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Abstract: Different conventional therapeutic procedures are utilized globally to manage cancer cases,
yet the mortality rate in patients with cancer remains considerably high. Developments in the field
of nanotechnology have included novel therapeutic strategies to deal with cancer. Biogenic (green)
metallic silver nanoparticles (AgNPs) obtained using plant-mediated protocols are attractive to
researchers exploring cancer treatment. Biogenic AgNPs present advantages, since they are cost-
effective, easy to obtain, energy efficient, and less toxic compared to chemically and physically
obtained AgNPs. Also, they present excellent anticancer abilities thanks to their unique sizes, shapes,
and optical properties. This review provides recent advancements in exploring biogenic AgNPs as
a drug or agent for cancer treatment. Thus, great attention was paid to the anticancer efficacy of
biogenic AgNPs, their anticancer mechanisms, their efficacy in cancer photodynamic therapy (PDT),
their efficacy in targeted cancer therapy, and their toxicity.

Keywords: anticancer; nanotechnology; phytonanotechnology; biogenic silver nanoparticles;
photodynamic therapy; toxicity

1. Introduction

The commencement of cancer is provoked by an uncontrolled division of cells, and
these cells can then invade nearby normal tissues [1]. Mutations in tumor suppressor genes
and proto-oncogenes are often involved in cancer initiation [2]. Cancer remains a leading
cause of mortality, and it is expected that its global burden will increase by 2040 with about
28.4 million cases to be recorded [3]. Globally, different conventional treatments are used
for cancer treatment by oncologists, including chemotherapy, radiation, and surgery [4].
Yet, most cancers are very resistant to these treatments, leading to a low survival rate in
cancer cases [5]. Often, chemotherapy appears as the first option for cancer therapy, and
the chemotherapeutic molecules used in this therapy are widely used as primary targets
to destroy cancerous cells. However, both healthy and cancerous cells are destroyed by
chemotherapeutic molecules since they may be non-target-specific [6,7] These molecules
are also noted for inducing acute side effects in patients, and some normal functioning cells,
including those in the digestive tract, mouth, reproductive system, hair follicles, and bone
marrow blood-forming cells are likely to be injured [6]. Secondary therapeutic methods
used in cancer treatment, such as immune and hormone therapy, can also cause severe side
effects and abnormalities in patients, such as damage to normal cells and organs, causing a
deterioration in the quality of life [8]. Similarly, no current therapy for treating cancer is
alluded to as presenting selective blinding to cancerous cells, which leads to unsolicited
toxicities and side effects [9]. Moreover, cancer cells are made of cellular and non-cellular
components that differ from those of normal cells. These altered cellular components hinder
the transportation and delivery of tumor drugs, leading to poor drug bioavailability [4].
Identifying new treatment strategies for the effective management of cancer has also been
problematic [7]. The aforementioned pitfalls associated with conventional cancer treatments
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have motivated the search for more cost-efficient and strongly sensitive molecules that may
exercise cell-targeted specificity in cancer treatment [4,10]. This may lessen the burden
linked to cancer treatment.

Innovative therapeutic intervention for cancer via nanotechnology suggests metallic
silver nanoparticles (AgNPs) as promising nanoproducts for cancer treatment. They are
confirmed to have anticancer properties, including the selective obstruction of the respira-
tory chain in the mitochondria, resulting in reactive oxygen species (ROS) and impairment
of DNA [11]. AgNPs are obtained via the transformation of silver ions using nanotech-
nology into ultra-small materials that are quantified in nanometers (nanoscale) [12]. The
transformation of the bulk silver ion to AgNPs via greener or biogenic methods presents
advantages over chemical and physical methods. For instance, the utilization of plants in
the biogenic production of AgNPs is denoted as being very cost-effective, presents less
hazards to humans and the environment, and is easy to perform [13]. Likewise, silver
in nanoscale dimensions (AgNPs) is depicted to present new physicochemical proper-
ties and can promote unique biological activities [14]. AgNPs have again applications
in diagnosis, microelectronics, solar energy conversion, catalysis, water treatment, and
photonics [15]. They are also used in cosmetics, hygienic goods, detergent production [12]
domestic appliances, and ink-jet printing [1]. The uniqueness of AgNPs equally broadens
their exploration in various therapies for their antifungal, antiviral, antibacterial, antiangio-
genic, anti-inflammatory, and anticancer properties [14]. Moreover, great antitumor effects
of AgNPs have been reported [1], and biogenic AgNPs can ameliorate the anticancer ability
of photodynamic therapy (PDT) [16]. Moreover, carryover phytochemicals in biogenic Ag-
NPs can be liberated in cancerous cells due to their acidic microenvironment, and they can
aid in augmenting the anticancer efficacy of AgNPs. Taking into consideration the existing
knowledge on AgNPs and their anticancer impacts, this review, therefore, focuses on the
anticancer effects of biogenic AgNPs with special emphasis on the synthesis, anticancer
potential, anticancer mechanisms, effectiveness in cancer PDT, and toxicity.

2. Nanotechnology

Within the last decade, knowledge regarding the tumor microenvironment has also
inspired scientists to investigate various nanotechnology methods for cancer treatment
and diagnostic purposes [4]. The nanotechnology domain encompasses different interdisci-
plinary fields such as medicine, biomaterials, and electronics [12]. Rapid development in
the era of nanotechnology has led to the exploration of new inventions in medicine and
biology [15]. The nanomedicine area focuses on improving the health sector by proposing
more efficient procedures for dealing with mortal diseases. Nanotechnology-based applica-
tions make use of nanostructures (nanoparticles or nanomaterials), which are produced
via nanotechnology techniques such as the synthesis, design, and maneuvering of large
structures into nanoparticles [12]. The ISO/TR 18401:2017 (en) describes nanoparticles as
materials with lengths ranging from 1 to 100 nm [17].

Generally, nanomaterials are categorized into organic, carbon-based, and inorganic.
Organic-based nanomaterials such as dendrimers, liposomes, ferritin, and micelles are
often exploited as delivery systems for the targeted release of active drug ingredients [18].
Carbon-based nanomaterials such as carbon black, fullerenes, carbon nanotubes, graphene,
and carbon nanofibers are wholly arranged with carbon [19]. Inorganic-based nanomateri-
als such as metal oxide and metallic nanomaterials are told not to have any carbon atoms
within their composition [18]. Metallic nanoparticles such as aluminum, cadmium, copper,
lead, cobalt, iron, zinc, gold, and silver can present intrinsic properties thanks to their
characteristics and size, including pore size, expanded surface, spherical and cylindrical
shape, structures (crystalline and amorphous), surface charge density, and color [15,18].
The formulation of nanoparticles with sizes or lengths from 1 to 100 nm has been reported
in various research studies and is considered for its biomedical applications [6]. Nanoparti-
cles are exploited in other fields like cosmetics, drug delivery, and therapeutics because of
their distinct biological, physical, and chemical qualities, and they may hopefully enforce
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cancer therapy [12,20]. Nanoparticles are about 10 to 10,000 times smaller in size than cell
organelles, making their application favored in extracellular (surface) and intracellular
therapeutic and diagnostic procedures [1]. Moreover, the new development in the applica-
tions of nanostructures might have encouraged different companies such as Sigma Aldrich,
Evonik, BASF, Blue Nano, Blue Nano, Cima Nanotech, Carestream Advanced Materials,
PolyIC, Dow Chemical, Saint-Gobain, Advanced Nano Products Co., Ltd., SILVIX Co., Ltd.,
Nano Silver Manufacturing Sdn Bhd, Ames Goldsmith Corporation, NovaCentrix, Applied
Nanotech Holdings, Inc., Creative Technology Solutions Co. Ltd., Bayer MaterialScience
AG, NanoMas Technologies, Inc., ras Materials, and Suzhou NanoGrid Technology Co., Ltd.
to produce and market nanomaterials [21]. The global market for engineered nanomaterials
is about 11.5 million tons, and this is estimated to have a market value of $20 billion a
year [21]. Likewise, metallic nanomaterials, particularly AgNPs, are reported to have
had steady market growth over the last decade, and the global production of AgNPs is
estimated at 500 tons a year [21,22]. AgNPs as well as gold nanoparticles (AuNPs) are
the most exploited metallic nanomaterials. They are used in the chemical and biomedical
sectors, show anticancer activity, and can act as catalysts [23]. In addition, biologically
obtained AgNPs and AuNPs are said to have antimicrobial, antioxidant, and anticancer
activity [24]. However, AgNPs has excellent antimicrobial properties compared to other
metallic nanoparticles and can act as carriers for chemotherapeutic molecules, and this has
strengthened their applications in different sectors [25,26]. AgNPs are also documented
as the most commercialized nanomaterials, account for more than 50% of consumer nano-
products globally, and are expected to have about 13% market growth from 2016 to 2024.
This could be associated with the predominant applications of AgNPs in life science, health
care, information technology, electronics, and the food and packaging sectors [27]. Also,
advanced products for wound dressing manufactured in the form of composites of ionic
silver, such as ActicoatTM, AquacelTM, BactigrasTM, TegadermTM, or Poly Mem SilverTM,
have been approved by the Food and Drug Administration (FDA) [26]. Yet the market price
for AgNPs seems expensive, as the price is determined by the producing company based
on the particle size [21]. This apparently shows that a cost-effective method to produce
nanomaterials like AgNPs should be exploited.

The formulation of metallic nanomaterials via the recent year’s research advocates
for cost-efficient methods and the utilization of these nanomaterials in highly sensitive
applications including clinical diagnosis, molecular biology, and cancer therapy [15]. Metal-
lic nanomaterials like AgNPs are the most utilized nanomaterials due to their impressive
functionalities attributed to their unique chemical and physical qualities. AgNPs exhibit
stronger effects compared to the bulk ion. Silver is a noble metallic element that is resistant
to bacteria and is a promising antibacterial agent [12]. Nonetheless, silver can be engineered
and manipulated using new nanotechnology procedures to create new structures with
exciting properties [12].

3. Biogenic AgNPs Synthesis

Green (biogenic) nanotechnology focuses to engineer nontoxic nanoscale materials by
exploring eco-friendly and biological materials while minimizing the energy consumed in
the process. Green nanotechnology methods for producing AgNPs involve the bioreduction
of the metallic ion (Ag+) to the AgNPs (Ag0), and this requires an appropriate biological
source [13,28]. Functionalized nanomaterials can be produced using green methods via the
amalgamation of biological and physicochemical principles [29]. Chemical and physical
methods are also exploited for the synthesis of AgNPs. The green synthesis and chemical
methods for synthesizing nanostructures are categorized as bottom–up methods, while the
physical methods are categorized as top–down methods (Figure 1).
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Figure 1. Bottom–up and top–down methods for nanomaterial synthesis. (1) Synthesis using bulk 
material in the top–down method; (2) synthesis using atomic structures/molecules in the bottom–
up method; (3) green synthesis approaches in bottom–up methods; (4) toxic method for nano-
material synthesis in bottom–up and top–down methods using physical and chemical approaches; 
(5) biological sources exploited in bioformulation of biogenic (green) nanomaterials; (6) biological 
plant parts that are used in biogenic nanomaterials synthesis (7); characterization techniques to con-
firm the synthesis of nanomaterials. 

The bottom–up methods describe the merging of molecules/atoms to formulate 
nanostructures. On the other hand, top–down methods involve the miniaturization of 
large materials into fine nanostructures [29,30]. The chemical methods require very ex-
pensive chemicals that are often hazardous to humans and the environment. Also, the 
physical methods require enormous force and energy, which elevates production costs 
and has a harmful effect on the environment. Nonetheless, biomaterials explored in the 
green synthesis of nanostructures are said to be superior to those used in chemical and 
physical methods in numerous ways, including excessive availability of biomass, low cost, 
and nontoxicity, and handling is very easy and safe [30,31]. Macroscopic or microscopic 
biomaterials from bacteria, algae, yeasts, seaweeds, fungi, plants (leaves, stem, bark, 
flower, seedlings, shoots, fruit, roots, twigs, peel, gum, latex, plant secondary metabolites, 
and essential oils), pods-tissue cultures, and biopolymers are utilized in the synthesis of 

Figure 1. Bottom–up and top–down methods for nanomaterial synthesis. (1) Synthesis using bulk
material in the top–down method; (2) synthesis using atomic structures/molecules in the bottom–up
method; (3) green synthesis approaches in bottom–up methods; (4) toxic method for nanomaterial
synthesis in bottom–up and top–down methods using physical and chemical approaches; (5) bio-
logical sources exploited in bioformulation of biogenic (green) nanomaterials; (6) biological plant
parts that are used in biogenic nanomaterials synthesis (7); characterization techniques to confirm the
synthesis of nanomaterials.

The bottom–up methods describe the merging of molecules/atoms to formulate nanos-
tructures. On the other hand, top–down methods involve the miniaturization of large
materials into fine nanostructures [29,30]. The chemical methods require very expensive
chemicals that are often hazardous to humans and the environment. Also, the physical
methods require enormous force and energy, which elevates production costs and has a
harmful effect on the environment. Nonetheless, biomaterials explored in the green synthe-
sis of nanostructures are said to be superior to those used in chemical and physical methods
in numerous ways, including excessive availability of biomass, low cost, and nontoxicity,
and handling is very easy and safe [30,31]. Macroscopic or microscopic biomaterials from
bacteria, algae, yeasts, seaweeds, fungi, plants (leaves, stem, bark, flower, seedlings, shoots,
fruit, roots, twigs, peel, gum, latex, plant secondary metabolites, and essential oils), pods-
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tissue cultures, and biopolymers are utilized in the synthesis of biogenic nanomaterials or
particles [13]. The exploitation of plant biomaterials to synthesize metallic nanomaterials,
including AgNPs (phytonanotechnology), offers more advantages than microorganisms, as
the latter need specific aseptic conditions in order to maintain pure microbial cultures. The
preservation of stabilized cultures is also extremely complex if factors for cell culture such as
pH, salinity, and temperature are considered [32–34]. Moreover, the phytonanotechnology
methods are simple, cost-efficient, and pose no environmental threat. The nanoparticles
engineered via this method are generally stable, and the speed of synthesis is relatively fast.
Large amounts of nanoparticles of different sizes and shapes, free from contaminants, can
be generated from plant sources. The quantity of bioactive phytochemical compounds in
plant materials such as proteins, polysaccharides, vitamins, enzymes, phenols, alkaloids,
terpenoids, saponins, and tannins determines the size and shape of the nanoparticle, as
these compounds naturally accelerate the reduction of bulk materials to the formation of
metal ions by dually acting as reducing and stabilizing agents [13,34]. Yet, an enhancement
or alteration in reaction conditions including temperature, pH, salt concentration, duration
of incubation, and redox conditions can affect the obtainable sizes and shapes of nanomate-
rials. For example, the size of AgNPs synthesized using plants can be affected by altering
the pH. The pH alterations may induce changes in the plant phytochemicals by changing
their charge, thus altering the reduction and binding processes during AgNP synthesis [35].
Alterations in pH also influence the zeta potential of the obtained nanoparticles, since
changes in ionic strength in the reaction solution will cause changes in the cationic nature of
Ag+. Also, a temperature increase in the reaction medium will accelerate the reaction rate,
which affects the thermal stability of reducing agents and the final yields. Likewise, the
obtainable sizes and shapes for AgNPs greatly depend on the proportion of silver nitrate
(AgNO3) salt to plant biomaterial used in synthesis [36].

4. Anticancer Efficacy of Biogenic AgNPs

Generally, plant biomaterials often contain medicinal phytochemicals that can en-
hance the efficacy of biogenic nanomaterials against different types of microorganisms
and cancer cells. In addition, biogenic AgNPs from plant sources have a spotlight fea-
ture due to their phytochemical coating, which furnishes them with improved biological
activity compared with AgNPs engineered using chemical methods [37,38]. In different
studies, plant-mediated AgNPs of different sizes and shapes have been engineered and
characterized using various techniques (UV-visible spectroscopy (UV-vis), high-resolution
X-ray diffraction (HR-XRD), Fourier transform infrared spectroscopy (FTIR), zeta poten-
tial, high-resolution transmission electron microscopy (HR-TEM), energy-dispersive spec-
troscopy analysis (EDS), field-emission scanning electron microscopy (FE-SEM), dynamic
light scattering (DLS), zeta potential (ZP), atomic force microscope (AFM), field-emission
transmission electron microscope (FE-TEM), energy-dispersive X-ray analysis (EDAX),
photoluminescence (PL), thermogravimetric analysis (TGA), and nanoparticle tracking
analysis (NTA)). Different concentrations of these biogenic AgNPs have been showcased in
numerous in vitro research studies to exhibit promising anticancer abilities (Table 1).

Table 1. Biogenic AgNPs against human cancerous cell lines.

Plant Part Used Human Cancer
Cell Lines IC50 Values

AgNPs Size
(nm) and
Shape

Possible Reducing and
Capping Agents Reference

Dysosma pleiantha Rhizomes

AGS cells,
MDA-MB-231,
and breast cancer
cells
(MDA-MB-453)

7.14 µM (for AGS),
33.521 µM (for
MDA-MB-231), and
36.25 µM (for
MDA-MB-453)

76 (spherical)
Carbohydrates, amino
acids, and reducing
sugars

[15]

Detarium
microcarpum Leaves

Cervical cancer
cells (HeLa) and
PANC-1 cells

84 µg/mL (for
PANC-1) and
31.5 µg/mL (for
HeLa)

84 (spherical)
Polyphenols, alcohol,
carbonyl, and aromatic
compounds

[31]
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Table 1. Cont.

Plant Part Used Human Cancer
Cell Lines IC50 Values

AgNPs Size
(nm) and
Shape

Possible Reducing and
Capping Agents Reference

Artemisia
marschalliana Aerial parts

Gastric
adenocarcinoma
(AGS)

21.05 µg/mL 5–50 (spherical) Phenolic acids and
flavonoids [39]

Mentha arvensis Leaves
Breast cancer cells
(MCF-7 and
MDA-MB-231)

6.25 µg/mL 4–9 (spherical)
Alcohol, proteins,
polyols, aliphatic amine,
and alkyl halide

[40]

Annona squmosa L. Fruit
Prostate
adenocarcinoma
(PC-3)

1.7 ± 0.4 µg/mL 6.63 (spherical)
Phenolic acids,
flavonoids, and
aromatic compounds

[41]

Annona Glabra L. Fruit
PC-3, ovary
adenocarcinoma
(SKOV3)

2.4 ± 0.3 (for PC3)
and 2.8 ± 0.23 µg/mL
(for SKOV3)

7.11 (spherical) Polyphenols [41]

Achillea biebersteinii Flowers MCF-7 cells 20 µg/mL
10–40 (spherical
and
pentagonal)

Protein and phenolic
compounds [42]

Tussilago farfara Sesquiterpenoids
in flower bud

Pancreas ductal
adenocarcinoma
(PANC-1) cells,
AGS, and
colorectal
adenocarcinoma
(HT-29) cells

338.0 µM (for AGS),
275.3 µM (for HT-29),
and 166.1 µM (for
PANC-1)

13.57 ± 3.26
(spherical) [43]

Cleome viscosa L. Fruit

Lung
adenocarcinoma
(A549) and
ovarian
teratocarcinoma
(PA-1) cell lines

28 mg/mL (for A549)
and 30 mg/mL (for
PA-1)

5–30 (spherical
and irregular)

Phenolic compounds,
alkaloids, amino acids,
tannins, and
carbohydrates

[44]

Potentilla fulgens Roots

MCF-7 and
human
glioblastoma
cancer (U-87)

4.91 mg/mL (for
MCF-7) and
8.23 mg/mL (for
U-87)

10–15
(spherical)

Amino acids, phenolic,
flavonoid, and
terpenoids

[45]

Memecylon
umbellatum Burm F.

4-N-methyl
benzoic acid
(plant
derivative)

MCF-7 42.19 mg/mL 7–22 (spherical)
Phenolic derivative
(4-N-methyl benzoic
acid)

[46]

Alternanthera sessilis Leaves PC-3 cells 6.85 µg/mL 30–50
(spherical) Proteins [47]

Solanum muricatum Leaves HeLa cells 37.5 µg/mL 20–80
(irregularly) Flavonoids [48]

Cymodocea serrulata Leaves HeLa cells 34.5 µg/mL 17–29
(spherical)

Alcohols, phenols,
proteins, alkenes, alkyl
halides, ketones,
isothiocyanates, and
isocyanates

[49]

Diospyros malabarica Fruit

Human primary
glioblastoma
(U87-MG) cell
line

58.63 ± 5.74 µg/mL. 8–28 (spherical)
Polyphenols, proteins,
amino acids, peptides,
and alkynes

[50]

Stigmaphyllon
ovatum Leaves HeLa cells 9.1 × 10−9 µM 24 (spherical) [51]

Artocarpus lakoocha Fruit PC-3 30.62 µg/mL 6.6–25
(spherical)

Phenolic, flavonoids,
terpenoids,
polysaccharides,
enzymes, alkaloids,
amino acids, alcoholic,
and protein compounds

[52]

Cucumis sativus Fruit PA-1 cells 49.71 µg/mL. 11.12–39
(spherical) phenolic, and proteins [53]

Satureja Rechingeri
Jamzad Leaves AGS cells 4.84 µg/mL 62 ± 1

(spherical)
Phenolic, alcohols, and
proteins [54]

Punica granatum Leaves HeLa cells 100 µg/mL 41.69–69.61
(spherical)

Polyphenols, and
flavonoids [55]

Punica granatum Pell MDA-MB-231
cells 72.314 µg/mL. 15–30

(spheroidal) [56]
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Table 1. Cont.

Plant Part Used Human Cancer
Cell Lines IC50 Values

AgNPs Size
(nm) and
Shape

Possible Reducing and
Capping Agents Reference

Beta vulgaris Roots
MCF7, A549, and
Hep-2 cell line
(pharynx Hep-2)

47.6 µg/mL (for
MCF), 48.2 µg/mL
(A549) and
47.1 µg/mL (for
Hep-2)

5–20 (spherical)
Alcohol, phenols,
amine, and aromatic
compounds

[57]

Cucumis
prophetarum Leaves

A549,
MDA-MB-231,
HepG-2, and
MCF-7

105.8 µg/mL (for
A549), 81.1 µg/mL
(for MDA-MB-231),
94.2 µg/mL (for
HepG-2), and
65.6 µg/mL (for
MCF-7)

30–50
(polymorphic
shapes; with
some
ellipsoidal and
irregularly
granulated)

Tannins, alkaloids,
triterpenoids, saponins,
phenols, and steroids

[58]

Lantana camara Leaves A549 and MCF-7
cell lines

49.52 g/mL (for A549)
and 46.67 g/mL (for
MCF-7)

10–50
(irregular)

Hydroxyl and carbonyl
compounds [59]

Perilla frutescens Leaves

Prostate
adenocarcinoma
(LNCaP) and
colon carcinoma
(COLO-205)

24.33 µg/mL (for
LNCaP) and
39.28 µg/mL (for
COLO-205)

20–50, various
shapes
(spherical, rod,
rhombic, and
triangle)

Flavonoids, phenolic
triterpenoids, and
glycosides components

[60]

Ginkgo biloba Leaves
Cervical
carcinoma cell
lines (HeLa and
SiHa cells)

3 µg/mL for both cell
lines 40 (spherical) [61]

Derris trifoliata Seeds A549 cells 100 µg/mL 16.92 ± 7
(spherical)

Flavonoids, phenolic,
saponins, and proteins [62]

Elephantopus scaber Leaves

MCF-7, A549,
oral squamous
cell carcinoma
(SCC-40), and
colon carcinoma
(COLO-205) cell
lines

GI50 < 10 µg/mL for
all the cell lines 59 (spherical) Phenolic and amino

acids [63]

Alpinia officinarum Rhizome

MCF-7, human
small cell lung
cancer (H69AR),
and Human
prostate cancer
(DU-145) cells
lines

52.4 ± 0.6 µg/mL (for
MCF-7),
44.11 ± 1.2µg/mL
(for H69AR) and
36.1 ± 2.2 µg/mL (for
DU-145)

2.5 and 45.3
(spherical) [64]

5. Photodynamic Therapy (PDT)

PDT in cancer therapy describes a noninvasive treatment modality that utilizes light
of a specific wavelength and a compatible photosensitizing agent (nanoparticles, chemicals,
or drugs) to treat various types of cancer. The activation of the photosensitizer (PS) in
tumor cells by light irradiation can trigger a reaction with molecular oxygen to produce
ROS, which causes cellular damage in diseased cells [65], antineoplastic immunity stim-
ulation, and tumor blood vessel damage [66]. PDT procedures are known to have great
therapeutic efficacy and minimal side effects, and they are also less costly compared to
cancer conventional therapeutic procedures [67]. Nonetheless, some drawbacks are noted
that limit the application of PDT in cancer treatment. For instance, most traditional PSs are
hydrophobic, often aggregate, show poor biodistribution, and are not selective or target
specific [68,69]. These limitations deleteriously impact the photophysical, biological, and
chemical attributes of PSs and thus diminish the effectiveness of PDT [70].

Ideally, an efficient modality for drug (PS) delivery should surmount these drawbacks,
and the PSs should be biologically compatible and degradable within the targeted mi-
croenvironment of the cells while exhibiting a lesser uptake by healthy cells [65,68]. The
inadequate supply of oxygen in most solid tumors (tumor tissue hypoxia) also significantly
limits the therapeutic efficacy of PDT as the procedure is oxygen-dependent [71,72]. To
overcome the aforementioned PDT limitations, novel photosensitizers are now being devel-
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oped, including nano-drug systems that can facilitate the target delivery of drugs to the
tumor and nano-enzymes that can assist in catalyzing H2O2 to O2, hence improving the
oxygen content in tumor tissues [73]. Moreover, metal-based nanostructures can be utilized
as photosensitizers, up-conversion tools, and drug delivery vehicles [74].

Furthermore, the solubility of therapeutic hydrophobic molecules and PDT drugs can
be improved using nanoparticles. This can allow for therapeutic molecules or drugs with
appropriate surface properties and sizes to circulate for a longer duration in blood, thus
allowing the selective accumulation of the drug in tumors via an enhanced permeability
and retention (EPR) effect [75,76]. In fact, nanoparticles are said to be auspicious in cancer
therapy due to their therapeutic potential. They can be utilized as delivery vehicles for
therapeutic molecules, lone material-based for PDT, and in combination with chemothera-
peutic molecules to improve the efficiency of photo-treatment [66,77]. For instance, metallic
nanoparticles are naturally biocompatible and may be excreted easily from the body. They
can be utilized as therapeutic moieties carriers when conjugated or wrapped with thera-
peutic moieties. The surface conjugation of metallic nanoparticles with a specific target
moiety can modify the metal nanoparticles to target specific cancer cells [69].

Optical Property of AgNPs for Cancer PDT

Porphyrins and silicon phthalocyanines are the most commonly used organic PSs
(chromophores) and are reported to have several limitations. These limitations include
poor phototability, low molar extinction coefficients, an inability to be stimulated by near-
infrared light (NIR), and ineffective enzymatic degradation. This is associated with the fact
that the wavelength of light within the UV-Visible spectrum cannot adequately penetrate
the tissue depths [78]. However, metallic NPs are affirmed to present numerous advantages
compared to organic PSs, such as conjugation efficiency or high loading, slow degradation,
high stability, adjustable size, long cycle time, easy surface functionalization, and good
optical properties. These attributes make metallic PSs highly biocompatible and able to
resist disintegration in biological applications. This can promote tumor targeting and the
targeted control delivery of PSs [78,79]. Metallic nanoparticles present specific chemical
(improved catalytic activity) and physical (such as fluorescence enhancement and plasmon
resonance) properties [80], making them explorable in PDT [16]. For instance, metallic
nanoparticles including AgNPs are known to strongly react when in contact with light, and
this is known to be a surface plasmon resonance (SPR) phenomenon [81,82].

However, only a few metals, such as lithium, copper, aluminum, palladium, platinum,
gold, and silver, can act within the visible light region as potent plasmonic nanomaterials.
The nanostructure formation, chemical stability, plasmonic resonance, and cost of each of
the listed metals can influence their disadvantages or advantages in plasmonic applications.
For instance, silver is known to have the strongest resonance, and its spectrum covers a
broad range (from 300 to 1200 nm). Following silver are gold and copper, with localized
surface plasmon resonance (LSPR) excitation wavelengths correspondingly above 500
and 600 nm. Nevertheless, the utilization of copper in biological applications is greatly
hindered by its toxicity and instability. Palladium and platinum are the most expensive
plasmonic nanomaterials and have the weakest resonance, which makes them not suitable
for large-scale applications. Aluminum is mostly effective in the UV region, while lithium
is extremely reactive, making its manipulation at the nanoscale level very difficult [83].

The above-mentioned attributes for metallic plasmonic nanomaterials thus indicate
that silver can be a suitable metallic chromophore. The SPR phenomenon triggered via
the interaction of AgNPs with specific light is comparatively more efficient than that pro-
duced by known inorganic and organic chromophore compounds [81,82]. The restriction
by large-density circulating electrons with smaller dimensions relative to the dielectric
function (at a specific frequency) and the mean free path for metallic silver are responsible
for the strong interaction of AgNP with light, which then stimulates the unique SPR phe-
nomenon. The shape and size of NPs, as well as the dielectric function within the medium,
greatly determine the resonance and frequency strength [81,82]. In addition, the interaction
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cross-section for light and AgNPs depends on the electric field generated by photons,
which may extend to about 10 times greater than the AgNPs geometric cross-section. This
makes some nanostructures, like AgNPs, able to interact with rays of light (photons) that
may not be incident directly upon them [84]. Fascinating results can also be obtained by
modifying certain optical properties of AgNPs. For instance, the absorption spectrum of
AgNPs can be tunable to the region of near-infrared absorption by carefully optimizing the
conditions (such as pH, temperature, salt concentration, and time) for AgNPs synthesis.
This can help eliminate tissue autofluorescence interference, resulting in nanomaterials that
are promising for deep-tissue imaging and for targeting tumors [85]. A study exploring
AgNPs and AuNPs as chromophores indicated their colors could be tunable from 400 to
750 nm. Parameters or conditions such as the morphologies (nanospheres, circular nan-
odisks, triangular nanoplates, and nanocubes of silver), structures (solid, hollow colloid),
and controllable composition (silver/gold alloy nanospheres) were linked to the tunable
change. Tunable SPR bands were produced if the mentioned parameters were altered. Also,
the decrease in the nanoparticle’s symmetry resulted in an increase in the number of SPR
peaks [86]. The aforementioned described property of AgNPs with light (unique optic prop-
erty) thus facilitates the exploration of AgNPs in noninvasive techniques, including dark
field microscopy (for tracking inspection and cellular uptake evaluation) and PDT [1,84].

6. Mechanisms of Biogenic AgNPs and in Combination with PDT

The cytotoxicity effects of AgNPs on mammalian cells are reported to be triggered via
different types of mechanisms, such as the production of reactive oxygen species (ROS) and
free radicals, damage to the cell membrane, which is attributed to direct contact with AgNPs,
DNA replication impairment, disruption of cellular-dependent energy processes due to free
silver ion uptake [87] and stimulation of apoptosis [12]. For instance, a comparative study
analyzing the effects of AgNPs and AgNO3 on Chang liver cells found that AgNPs could
promote the production of ROS, suppress glutathione reduction, and cause membrane
oxidation, protein carboxylation, and DNA damage. Also, a major damaging effect of
AgNPs was linked to an increase in 8-oxoguanine levels [88,89]. Another study compared
the effects of AgNPs and Ag+ on human T-lymphocyte immortalized cells (Jurkat T). Similar
levels of ROS were induced in the cells by both AgNPs and Ag+ within the first period
of exposure, whereas an increase in ROS was noticed after 24 h for Jurkat T cells treated
with AgNPs only. This could be due to the slow liberation of silver ions by AgNPs into
the cell, leading to oxidative stress [90]. The AgNPs exposure was suggested to activate
p38 mitogen-activated protein kinase (p38 MAPK) via nuclear factor-kappa B (NF-κB) and
nuclear factor-erythroid-2-related factor-2 (Nrf-2) pathways and subsequently cause cell
cycle arrest, DNA damage, and apoptosis. Moreover, the alkaline comet assay (for direct
DNA damage) and the formamidopyrimidine–glycosylase FPG–comet assay (for oxidative
DNA damage) were used for DNA repair and damage studies [90]. The findings suggest
that the direct DNA damage induced by AgNPs cannot be completely repaired because
of the presence of silver ions, which are slowly being released by internalized AgNPs.
Meanwhile, oxidative damage may be achieved via the cellular repair system [91,92].

In vitro studies indicate that AgNPs can penetrate cells via the process of endocytosis,
and the localization of the AgNPs in the cells can be established based on the appearance of
a cytoplasmic perinuclear space and an endolysosomal unit [93,94]. Kalishwaralal et al. [95]
indicated that AgNPs can alter the proper functioning of vascular endothelial growth factor
(VEGF). VEGF is also referred to as the vascular permeability factor and is a mitogen in
endothelial cells. VEGF upregulation is stimulated by hypoxia in diseased cells and holds
a fundamental role in the angiogenesis of tumors [95]. Thus, the alteration of VEGF by
AgNPs supports its anticancer potential, which suggests AgNPs can be utilized as an alter-
native therapeutic method for cancer and also in angiogenesis inhibition therapy [95,96].
Angiogenesis can arise from existing blood vessels and is vital for processes involved in
embryogenesis and homeostasis, such as the regeneration and repair of impaired tissues.
The deregulation of angiogenesis can occur under certain disease conditions. However,
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malignant diseases can cause the angiogenesis process to remain active due to increased
stimulation by angiogenesis factors, including tumor angiogenesis factors (TAFs). These
factors are secreted in response to the oxygen and nutritional needs of cancerous cells,
hence their progression and growth [97]. Angiogenesis can also promote metastasis, as
the vascular network that is developed via angiogenesis may not only function to provide
nutrients to malignant cells but also provide an escape route for these cells to move into
the circulation [98].

AgNPs can infiltrate the mitochondria to produce ROS by altering cell respiration
processes [95]. AgNPs’ increased toxicity is linked to ROS production [99]. The internaliza-
tion of AgNPs in cells is followed by their intracellular degradation. Silver ions are then
released to impair the functioning of the mitochondria. ROS resulting as by-products from
the electron transport chain can cause damage to the mitochondria and peroxidation of
proteins and lipid elements, eventually leading to apoptosis [100]. AgNPs themselves can
also induce ROS production [101]. A Fenton-like reaction showed that AgNPs dispersed
in an acidic milieu containing hydrogen peroxide (a stimulated environment) can induce
ROS-like hydroxyl radicals [102]. Hydrogen peroxide at a low concentration within the cell
can speed up AgNPs dissolution, leading to much oxidative stress [101]. A study exploring
five kinds of triangular-shaped AgNPs (tAgNPs) with particle sizes ranging between 25
and 50 nm and satisfactory dispersion revealed that the tAgNPs in vitro treatment triggered
cellular apoptosis via ROS production and increased activity of caspase 3. The tAgNPs
also led to a decrease in the proliferation and viability of SKOV3 cells, G0/G1 phase cell
cycle arrest, and inhibition in the expression of proliferation-associated factors and proteins
(cyclins) [103]. Cyclins proteins are responsible for the activation of cyclin-dependent
kinases (CDK) during the cell cycle [104]. These CDKs are the main regulatory enzymes
responsible for regulating cell proliferation by controlling the three principal checkpoints
(G0/1, 1, and 2) involved in the cell cycle process. The cell cycle stages are consolidated
into five phases (G (0, 1, 2), S, and M-phases) and are controlled by the three checkpoints.
The levels in CDK function to regulate the development from one phase to the next [105].
Unregulated cell proliferation can be promoted by oncogene activation and by suppressor
tumor genes (such as p53) inactivation. The overexpression of these genes can lead to
an arrest of the cell cycle or make the cells circumvent their cellular checkpoints [106].
Normally, cells can trigger cellular mechanisms that can block DNA-damaged cells from
moving into the cell cycle’s G1 or G2 stages. However, an elevation in p53 levels can be
induced thanks to the presence of DNA-damaged cells. These p53 genes may then function
as transcription factors by regulating cell growth [107]. The p53 genes can enhance the
upregulation of p21 proteins and also induce the transcription of proteins like BH3 in the
pro-apoptotic phase. To prevent cells from going via the various cell cycle phases, the p21
protein can attach to CDKs and cyclins, thus hindering their oncogenic action at the G1, 2,
and S cell cycle phases [105,107].

A study by Jia et al. [108] on the effect of AgNPs on human colon cancerous cells
(HCT116) and normal colon cells (NCM-460) conveyed that as the AgNPs’ concentrations
increased, the cellular activities in both colon cell lines were reduced, while the intracellular
ROS was increased. The Western blot and RT-qPCR assays revealed that AgNPs can activate
the increase in p38 protein phosphorylation thresholds in both cells and also enhance the
expression of Bax and p53. The down-expression of Bcl-2 was noted; this caused an increase
in the proportion of Bax/Bcl-2 and the stimulation of p21, leading to the accelerated death
of cells. The AgNPs at low concentrations presented no toxic impact on both cell lines
(HCT-116 and NCM-460 cells), while the utilization of higher concentrations (>15 µg/mL)
led to oxidative damage [108]. However, green AgNPs may trigger some of the alluded
mechanisms above and even other mechanisms since they can be naturally capped with
bioactive organic compounds during their synthesis.
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6.1. Mechanisms of Biogenic AgNPs as Lone Molecules for Cancer

AgNPs that are produced using a biological (green) route are reported to trigger ROS
production, which can cause cell death. Also, the produced ROS may strike pathways
for signal transduction and cause cell apoptosis. Hydrogen peroxide triggered due to
the presence of AgNPs can interfere with mitochondrial membrane potential to impair
respiration signals [109]. The entry of AgNPs into cells has led to NF-κB and tumor
necrosis factor-alpha (TNF-α) stimulation and a reduction in levels of glutathione (GSH).
Elevations in levels of superoxide radicals can affect the transmembrane potential of the
mitochondria to interrupt transduction pathway signals, leading to cell death [110]. The
reduction in GSH and elevated levels of ROS could cause key cellular components to
be impaired, including protein carbonylation, lipid membrane peroxidation, and DNA
fragmentation [87]. Bio-mediated AgNPs are also proposed to trigger apoptosis via various
mechanisms, such as sub-G1 phase cell cycle arrest, dependent pathways for mitochondrial
and caspases, caspase-3 and p53 protein stimulation, VEGF activities, ROS production
and cellular equilibrium disruption, the pH-dependent liberation of Ag0, and the targeted
killing of cancer cells [90]. The death of cancerous cells or cancer cell’s selective killing can
also link to the concentration of free silver ions released in the cells. However, the release
of Ag0 in cancerous and normal cells is greatly determined by the pH of the medium and
the electrostatic differences in these cells [36]. For instance, excessive silver ions released
from biogenic AgNPs at low pH (acidic pH) were affirmed to cause the selective killing of
targeted cancer cells [36].

Furthermore, biological AgNPs can stimulate the upregulation of p53 protein, which
is followed by cell toxicity or cell death [11]. Studies have linked biologically mediated
AgNPs with the upregulation of p53 and caspase-3 [111]. A study that utilized the sqRT-
PCR method for determining the mRNA expression threshold of apoptotic gene markers
including p53, Bax, Bcl-2, and p21 established that the exposure of MCF-7 cells to Rosa
damascenes AgNPs led to elevated apoptosis. The p53 gene expression in the MCF-7 cells
was upregulated by 1.6 fold, while the p21 mRNA expression was significantly upregulated
by about 2.3 fold. Also, a remarkable upregulation in the mRNA expression for Bax was
noted, while the mRNA expression for Bcl-2 was downregulated by 65% when compared
to cells that were not treated. This resulted in an elevated Bax/Bcl-2 ratio [112]. The
treatment of A549 cells with Coptis chinensis biogenic AgNPs induced the upregulation
of pro-apoptotic proteins Bak and Bax, while the anti-apoptotic Bcl-XL and Bcl-2 proteins
were downregulated [113]. Pro-apoptotic proteins such as Bak and Bax are often involved
in initiating or stimulating apoptosis, whereas the Bcl-XL and Bcl-2 categories of proteins
function by suppressing apoptosis (anti-apoptotic) [114]. The downregulation of the Bcl-2
pathway by biogenic AgNPs also played a vital role in stimulating cancer cell death via
NF-κB activation [115].

Furthermore, a study by Banerjee et al. [40] demonstrated the impact of Mentha arven-
sis AgNPs against MCF-7 cancerous cells, and the expression of cleaved caspase 9, p53,
P21, PARP1, Bax, and Bcl-2 was determined at various time intervals by exploring the
Western blot technique. The expression of cleaved caspase 9, p53, P21, PARP1, and Bax
was observed after the AgNPs treatment of cells, whereas a down-expression of Bcl-2 was
noted [40]. The upregulation of p53 and P21 proteins could cause a delay in the cell cycle
and induction of apoptosis [116], and RARP1 is reported to be activated at the intermedi-
ate phase of apoptosis [40]. A study exploring the cytotoxic effect of Rubus fairholmianus
biomediated AgNPs recorded elevations in ROS production, cytotoxicity, cytochrome c
release, caspase 3/7 activity, nuclear damage, mitochondrial membrane potential depolar-
ization, and a decreased proliferation of cells. Also, these green AgNPs induce a significant
expression of proteins including caspase 3, p53, and Bax [117]. Alterations in mitochondrial
membrane potential that are induced thanks to the cellular uptake of biogenic AgNPs
can activate caspases (such as caspase 3 and 9) to cause cellular apoptosis. The activation
of c-Jun NH2 terminal kinase (JNK) by this nanoparticle can stimulate the production of
apoptotic bodies and the formation of DNA breaks, which could cause an arrest in the
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cell cycle [87]. A study by Manikandan et al. [118] using Rosa indica-mediated AgNPs on
HCT 15 cells confirmed the down-expression of Bcl-2 as well as the up-expression of Bax,
and caspases 3 and 9. They indicate that the biogenic AgNPs induced death in HCT 15
cells via the mitochondrial-dependent pathway that was activated due to caspases 3 and
9 up-expression [118]. In addition, the mitochondria might be the main site for biogenic
AgNPs to trigger ROS production, which then stimulates pathways for intrinsic apoptosis
within the mitochondria and hence induces cell death via the caspase pathway [118]. This
implies that the mitochondria could function as a signaling central point during apoptosis,
and damage to the mitochondrial integrity may be inhibited or stimulated via various
apoptotic regulators.

AgNPs that were formulated using the seed extract of Putranjiva roxburghii Wall (PJAg-
NPs) were validated to have damaging effects on the DNA of various cell lines, including
MDA-MB 231 (resistant breast carcinoma), PANC-1 (pancreatic carcinoma), and HCT-116
(colon carcinoma). The IC50 concentration of PJAgNPs causes DNA fragmentation in all the
cell lines [119]. The accumulated AgNPs in the cells at the time of DNA fragmentation can
severely impact the DNA and dividing cells by triggering DNA dose-dependent damage,
chromosomal segregation errors, chromosomal aberrations, micronuclei formation, and sis-
ter chromatid exchanges [119,120]. Cell DNA damage and subsequent apoptosis/necrosis
are associated with excessive oxidative stress and ROS induced by the AgNPs in the cancer
cell [121,122]. Apoptotic stimulation can also be generated via the cytotoxic effect of bio-
genic AgNPs because of an increase in cell numbers at the sub-G1 phase of the cell cycle.
A correlation was established between an enriched cancer cell population at the sub-G1
phase and the pro-apoptotic caspase-3 protease that was stimulated due to the presence
of AgNPs, thus leading to apoptosis [40]. Glucose-capped AgNPs were demonstrated to
hamper the cell cycle in HeLa cells by stopping the S and G2/M phases, causing an increase
in cell number at the sub-G1 phase and a decrease in mitotic index [123]. AgNPs from
the seed extract of Swietenia macrophylla (SM-AgNPs) induced an arrest of the cell cycle at
the S-phase in A549 cells. The arrest was suggestive of DNA damage, and the associated
defective cells could not enter the phase of mitosis; thus, any further progression in cycle
activity can result in cellular apoptosis.

Biogenic AgNPs are revealed to have antiangiogenic effects by hindering cell prolifer-
ation, and this was provoked by VEGF. The entry of biogenic AgNPs into the cell by the
Src-dependent pathway can cause VEGF obstruction and also stimulate an interleukin-1
beta (1L-1β) form of vascular permeability via the Src kinase pathway deactivation [87,124].
The antiangiogenic and anti-metastasis effects of Azadirachta indica-mediated AgNPs were
amplified by the down-expression of iNOS (nitric oxide synthase) and VEGF (angiogenesis-
related genes) [97]. The induced down-expression of iNOS by biogenic AgNPs leads to
the downregulation of NOS activities. This causes a reduction in the available proangio-
genic factors generated by cells. The interaction of iNOS and VEGF can also form the
NO–VEGF complex, which creates a target for anticancer molecules to inhibit angiogen-
esis, thus lowering the progression and growth of cancerous cells [97,125,126]. Biogenic
AgNPs can also degrade cells by autophagy [127]. The release of AgNPs in cancerous
cells may trigger cell death via the accumulation of autophagolysosomes [127,128]. For
instance, biogenic AgNPs embedded in exopolysaccharide (AgNPs-EPS) were confirmed
to exert an autophagic cell death mechanism. The fluorescence microscopy image of SKBR3
cells treated with AgNPs-EPS showed autophagolysosomes (bright punctate dots) in the
cytoplasm. The Western blot analysis revealed the up-expression of autophagic markers
including beclin-1, LC3-II, ATG5, and ATG7, whereas P62, HSP90, AKT, and p-AKT were
down-regulated [129]. The aforementioned mechanisms of biogenic AgNPs are illustrated
in Figure 2.
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Figure 2. Possible mechanism induced by biogenic AgNPs in cancer cells. (1) Ros production is
stimulated by released of biogenic AgNPs in cancerous cells; (2) Ros will stimulate the up-expression
of apoptosis proteins and enzymes (including p53, p21, caspases-3, 7,9, PARP1, JNK, cytochrome
c, NF-kB, TNF-α, TNF-α, beclin-1, LC3-II, ATG5, and ATG7) leading apoptosis; (3) decrease the
expression of GSH, Bcl-2, iNOS, VEGF, p62, HSP90, AKT, p-AKT, and the Src kinase pathway
deactivation can inhibit the proliferation of cancerous cells. These increases and decreases in the
expression of the various proteins and enzymes triggered by the cytotoxic species (Ros) causes DNA
damage, mitochondrial disruption, and cell cycle arrest. Damage can also be triggered via AgNPs
autophagolysosomes formation.

6.2. Mechanism of Biogenic AgNPs in Combination with PDT

Experimental evidence indicates that AgNPs can be employed in cancer PDT as lone
material-based molecules (PS), in combination with other PS, or in nanocomposite forms.
For instance, findings from an experimental study that utilized AgNPs for mediating PDT
revealed that the irradiation of AgNPs at 635 nm reduced cell proliferation and viability
and triggered apoptosis in both MCF7 and A549 cancerous cells. However, the AgNPs
showed a much lower cytotoxic effect on A549 compared to MCF7 cells. This signifies
that various forms of cancerous cells can respond differently to identical forms of metal-
lic AgNPs [1]. Cell imaging and PDT studies of engineered nanocomposites of silver
(porphyrin-loaded mercaptosuccinic acid-capped AgNPs nanoparticle (POR-MSA-AgNPs))
against A375 cancerous cells had satisfactory output. Although the nanocomposite at a
5 µM concentration was affirmed to have a nontoxic behavior on the A375 cells, excellent
fluorescence images were observed at this concentration. This made the researchers recom-
mend POR-MSA-AgNPs as a promising PDT probe [130]. Likewise, a nanocomposite with
AgNPs (hypocrellin B (HB) and nanosilver loaded poly lactide-co-glycolide (NBS-NPs))
significantly improved ROS in PDT. The NBS-NPs also showed a concentration- and time-
dependent phototoxic effect on lung cancer cells (A549) [131]. The PDT photoactivation of
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curcumin and AgNPs loaded in hydrogels (chitosan and chondroitin sulfate) hydrogel) led
to significant decreases in Caco-2 cells and increased singlet oxygen [132].

Moreover, recent experimental evidence indicates that biogenic AgNPs can be used
to improve the efficacy of PDT [16]. Nonetheless, it seems that less interest is paid by
researchers to the exploration of biogenic AgNPs in PDT; hence, only a few studies have
reported the mechanisms (Figure 3) that stimulate biogenic AgNPs in PDT. An in vitro
study that utilized biogenic AgNPs as drugs in PDT affirmed the efficacy of the treatment
against breast cancer cells (MCF7 cells). The treatment led to an increase in intracellular
production of ROS and a decrease in antioxidant enzymes including GSH, glutathione
peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). The treatment also
inhibited the growth, viability, and migration of MCF7 cells at IC50 (10 mg/mL) via the
production of free radicals in the cells [16]. Another study utilizing AgNPs and PDT
combined on MDA-MB-468 cancer cells affirmed a threefold increase in intercellular ROS in
treated cells compared to the control [133]. ROS production is correlated to mitochondrial
phosphorylation, and this ROS can be involved in mitochondrial pro-apoptotic processes
in tumor cells, leading to apoptotic cell damage [134]. Response processes to mitochondrial
ROS production often include the activation of cell death proteins (especially the pro-
apoptotic proteins’ upregulation) and suppression of anti-apoptotic proteins [135]. Cynara
scolymus AgNPs combined with PDT exhibited effective anticancer potential against MCF7
cells via mitochondrial apoptosis. The AgNPs and PDT combination treatment stimulated
the pathways for intrinsic apoptosis via the upregulation of Bax (pro-apoptosis protein)
and downregulation of Bcl-2 (anti-apoptotic protein) [16]. Some of the aforementioned
mechanisms of biogenic AgNPs in PDT are similar to those triggered biogenic AgNPs
(lone-base molecule) in cancer. Nonetheless, more research on the anticancer effects of
biogenic AgNPs amalgamated with PDT would help to better understand the associated
mechanisms. Figure 3 illustrates the induced light-stimulated mechanism of biogenic
AgNPs in cancer PDT.
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Figure 3. Anticancer mechanism of biogenic AgNPs in cancer PDT. (1) Light irradiation from an
appropriate source will (2); activate biogenic capped AgNPs in cancerous cells (3), this will lead to
free radical and Ros production (4); mitochondrial Ros cause damage. (5) Decrease in Bcl-2, GPx,
CAT, SOD, cell proliferation, and migration (6); and increase in Bax stimulated by Ros will cause the
up-expression apoptotic signal to finally (7) apoptotic cell death.
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7. Biogenic AgNPs in Cancer-Targeted Therapy

Conventional treatment methods for cancer, which include surgery, radiotherapy,
and chemotherapy, are linked with numerous limitations, including unpredictable side
effects, drug toxicity, non-specificity, and drug resistance issues [136]. Chemotherapy is
the first line of treatment for most cancers. However, chemotherapeutic agents are not
cell-specific (target-specific) and end up also killing healthy cells. Also, the medication
(e.g., doxorubicin, cisplatin, bleomycin, and daunorubicin) used in this therapy presents
several disadvantages, including high toxicity, ineffectiveness, resistance susceptibility, and
high cost [137,138]. AgNPs can overcome these limitations by decreasing the side effects
and improving the therapeutic efficacy of the method. AgNPs have the distinguishing
feature of being capable of crossing biological barriers and can also be used for the targeted
release of drugs [136,139]. They are noted as drug carriers that can be efficiently conjugated
with anticancer drugs because of their distinctive characteristics, such as low side effects,
enhanced SPR, and a large surface area [140,141]. Moreover, the conjugation of drugs with
AgNPs can be achieved via bottom–up and top–down techniques [142]. These techniques
solicit strategies like entrapment, encapsulation, and attachment of the active drug to the
nanoparticle surface, such that the conjugated product can be enhanced to be biocompatible,
stable, and present minimal toxicity [143,144]. In addition, modifying the surface structure
of AgNPs is greatly important, since it helps reduce their toxicity, prevents aggregation,
and enhances their potential to target particular cells [145]. Gali-Muhtasib et al. [146]
allude that an effective nanocarrier for the targeted delivery of anticancer should meet
the following prerequisites: (i) has an affinity and can conjugate with the anticancer
drug; (ii) can exclusively liberate the drug within its target site; (iii) the anticancer drug–
nanoparticle complex must remain stable in serum; (iv) degradation of the nanoparticle
should be safe for the organism [146].

AgNPs are now viewed as an alternative treatment strategy for cancer, since they can
passively or actively target tumor cells, thereby making these particles considered drug
delivery systems (DDSs) [147]. A number of events are considered in the passive targeting
of tumors by nanoparticles. A faulty fenestrated vasculature is often formed by tumors
that contain big gaps (about 100 to 800 nm). The size of nanoparticles can determine if
they may cross these gaps. Small nanoparticles can cross the gaps and be deposited closer
to the tumor, which minimizes the exposure of normal cells to these nanoparticles. This
consequently decreases the adverse effects of nanoparticles on normal cells [146]. However,
the deposition of the active drug at the targeted sites can increase the drug’s therapeutic
efficacy. Receptors involved with endocytosis can then facilitate the uptake of the drug
into the intracellular space. This shows that this type of active targeting may require
molecular recognition. Nonetheless, techniques for optimizing nanomaterials like biogenic
AgNPs have been suggested where the particle surface is functionalized with specific target
molecules or coated with biocompatible molecules or biodegradable polymers [147]. The
utilization of AgNPs coupled with other anticancer drugs may also enable a synergistic
effect, allowing for a reduction in the dosage of anticancer drugs. This helps reduce the
toxicity of anticancer drugs on normal cells and possibly their side effects [139]

The cytotoxic activities of drugs can be enhanced when the drug is incorporated
with AgNPs [138], and various in vitro studies confirmed the anticancer efficacy of com-
mercialized pharmaceutical anticancer drugs (e.g., doxorubicin, epirubicin, alendronate,
methotrexate, paclitaxel, folic acid, and gemcitabine) is greatly improved when these drugs
are coupled with AgNPs [148–153].

Moreover, various studies have demonstrated that biogenic can be exploited as DDSs
via conjugation or coupling with anticancer drugs. For instance, studies have established
that biogenic AgNPs could be utilized as molecules in DDSs. Biogenic AgNPs formulated
using seed extracts of Setaria verticillata were successfully loaded with daunorubicin (DNR)
and doxorubicin (DOX) (hydrophilic anticancer drugs). The loading efficiency for DNR-
AgNPs was 40.25% and that for DOX-AgNPs was 80.50%, showcasing DNR-AgNPs and
DOX-AgNPs as novel DDSs [143]. The cellular delivery of a drug molecule via the process
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of endocytosis may also depend on the size of the nanomaterial. Spherical-shaped AgNPs
biosynthesized using Aerva javanica extract and conjugated with gefitinib (an anticancer
drug) were analyzed using scanning transmission electron microscopy (STEM), and the
observed images revealed the presence of nanoparticles with a mean size of 5.7 nm. MCF-7
cells were treated with the conjugate (gefitinib-AgNPs), and a significant reduction in
viable cells was noted when compared to MCF-7 cells treated with gefitinib alone. Gefitinib
delivery using AgNPs helped augment its efficacy and decrease its side effects [154]. Also,
studies by Palai et al. [155] successfully functionalized Azadirachta indica-mediated AgNPs
into a nanocarrier. The obtained nanocarrier (amino-PEGylated silver-decorated graphene
nanocomposites (amion-NGO-AgNPs-PEG)) was utilized for loading the anticancer drug
DOX. An enhanced drug-loading capacity of 218% was recorded, and the pH-responsive
regulated release of DOX was effective, indicating that the nanocarrier (NGO-AgNPs-PEG)
was promising as an anticancer drug DDSs. In vitro cytotoxicity analysis using HaCaT
cell lines showed that the functionalized PEGylated-nanographene oxide (NGO-PEG)
that was loaded with DOX had a more damaging impact on cancer cells than normal
cells when compared with the free DOX treatment. Similarly, elevated cytotoxicity was
noticed in Hela cells that were exposed to DOX-loaded NGO-AgNPs-PEG compared to
the conjugated NGO-DOX. The authors evoke that an efficient target release or delivery
of an anticancer drug within the acidic microenvironment of cancerous cells can promote
elevated therapeutic efficiency compared to pure nanographene oxide (NGO). The NGO-
AgNPs-PEG was proposed as a biocompatible nanocarrier that may be exploited in the
targeted and regulated delivery of anticancer drugs and in theranostic nanoplatforms [155].
In addition, AgNPs from the Eucalyptus procera aqueous extract were efficiently loaded
with imatinib (IMAB-AgNPs). The IMAB-AgNPs exhibited cytotoxic effects on MCF-7
cells, which were noted to be dose-dependent. The IC50 values for IMAB-AgNPs, IMAB,
and AgNPs were 1,69, 3.02, and 9.63 um, respectively. The expression of apoptosis genes,
including Bax and Bcl-2, was investigated using a real-time PCR procedure, and the results
revealed that IMAB-AgNPs could trigger the expression of apoptosis proteins [156].

The illustrated in vitro experimental studies above greatly show that AgNPs can be
used in targeted cancer therapy cancer. Nonetheless, AgNPs is reported as not being
extensively exploited in DDSs due to drawbacks regarding their stability and toxicity [139].

8. Toxicity of Biogenic AgNPs

The Trojan horse effect is proposed as a mechanism to illustrate the toxicity of AgNPs
in cells [157]. It hypothesizes that if AgNPs smaller than 40 nm traverse the cellular
membrane, then once in the cells, the AgNPs will continuously liberate Ag+ in the cell.
This continued release of Ag+ from AgNPs can result in lipid peroxidation [158]. Also, the
Ag+ ions can anchor to cells in the host and are absorbed before they reach vital organelles
in normal cells [22,158]. Yet, a cellular defense response can be mediated by normal cells,
where the reductase enzyme is secreted to lessen the damaging effects of Ag+. The AgNPs
and the liberated Ag+ can be finally engulfed and carried outside the cell. The deposit
of AgNPs and their ionic form (Ag+) in normal cells is regarded as the starting point for
toxicity and hazardous effects. The Ag+ ions can react with negatively charged atoms,
including nitrogen and oxygen within vital organelles (mitochondrion, DNA) and with the
thiol functional group of enzymes and proteins. This can interfere with normal cell growth,
which eventually leads to cell death [22].

Nonetheless, the toxicity of AgNPs in humans can be initiated via external (contact
with the skin) or internal (inhalation or ingestion) exposure [26,159]. The skin is well known
to be semipermeable and may not allow nanoparticles to simply penetrate through. For
instance, a study by Kokura et al. [160] confirmed that treating the skin with AgNPs led to
significant preservation effects against various fungi and bacteria, while no AgNPs were
noted to penetrate into the skin. Also, treating HaCat keratinocytes with 0.002 to 0.02 ppm
of AgNPs and UVB irradiation resulted in a non-significant effect [160]. Nonetheless,
Lu et al. [91] documented that the uptake of AgNPs via the skin keratinocytes depends
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on the nanoparticle’s shape and size and duration of incubation. Hence, AgNPs with
rod and spherical shapes can infiltrate the skin and their cellular uptake was influenced
by the incubation time [91]. AgNPs can also infiltrate the skin, especially if the skin is
damaged or compromised [161]. This could be concerning, as knowledge of the mechanism
of AgNPs in skin infections seems limited [26]. Likewise, the production, disposal, or
washing of the nanoparticles can lead to environmental exposures. This can result in
particles being inhaled by humans [162]. The inhaled nanoparticles can be transported
and subsequently deposited in a non-uniform manner, and this can be influenced by many
factors such as age, pulmonary function, structure of the airway, flow rate, and size of
the nanoparticle [162]. AgNPs with a diameter lower than 0.1 µm are reported to deeply
infiltrate the alveolar by diffusion, and this can make their clearance mechanism take a
much longer period [159,163]. This can trigger severe pathophysiological effects due to
long periods of interactions between AgNPs and normal tissues [159]. The infiltration
of the alveolar–capillary barrier by AgNPs is confirmed to cause damage to the alveolar
epithelial layer [159,164]. Moreover, exposure to AgNPs via inhalation can also end up in
oral exposure, as the particles move past the mucociliary escalator and are cleared into
the gastrointestinal tract (GIT). When in contact with the mucus layer in the GIT, the NPs
are translocated into the circulation and consequently cross the epithelium into various
organs. The uptake of NPs that are smaller than 100 nm can mainly occur in epithelial cells
via endocytosis [159,165]. AgNPs within the enterocytes can stimulate oxidative stress,
inflammation, and DNA damage [159].

However, the toxicity of AgNPs can be influenced by factors including particle size,
shape, dose, coating, modifications in the surface structure, and cell type [166,167]. These
factors should be carefully examined when investigating the toxicity of AgNPs to ensure
the viability and effectiveness of the test [167]. It is reported that AgNPs at diluted concen-
trations may not harm humans but can kill bacteria, viruses, and many other eukaryotic
organisms [14]. An in vivo study on the effects of orally administered AgNPs to ICR mice
over a period of six weeks revealed that the AgNPs with small size led to efficient dissemi-
nation to different organs, including the liver, brain, and kidneys. No AgNPs were observed
in the tissue of ICR mice administered with AgNPs of larger size (323 nm). Considerable
increases in the threshold of transforming growth factors (TGFs) were noted in the groups
treated with small-sized AgNPs (22, 42, and 71 nm of AgNPs), while no change was noticed
in the group treated with 323 nm of AgNPs. The B-cell distribution also increased in the
group treated with small-sized AgNPs, and no change was observed in the group treated
with 323 nm AgNPs [167]. This may be due to the fact that small-sized AgNPs can easily
distribute in the target organ, which can cause organ damage [168]. In addition, AgNPs
with small sizes are noted to induce higher toxicity than large-sized particles [169]. Another
study investigated the dose effect of AgNPs, where the repeated exposure of mice to oral
doses of AgNPs was monitored for 28 days. The findings indicated a dose-dependent
increase in cytokines [167].

Tiwari et al. [170] studied a sixty-day-long exposure of female Wistar rats to AgNPs
at concentrations of 50 and 200 ppm (Lowest Observed Adverse Effect Level (LOAEL)
dose). The long exposure resulted in renal ultrastructural damage, renal inflammation, and
cell survival factor expression, which trigger necrotic renal cell death [170]. The toxicity
of AgNPs to baby organs is alluded to as being dose-dependent, and much damage to
organs is correlated with higher doses of AgNPs. Long periods of repeated exposure to
a small dose of AgNPs can result in their accumulation in the body. This can promote
organ impairment, pathological damage to related organs, and chronic toxicity. Thus,
human exposure to AgNPs must be minimized, and the dosage of AgNPs should be chosen
carefully to minimize daily life toxicity.

Moreover, in vivo studies have indicated that nanoparticles, including AgNP, can
cause chronic and acute toxicity [170–172]. The bioavailability of silver ions was the main
toxicity-causative agent in zebrafish embryos [173]. AgNPs synthesized via chemical meth-
ods are noted to cause high in vivo genotoxicity and cytotoxicity compared to biogenic
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AgNPs [174]. This insinuates that biogenic AgNPs can be less toxic and biocompatible
than chemically obtained AgNPs. However, the intraperitoneal injection of male Wistar
rats with various doses of biogenic AgNPs (50, 100, 200, and 400 ppm) for over 21 days
was studied by Tarbalia et al. [175]. Important changes to the rat’s organ coefficient and
baby weight were observed after 21 days. The doses of the biogenic AgNPs greater than
50 ppm led to impairments in memory, anxiety, and alterations in the hippocampus redox
status, kidney, spleen, and liver. The levels of the lipophilic fluorescent products (oxidative
stress markers) were elevated in the tissues of all treated animals compared to the control
group [175]. Also, oral administration of different doses (0.5, 5, and 10 mg/kg) of Psidium
guajava-mediated AgNPs to male Wistar rats for over 14 days led to a minimal elevation of
hippocampus and cortex oxidative stress factors (glutathione, nitric oxide, and malondi-
aldehyde). The biogenic AgNPs trigger a dose-dependent reduction in acetylcholinesterase
(AchE) activity, and the levels of monoamine neurotransmitters (norepinephrine NE and
5-hydroxytryptamine 5H-T) were also decreased. The neurons’ cellular membrane struc-
tures were greatly altered due to the biogenic AgNP treatments. However, the impact
of the biogenic AgNPs at 0.5 and 5.0 mg/kg was significantly lower compared to the
effect induced at 10 mg/kg (the highest concentration). The authors confirmed that the
cytotoxic oxidative changes induced by the biogenic AgNPs were minimal. This was due
to the availability of capping, biocompatible, and enhancing molecules on the synthesized
biogenic AgNPs [176].

However, clinical therapeutic applications of biogenic silver seem to be lacking. Yet, it
is maintained that AgNPs may be toxic to different systems, including the skin, respira-
tory system, kidneys, eyes, immunological system, and hepatobiliary system [177]. The
toxic effects of AgNPs in the development of target therapeutic procedures to overcome
cancer, antibiotic-resistance infections, and other diseases are desirable. Nonetheless, the
destruction of healthy normal cells should be avoided in targeted therapy [35].

9. Future Prospects

The exploration of biogenic AgNPs represents an emerging area for research with
numerous potent activities. These nanomaterials show good biological activity to target
and destroy devastating diseases. They are more toxic to cancer cells than normal cells,
which makes them promising for future applications in cancer treatment. Yet, the biological
activity of AgNPs can be influenced by intrinsic parameters such as surface charge, shape,
and size [114]. This indicates that complete pharmacokinetics and pharmacodynamics
profiling studies could be piloted to better understand the biocompatibility, side effects,
toxicity, and mechanism of biogenic.

Different techniques developed for the production of AgNPs have led to various
applications in medicine [10,12]. Likewise, different studies have biologically produced
AgNPs and successfully exploited them for anticancer in vitro studies [40–43]. However, it
seems there is no specified optimum protocol for the development and synthesis of biogenic
AgNPs that can be utilized in non-invasive cancer therapy and for the targeted delivery of
cancer drugs. Hence, future studies in this regard may lead to the bioproduction of AgNPs
that will be exploited in cancer treatment in clinical settings.

10. Conclusions

Globally, cancer remains a major cause of death despite the existence of different
conventional treatment strategies. The conventional treatment for cancer is often non-target-
specific and costly. This has led to severe side effects and low survival rates in patients
with cancer. Developments in nanomedicine recommend biogenic synthesis AgNPs as
therapeutic molecules for cancer because of their non-toxic nature, low cost, and biomass
availability. Biogenic AgNPs as lone molecules display significant anticancer capability
in vitro. Also, the unique physical optic attribute of AgNPs makes them explorable as
photosensitizers for cancer PDT. In addition, AgNPs synthesized using natural sources
can serve as cost-efficient PS carriers in targeted PDT. Remarkable anticancer effects of
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biogenic AgNPs in the mediation of PDT have been achieved in vitro studies, yet very few
studies have exploited biogenic AgNPs in PDT. This implies that biogenic AgNPs could be
utilized as therapeutic anticancer target molecules. Nonetheless, the clinical therapeutic
application of biogenic AgNPs as anticancer molecules and agents to mediate PDT seems
to be lacking. Also, the toxicity of biogenic AgNPs in humans, as noted in the review, seems
to be an extrapolation from in vitro studies or from in vivo animal models. This implies
more clinical research is needed to determine the potential anticancer and toxic effects of
biogenic AgNPs in humans.
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