. However, the absence of easily accessible
stable lines of herpesvirus-immortalized lymphoblastoid CM cells led to their relatively low
use. Of note, herpesvirus-transformed cell line B95-8 originating from cotton-top tamarins
is commercially available and cited in a plethora of articles.

It is important to note that CM primary, immortalized, and lymphoblastoid cell lines
could be obtained and cultured using standard media and supplements used for human cells.

5. Common Marmoset Embryonic Stem Cells

Embryonic stem (ES) cells are pluripotent stem cells derived from the inner cell mass
of blastocysts, primordial germ cells, teratocarcinomas and male germ cells that are capable
of differentiating into all three germ layers [80]. Relatively early sexual maturation age
and availability of techniques for ovulation control and synchronization between donor
and recipient allowing to obtain blastocysts for transplantation monthly makes CMs an
excellent primate species for the generation of transgenic and knockout animal models of
human diseases as well as a suitable non-human primate model for research purposes in
the fields of regenerative medicine and degenerative neural diseases [24]

First isolation of marmoset ES cells was reported in 1996 by Thomson et al. [81]. In
this work eight cell lines were isolated and two of them, namely Cj11 and Cj62, were cul-
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tured continuously for over one year and remained undifferentiated and euploid. Several
characteristics of these cell lines indicated that they belonged to ES cells, namely rapid
proliferation for at least 18 months in continuous culture maintaining a normal karyotype,
the expression of a combination of cell surface markers of monkey and human ES cells
(SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and alkaline phosphatase), and the potential to
differentiate to both endoderm and trophoblast. Later by developing an embryo collection
system that ensures a stable supply of CM embryos for future production of transgenic or
gene knockout marmosets Sasaki et al. have established three novel CM embryonic stem
cell (CMESC) lines: CMESC20, CMESC40, and CMESC52 which showed three germ layer
differentiation capacity, pluripotency, and expression of stage-specific embryonic antigens.
It has been shown that these CMESC lines can differentiate into functional cardiomy-
ocytes [82], neurons and glia in vitro and induce formation of teratomas that consisted of
cartilage, adipose tissue, skeletal muscle, a bronchus-like structure, keratinizing squamous
epidermis, epidermis, and CD31-positive vascular endothelial cells upon injection into
immunodeficient mice [83]. The CMESC-derived neural stem/progenitor cells developed
into neurons, astrocytes and oligodendrocytes in vivo upon allogenic transplantation pro-
viding a valuable preclinical model for the therapy of spinal cord injury [84]. In 2009
Muller et al. created and characterized a new line (cjes001) of ES cells from the CM that
could be cultivated for up to passage 84 [85]. Later on it was shown that CM ES cells could
be obtained not only from blastocyst but from natural morula stage preimplantation em-
bryos [86]. In 2020 Yoshimatsu et al. reported the generation of a male marmoset embryonic
stem cell line DSY127-BV8VT1 harboring BLIMP1 and DDX4 double reporters which are
specifically expressed in germ cells and play pivotal roles in the development of the germ
cell linage. This ES cell line will be a useful tool for investigating male gametogenesis in
non-human primates [87]. In another study the CRISPR-Cas9 system was used to generate
a CMES40-OC cell line carrying a novel OCT4 (POU class 5 homeobox 1) knock-in reporter
that will be valuable for investigation of primed/naïve pluripotency and germ cell fate [88].

ES cells listed above were later differentiated into immunosuppressive macrophages [89],
osteoblasts [90], retinal pigmented epithelium [91] or modified by introduction of
recombinase-mediated cassette exchange [92]. Using CM40 [83] and Cj11 [81] cell lines
Nii et al. showed that CM ES cells in terms of their morphology, gene expression, and
growth factor dependency for self-renewal [93] and, therefore, present a reliable model
for research in regenerative medicine. Later, the authors reported a novel and efficient
method for differentiating CM ES cells into hematopoietic cells by transiently inhibiting
the phosphoinositide 3-kinase (PI3K)-Protein kinase B pathway [94].

Recently, Aravalli et al. have carried out efficient hepatic differentiation of marmoset
embryonic stem cells (ESCs) into functional hepatocyte-like cells (HLC) and demonstrated
that the generated HLCs possessed specific characteristics similar to those of primary
human hepatocytes. HLCs might be an optimal model for research in cell therapy of
human liver diseases including hepatotropic virus infections, while the expression of
CYP genes involved in the breakdown of various toxic molecules and chemicals also
makes HLCs suitable for research of drug metabolism [95]. The potential for neural
differentiation has been reported by Shimada et al. [96]. Two CM ES cell lines were used for
the successful establishment of a highly efficient knock-in method for marmoset ES cells
using CRISPR-Cas9 system for directed repair of DNA double-strand breaks on the example
of the proteolipid protein 1 (PLP1) and forkhead box protein P2 (FOXP2) genes which
are promising candidates for modification in the CM model. This method dramatically
increased the number of colonies that survived positive selection and enabled bi-allelic
homologous recombination [97]. These works could provide a basis for further application
of ES cells of CMs beyond regenerative medicine.

Recently, temporal control of the tamoxifen-regulated Cre driver was demonstrated
using a novel CM ES cell line, ActiCre-B1. Time-controlled genetic modification makes
it possible to analyze phenotypes associated with embryonic lethality by knockout of
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functionally important genes. The new ActiCre-B1 cell line will provide a valuable research
platform for studying gene knockout in non-human primate pluripotent stem cells [98].

Almost all marmoset ES cells have to date depended on mouse embryonic fibrob-
lasts (MEFs) as feeder cells. However, the possibility of cultivating ESCs on Matrigel in
conditions without feeder support (in feeder-free environments) has been described [95].
Therefore, contamination with the mouse cell components is an important issue for molec-
ular or cellular biological analyses [99,100]. Furthermore, in contrast to macaque ES cells,
marmoset ES cells derived from naturally-fertilized embryos were usually collected by
uterine flushing procedure [81,83,86]. In a recent study by Kishimoto et al. 17 new mar-
moset ES cell lines were established from both naturally-fertilized and in vitro fertilized
embryos under both feeder and feeder-free conditions. Furthermore, six of the 17 ESC lines
carried male karyotype [101]. Male ES cell lines will be more useful for in vitro study of
differentiation to sperm and for effective production of genetically modified marmoset
models such as conditional knock out/in of the Y chromosome-specific genes, which has
not yet been achieved in the CMs.

In a recent article by Kodera et al. cortical organoids and ganglionic eminence
organoids were induced from cjESCs and fused to generate cerebral assembloids [102]. Due
to the wide use of CM in neurobiological research, the marmoset assembloid system will
provide a vitally needed in vitro platform for non-human primate neurobiology.

6. Marmoset Induced Pluripotent Cells

In 2006 Takahashi and Yamanaka proved that the factors that play important roles in
the maintenance of ES cell identity also play pivotal roles in the induction of pluripotency in
somatic cells [103]. In their groundbreaking work, four factors (namely Oct3/4, Sox2, c-Myc
and Klf4), now known as Yamanaka factors, were sufficient to induce pluripotent stem cells
from mouse embryonic or adult fibroblasts. Delivery of reprogramming factors with retrovi-
ral vectors raised safety concerns such as insertional inactivation of tumor suppressor genes
and/or insertional activation of oncogenes, and other risks associated with constitutive
expression of the reprogramming factors. This led to the use of transient, integration-free
methods of delivering the reprogramming factors such as delivery/transient transfection
with Sendai virus, adenovirus, episomal plasmids, minicircle plasmids, mini-intronic plas-
mids, PiggyBac transposons, synthetic modified mRNAs or miRNAs. Episomal plasmids
and Sendai virus infection have been the preferred methods of choice for deriving clinical
grade induced pluripotent stem cells (iPSCs) [104].

CM iPSCs were generated using retroviral transduction [105], non-integrative episomal
vectors [106,107], PiggyBac system [108], and by adding chemical compounds, reprogramming
factors and interferon suppressors to a conventional RNA transfection method [109].

The first work on the generation of marmoset iPSCs was published in 2010 by Wu et al.
Several lines of iPSCs from newborn marmoset fibroblasts were obtained using retroviral
transduction with human Oct4, Sox2, Klf4 and c-Myc. Generated cells fulfil critical criteria
for successful reprogramming: they exhibit normal karyotype, are alkaline phosphatase
positive, express high levels of NANOG, OCT4 and SOX2 mRNAs, are immunoreactive
for Oct4 in the nucleus and TRA-1-81 and SSEA-4 in the plasma membrane, and when
implanted into immunodeficient mice, produce teratomas that have derivatives of all three
germ layers [105]. These experiments provide proof of principle that iPSC technology
can be adapted for use in the marmoset as a future model of autologous cell therapy.
Later efficient protocol for the directed neural differentiation of these pluripotent cells for
experimental cell therapy was developed [110]. In the same year iPSCs derived from fetal
liver of CM via the retrovirus-mediated introduction of six human transcription factors
(Oct3/4, Sox2, Klf4, c-Myc, Nanog and Lin28 [111]) was reported.

Another approach was presented by Yoshimatsu et al. using EBV-based episomal
vector system that provides persistent transgene expression which is advantageous for the
efficient production of transgene-induced pluripotent stem cells without viral transduction.
The introduction of additional reprogramming factors (KDM4D, GLIS1 and a p53 shRNA)
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into the episomal vector system allowed to create an iPSC line from somatic fibroblasts of
a neonatal CM that showed standard pluripotency characteristics and could be a useful
resource for stem cell research using non-human primates [112].

Due to wide use of marmosets for modeling of neurodegenerative diseases, several works
focused on generation of iPSCs and their further differentiation into neuronal cells [107,113].
The data presented by Vermilyea et al. demonstrate that iPSCs can be efficiently differenti-
ated to neurons as well as patterned to have a floor plate-derived midbrain dopaminergic
phenotype that can be used for in vitro experiments on neural differentiation and to support
Parkinson’s disease-related studies [114]. Besides, the same group reported successful use of
CRISPR/Cas9 to introduce the LRRK2 G2019S mutation associated with 1–3% of Parkinson’s
disease cases worldwide into marmoset ES cells and iPSC. It was found that, similar to hu-
mans, marmoset LRRK2 G2019S resulted in elevated kinase activity, increased intracellular
reactive oxygen species, decreased neuronal viability and reduced neurite complexity. These
results demonstrate the feasibility of inducing monogenic mutations in CMs and support
the use of this species for generating a novel genetic-based model of Parkinson’s disease
expressing physiological levels of LRRK2 G2019S [115].

Yamaguchi et al. generated CM iPSCs by lentiviral transduction of reprogramming
factors including POU5F1 (also known as OCT3/4), SOX2, KLF4 and c-MYC into CM fi-
broblasts. The obtained cells showed an abnormal karyotype denoted as 46, X, del(4q),+mar
and formed tumors similar to human dysgerminoma in severe combined immunodefi-
ciency mice. CM dysgerminoma-like tumors were highly sensitive to DNA-damaging
agents, irradiation, and fibroblast growth factor receptor inhibitor, and their growth was
dependent on c-MYC expression [116]. It is known that iPSCs can form both teratomas
and malignant tumors such as neuroblastoma and follicular carcinoma if transplanted in
their undifferentiated pluripotent state in vivo [117], and tumorigenicity still is one of the
concerns for iPSCs therapy [104]. Obtained CM dysgerminoma-like tumors could serve
as a model for the development of strategies to deal with tumors unexpectedly formed in
patients treated with iPSC-based therapies.

As mentioned above, lentiviral transduction with reprograming factors raised safety
concerns which resulted in the development of integration-free methods of delivering the
reprogramming factors [104]. These methods were also applied for generation of marmoset
iPSCs. For example, Wiedemann et al. reprogrammed bone marrow–derived MSCs of
adult CMs in the presence of TAV, SB431542, PD0325901 and ascorbic acid via a novel,
excisable lentiviral spleen focus-forming virus (SFFV)-driven quad-cistronic vector system
(OCT3/4, KLF4, SOX2, C-MYC) [118]. Later, Debowski et al. described the generation of eight
pluripotent iPS cell lines from CM postnatal skin fibroblasts using a six-factor-in-one-construct
piggyBac system including KLF4, c-MYC, SOX2, OCT4, NANOG, and the RNA binding
protein LIN28 which were characterized in comparison with ES cells. The cells were stable
over time proving that marmoset iPS cells generated using the piggyBac system may serve
as a model for testing treatment regimens for cell and tissue degenerative diseases such as
myocardial degeneration or neurodegenerative diseases (e.g., Parkinson’s disease) [108].

It is worth mentioning that marmoset and human reprogramming factors are very
similar [105], so that human reprograming factors could be used for generating marmoset
iPSCs. CM iPSCs as well as ESCs could be cultured in standard conditions required
for human ESCs using serum-free media (knock-out media) supplemented with serum
substitutes. In the most recent study CM iPSCs feeder-free culturing environment using
Matrigel was described [114] demonstrating that culturing of CM cells is similar to that
of human cells. Recently numerous studies developing CM ES cells and iPSCs and their
potential use for regenerative medicine, pre-clinical trials and Parkinson’s disease therapy
were published. However, their use in daily laboratory practice is still limited. In a review
by Aravalli et al. [119] a list of advantages and potential applications of CM ES cells and
iPSCs in liver disease modeling, tissue engineering and drug metabolism was described,
but no articles describing the use of CM cells were mentioned. Importantly, the use of CM
ES cells and iPSCs for modeling viral infections is also limited.
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7. Conclusions

Biological characteristics of CMs make them an exceptionally useful non-human
primate animal model for biomedical research in the fields of infectious diseases, oncol-
ogy, autoimmune diseases, metabolic disorders, neuroscience, reproductive biology, stem
cell research, and toxicology. Early stages of such research often include in vitro experi-
ments which require standardized and well-characterized CM cell cultures derived from
different tissues.

In this review we summarize the data on the main advantages, drawbacks and re-
search applications of CM cell lines published to date including primary, immortalized,
lymphoblastoid cell lines, embryonic stem cells and induced pluripotent stem cells (Table 1).
Despite the popularity of CMs in biomedical research, the number of available standard-
ized, well-defined, stable and validated CM cell lines is still small, and the use of CM cell
lines obtained and characterized so far is often limited by the work of the laboratories that
obtained the original cells. Thus, development of new standardized and commercially
available CM cell lines will significantly increase the reproducibility and translational
potential of experimental results obtained using CMs in many areas of biomedical research.

Table 1. Types of common marmoset cell lines used in biomedical research.

Type of CM Cell Lines Advantages Drawbacks Cell Origin

Primary CM cells

easily obtainable;
intact phenotype and unmodified
genotype;
sensitive to various pathogens

short culturing period;
require repeated isolation of cells;
high variability between batches

kidney cells [25];
skin fibroblasts [26–28];
hepatocytes [38,41,43–46];
mesenchymal stem cells [29–31];
dendritic cells [32];
peritubular cells [33]
ovarian cells [34]

Immortalized CM cells

long culturing period;
possible standardization;
retain most properties of origin
cells

lack of universal immortalization
technique;
possible differences in morphology,
karyotype and gene expression
pattern compared to primary cells

ovarian granulosa and theca cells
[53];
skin and muscle fibroblasts
[54,56,59];
hepatic progenitor cells [55]

Lymphoblastoid CM cells reproducible transformation with
both EBV and herpesviruses

safety issues due to production of
viral particles in culture

EBV-transformed lymphoblastoid
cells [61,62];
Herpesvirus saimiri-transformed
lymphoblastoid cells [71,77];
Herpesvirus ateles-transformed
lymphoblastoid cells [25]

CM embryonic stem cells

long culturing period and rapid
proliferation with normal
karyotype;
express stage-specific embryonic
markers similar to human cells;
can be differentiated into cells of
all three germ layers;
no genetic manipulations
required;
possible auto-/allotransplantation
without immunosuppression

the need for special equipment for
obtaining;
complicated culture conditions to
maintain undifferentiated state;
most published cell lines depend on
mouse feeder cells, thus might be
contaminated with mouse cell
components;
depend on fertilization, thus
requiring a CM breeding colony;
may form teratomas and malignant
tumors upon transplantation

blastocyst-derived [81,83,85,98];
derived from early and compacted
morula stage embryos [86];
cell lines established from both
naturally-fertilized and in vitro
fertilized embryos under both
feeder and feeder-free conditions
[101]

CM induced pluripotent stem
cells

stable in culture;
most reported cell lines exhibit
normal karyotype;
express pluripotency markers
similar to human cells;
can be differentiated into cells of
all three germ layers;
possibility to generate autological
cell culture less prone to
immunorejection

complicated pluripotency induction
and differentiation protocols;
possible high variability in the
completeness of reprogramming;
may form teratomas and malignant
tumors upon transplantation due to
possible tumorigenicity associated
with reprogramming factors

iPSCs derived from:
embryonic skin fibroblasts [113];
newborn marmoset fibroblasts
[105,108,109,112];
adult skin fibroblasts [107,109,114];
fetal liver [109,111];
adult bone marrow-derived cells
[118]
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