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Abstract: Inflammation is the defense mechanism of the immune system against harmful stimuli
such as pathogens, toxic compounds, damaged cells, radiation, etc., and is characterized by tissue
redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in
the recruitment of immune cells at the site of infection, which not only aids in the elimination of the
cause, but also initiates the healing process. However, prolonged inflammation often brings about
several chronic inflammatory disorders; hence, a balance between the pro- and anti-inflammatory
responses is essential in order to eliminate the cause while producing the least damage to the host.
A growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell–
cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA,
RNAs, miRNAs, etc., between the cells. The present review provides a brief classification of the EVs
followed by a detailed description of how EVs contribute to the pathogenesis of various inflammation-
associated diseases and their implications as a therapeutic measure. The latter part of the review
also highlights how EVs act as a bridging entity in blood coagulation disorders and associated
inflammation. The findings illustrated in the present review may open a new therapeutic window to
target EV-associated inflammatory responses, thereby minimizing the negative outcomes.

Keywords: extracellular vesicles; classification; inflammation; inflammatory diseases; coagulation;
therapeutics

1. Introduction

The ability of cells to communicate with each other holds an important step in the dif-
ferentiation and development of multicellular organisms. Numerous mechanisms govern
how cells interact with each other, such as cellular secreted molecules, direct interaction
between the adjacent cells through the cell-adhesion molecules, and the formation of cy-
toplasmic bridges or nanotubules [1]. However, a growing body of evidence identifies a
unique mechanism by which cells convey signals between one another, the release of extra-
cellular vesicles (EVs) [2–4]. EVs are membrane-enclosed nano-sized bodies, shown to be
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released from almost every cell type [5,6]. As EVs are derived from cells, they often carry cel-
lular components such as proteins, lipids, and genetic materials in the form of DNA, RNA,
microRNA (miRNA), etc. [7], and upon transferring these bioactive molecules, EVs gener-
ally modulate the function of the target recipient cells [8–10]. A wide variety of non-coding
RNAs (ncRNAs) including miRNAs regulate the fundamental cellular processes which
can be therapeutically targeted in the context of cancer [11,12]. The uptake mechanisms of
EVs by the recipient cells include the direct fusion of EVs with the plasma membrane or
endocytosis [4,8,13]. EVs are readily detected in every biological fluids including blood,
urine, saliva, synovial fluid, sputum, breast milk, bronchoalveolar lavage fluid (BALF), and
cerebrospinal fluid (CSF) and even in interstitial spaces between the cells [6,14–18]. Based
on the biogenesis, content, size, and function, EVs are extensively categorized into three
major groups, microvesicles, exosomes, and apoptotic bodies (Figure 1) [5,6].
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Figure 1. Biogenesis and uptake of EVs. EVs are composed of microvesicles (MVs), exosomes,
and apoptotic bodies. MVs are produced by outward budding of the plasma membrane, whereas
exosomes are generated by endocytic mechanism. Invagination of the early endosomal membrane
produces the exosomes inside the endocytic vesicles which mature into multivesicular bodies (MVBs).
MVBs are eventually fused directly with the plasma membrane to release the exosomes outside the
cells. Sometimes, MVBs also fuse with the autophagosomes to form amphisomes. Amphisomes, in
turn, fuse with the plasma membrane to release their content including the exosomes outside the cells.
Apoptotic bodies, on the other hand, are generated during the contraction of the cells, leading to the
dissociation of plasma membrane from the cytoskeleton. The induction of apoptosis often results in
the fragmentation of DNA which is incorporated into the apoptotic bodies. Both MVs and exosomes,
which carry cargoes in the form of RNA, miRNA, proteins, etc., are readily taken up by the recipient
cells via either direct fusion with the plasma membrane or endocytosis. In the case of endocytosis,
inside the recipient cells, the EVs are further fused with the membrane of endocytic vesicles, thereby
releasing the cargoes into the recipient cells’ cytosol. In contrast, direct fusion of EVs with the target
cells’ plasma membrane results in the release of the EVs’ cargoes in the cytosol of the recipient cells.

Microvesicles. Microvesicles (MVs) or microparticles (MPs) or ectosomes are recog-
nized as plasma membrane ‘buds’ of the cells [7,19]. The crosstalk among cytoskeletal
components such as actin and microtubules, molecular motor proteins such as kinesin and
myosin, fusion machineries such as soluble N-ethylmaleimide-sensitive factor activating



Cells 2023, 12, 1963 3 of 37

protein receptor (SNARE), and tethering factors essentially regulates the formation and
release of MVs from the cells [2,3,20–23]. The size of MVs is believed to range from 100 nm
to 1 µm in diameter [5,6,14]. MVs, because of being generated by plasma membrane out-
ward budding, are shown to carry cytosolic and plasma membrane-associated proteins
such as tetraspanins, which often serve as a universal marker for the MVs, regardless of
the cells’ origin [24]. Moreover, cytoskeletal proteins such as heat shock proteins, inte-
grins, and proteins associated with posttranslational modifications including glycosylation,
phosphorylation, etc., are, sometimes, found to be enriched in MVs [25].

Exosomes. Exosomes, the smaller EV class having a diameter of 30–150 nm [26], are
generated by the endocytic mechanism [25]. Typically, invagination of the early endoso-
mal membrane produces these exosomes which are matured into multivesicular bodies
(MVBs) [25]. MVBs are eventually fused with the plasma membrane, thereby releasing the
exosomes outside the cells [25]. Exosomes’ biogenesis often requires the active involvement
of endosomal sorting complexes required for the transport (ESCRT) pathway [25]; therefore,
ESCRT pathway-associated molecules including TSG101, Alix, HSP90β, and HSC70 are
shown to be present in the exosomes [27,28], which are also used as exosomal markers.
However, ESCRT-independent exosomal biogenesis also occurs, which is reported to be
associated with sphingolipid ceramide [29].

Recently, a unique exosomal release mechanism has been identified which involves
the autophagic pathway. Autophagy is the process of eliminating non-functional and
futile components of the cells depending on lysosomal mechanisms [30]. The sequestration
of a cytoplasmic portion by a membranous organelle, called a phagophore, generates
autophagosomes, which in turn fuse with the MVBs to produce the amphisomes [31,32].
Amphisomes are often found to be enriched with endosomes as well as autophagosome
markers, LC3 and CD63, respectively. Moreover, cytosolic DNA and nucleosomes are also
present in the amphisomes. Amphisomes are either fused with the plasma membrane,
resulting in the release of amphisomal content including the exosomes outside the cell, a
phenomenon called ‘exophagy’, or their fusion with the lysosomes leads to the degradation
of the amphisomal components by lysosomal enzymes.

Apoptotic bodies. In contrast to MVs and exosomes, apoptotic bodies are larger in
size, ~50 nm to 5 µm in diameter [33]. These are released from the apoptotic cells via the
separation of the plasma membrane from the cytoskeleton due to immense hydrostatic
pressure, generated during the cell contraction [34]. Apoptotic bodies are often found
to contain cell organelles, nuclear chromatin, and a few glycosylated proteins; therefore,
mitochondrial proteins, such as HSP60, Golgi, and endoplasmic reticular proteins, such as
GRP78, and nuclear histones appear to be markers for apoptotic bodies [33,35–37]. A basic
comparison among different classes of EVs is shown in Table 1.

Table 1. The size, marker, and biogenetic mechanism of different forms of EVs.

EVs’ Type Size (Diameter) Marker/s Biogenetic Mechanism

Microvesicles 100 nm to 1 µm Tetraspanins Microvesicles are generated by outward budding of the
plasma membrane of the cell

Exosomes 30 nm to 150 nm TSG101, Alix,
HSP90β, HSC70

Invagination of the early endosomal membrane
produces exosomes which mature into multivesicular

bodies (MVBs). MVBs fuse with the plasma membrane
to release the exosomes outside the cells. MVBs can also
fuse with auto-phagosomes to form amphisomes which
eventually fuse with the plasma membrane to release

the exosomes from the cells

Apoptotic
bodies 50 nm to 5 µm HSP60, GRP78,

Histones

Increased hydrodynamic forces, generated during
apoptosis-induced cell contraction, segregate the plasma

membrane from cytoskeleton to release such bodies

Abbreviations: TSG101, tumor susceptibility gene 101; Alix, ALG-2-interacting protein X; HSP, heat shock protein;
HSC70, heat shock cognate protein 70; GRP78, glucose-regulated protein 78.
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EV isolation procedures: A comparative analysis. The present section briefly discusses
different techniques of EVs isolation in a comparative approach. Currently, the widely
accepted procedures for the isolation of EVs include centrifugation, precipitation, size
exclusion, affinity purification, and micro-/nano-fluidics or chips [38]. Table 2 briefly
summarizes the purity, yield, time consumption, and sample volume required for the
isolation of EVs by different procedures in a comparative manner [38,39].

Centrifugation. This is the most commonly used method for isolating EVs by several
research groups, principally based on the particle size, density, shape, and viscosity of the
medium. This is further classified into differential ultracentrifugation, density-gradient cen-
trifugation, and rate-zonal centrifugation [39,40]. (1) Differential centrifugation separates
the EVs based on the size, shape, and density [39,41]. The influencing factors in this method
include temperature, sample dilution, and duration of centrifugation [42,43]. Although
the procedure is easy, has average yield, and needs no additional steps for the preparation
of samples, it is time-consuming, laborious [39,44–46], and incapable of differentiating be-
tween different EVs types [47]. In addition, protein contaminants are the major issue in this
EV isolation procedure [46]. (2) In contrast to differential centrifugation, density-gradient
centrifugation employs a preconstructed density-gradient medium such as sucrose and
iodixanol for the isolation of EVs [39,48]. This method has the advantage of separating EVs
from the contaminating proteins [39], and different types of EVs can be separated according
to their density [49]. However, average yield and the need for longer isolation time are
the two major pitfalls of this approach [50,51]. (3) Rate-zonal centrifugation, on the other
hand, utilizes the combined principle of density-gradient and sedimentation in which the
sample is loaded on top of the tube, and following centrifugation, EVs with higher density
are shown to pass through the dense layer as compared to lighter EVs [38]. The additional
advantages of this technique over the other centrifugation procedures are that EVs with
same density but different size can be separated [52] and the high yield recovery of the
EVs [39].

Precipitation. This method employs the use of a water-excluding compound, such
as Polyethylene glycol (PEG), which is mixed with the EV sample, followed by centrifu-
gation or filtration. PEG dries up the sample, leading to the precipitation of the other
molecules [53–55]. Although this method is easy and applicable for both small and larger
volume of samples, more often it results in the co-precipitation of the non-EV components.
Therefore, precipitation is always combined with other techniques to improve the quality
and selectivity [39,54,56,57].

Size exclusion. This procedure explores the different size distributions of EVs for their
isolation. Size exclusion techniques include ultrafiltration, sequential filtration, isolation
kits, field-flow fractionation, size-exclusion chromatography, and hydrostatic filtration
dialysis. (1) In ultrafiltration, the EVs samples pass through different pore-sized membrane
filters, leading to the separation of the EVs based on their size and molecular weight [39,54].
Despite the fast and inexpensive separation of the EVs [39,56], this method has several
disadvantages. Often, the EVs become entrapped in the membrane [39,56]. Moreover,
poor efficiency and EVs’ deformation due to membrane pressure further lead to the lower
efficiency of the process [39,56,58,59]. (2) Sequential filtration, a semi-automated technique,
is basically a system composed of multiple filters of different sizes. When an EV sample is
loaded, the larger particles are trapped in the filters, and the smaller ones pass through.
Although this technique is fast [58], it often results in membrane plugging and hence
low yield [58,60,61]. (3) Recently, isolation kits have been developed which also separate
EVs based on their size. For example, Exomir Kits are composed of two membranes: the
upper one is of a higher pore size (200 nm), whereas the bottom one has a lower pore size
(20 nm) [39]. Another isolation kit, ExoTIC, contains multiple filters, and the EV samples,
when applied to it, are separated according to their size. These kits often produce high
yield EVs [62]. (4) In field-flow fractionation, the EV samples are loaded into a chamber in
which a crossflow is generated. The larger particles, due to the cross-flow, are positioned
on the chamber wall, whereas the smaller particles are eluted first [39,63]. This technique
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is fast, is efficient, provides higher recovery, and facilitates the isolation of EVs from a
very small sample volume [64]. (5) Size-exclusion chromatography allows the elution of
larger particles from the column followed by the release of smaller particles through the
pores [39,58,65,66]. This not only obtains the biological integrity of the EVs but also offers
no damage of sample pre-treatment [58,65]. (6) Hydrostatic filtration dialysis employs
hydrostatic pressure for the isolation of EVs. It is a tube-based technique in which the small
particles are diffused through the membrane, whereas the larger ones are retained in the
tube [39,67].

Affinity purification. Affinity purification of EVs involves antibody-mediated purifi-
cation of the EVs against surface antigens [39]. In this technique, the purity of the EVs is
shown to be the highest [39]; however, at the same time, poor yield limits the efficiency
of the method [39,57]. Also, the availability of antibodies against unique antigens on the
EVs further adds to the difficulties of affinity purification [38]. However, combinational
techniques, in association with affinity purification, are found to be quite effective [68].

Micro/nano fluidics or chips. Biochemical features such as electrophoretic, acoustic, and
electromagnetic properties of the EVs are often explored to develop micro-/nano-chips for
the isolation of EVs [39,54]. For example, the development of micro-chips is based on the
size, immunoaffinity, and density of the EVs [38]. Nanowires, viscoelastic flow, and nano-
sized deterministic lateral displacement (nano-DLD) are the other techniques that fall into
this category. The nanowires’ principle is very similar to size-exclusion chromatography,
which contain silicon micropores [38]. The elastic lift forces of different sized EVs vary in
a viscoelastic medium, which is utilized in EV isolation by the viscoelastic flow [69,70].
On the other hand, nano-DLD utilizes the pillar-array-based microfluidic mechanism for
the isolation and analysis of the EVs [69]. The acoustic separation method employs the
ultrasonic radiation, in which the EVs are exposed, for the separation of the EVs. Based on
their size, the frequency of the waves is controlled to separate the EVs. The larger particles,
influenced by the heavier waves, move to the pressure node at a faster rate [39,71]. This
often leads to the yield of highly purified EVs [72].

Table 2. Purity, yield, time consumption, and sample volume required for different EVs’ isolation
procedures in a comparative approach [38,39].

Isolation Method Purity Yield Time
Consumption

Sample Volume
Needed

Centrifugation
Differential ultracentrifugation Low Low-moderate 8 h 100 mL

Density-gradient centrifugation >Differential
ultracentrifugation Low-moderate 20 h 1 mL

Rate-zonal Centrifugation High >Density-gradient
centrifugation 2 h 0.5 mL

Precipitation Low 16 h 1 mL

Size exclusion

Ultrafiltration >Differential
ultracentrifugation Very high 18 h 0.5 mL

Sequential filtration High <Differential
Ultracentrifugation - 150 mL

Isolation kits High High - 10–100 µL
Field-flow fractionation High High <1 h 100 µL

Size-exclusion Chromatography High High ~1.5 h 50 mL

Hydrostatic Filtration dialysis - >Differential
ultracentrifugation 9 h 15–200 mL

Affinity purification Very high Poor ~45 min ~100 µL

Micro/nano-fluidics or chips
Immune microfluidic - Almost 100% ~100 min 30 µL

Viscoelastic flow Very high Very high 5–25 min <100 µL
Acoustic separation Very high Very high 25 min 100 µL
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Heterogeneity in EV preparations: Minimal Information for Studies of Extracellular
Vesicles 2018 (MISEV2018). In the past three decades, the advancement of EV research has
also increased the complexity of EV characterization. Depending on the cells of origin,
biogenetic mechanisms, and various physiological and pathological functions, different
research groups apply different terminology for the EVs, such as exosomes, microparticles,
microvesicles, ectosomes, apoptotic bodies, oncosomes, and many others. However, the
disparity in size within different methods of EV preparation often turns out to be the
primary limitation for EV characterization. In this regard, the International Society for
Extracellular Vesicles (ISEV) proposed a guideline for the isolation and characterization
of EVs, termed as ‘Minimal Information for Studies of Extracellular Vesicles’ (MISEV), in
2014 which was further updated in 2018 [73]. A worldwide ISEV survey from 2015 [74]
indicates that the differential ultracentrifugation was the most frequently used technique
for separating and concentrating EVs over the other conventional methods, such as density-
gradient centrifugation, precipitation, filtration, size-exclusion chromatography, affinity
purification, etc., with moderate purity and recovery. However, for better specificity and re-
covery, several other techniques were further used which are mentioned in MISEV2018 [73].
These include tangential flow filtration and variations thereon, asymmetric flow field-flow
fractionation, field-flow fractionation, field-free viscoelastic flow, variations on size exclu-
sion chromatography (SEC), acoustics, alternating current electrophoretics, ion exchange
chromatography, fluorescence-activated sorting, microfiltration, DLD arrays, novel precipi-
tation/combination techniques, novel immunoisolation or other affinity isolation technolo-
gies, hydrostatic filtration dialysis, a wide variety of microfluidics devices which combine
one or more principles, as mentioned above, and high-throughput/high-pressure methods
including fast protein liquid chromatography/high performance liquid chromatography
(FPLC/HPLC) involving some chromatography techniques [73]. Table 3 briefly describes
the differences in purity and recovery among various EV isolation procedures in accordance
with MISEV2018 [73].

Table 3. Purity and recovery of the EVs among different EV isolation techniques according to
MISEV2018 [73].

EVs Isolation Technique Purity Recovery

Precipitation kits or polymer (PEG or others) Low High
Low molecular weight cut off centrifugal filters with no

further separation steps Low High

High speed ultracentrifugation with no previous lower
speed steps Low High

Size-exclusion chromatography Moderate Moderate
High molecular weight centrifugal filters Moderate Moderate

Differential ultracentrifugation with intermediate
time/speed with/without wash Moderate Moderate

Tangential flow filtration Moderate Moderate
Membrane affinity columns Moderate Moderate

Filtration combined with size-exclusion chromatography High Low
Immuno- or other affinity isolation with flow cytometry High Low

Surface charge-based isolation techniques High Low
Note: High purity with high recovery is difficult to achieve as per MISEV2018 [73].

Selectivity of EVs in the uptake by target cells. There is mixed evidence which indicates
the movement of EVs towards specific target cells. Although EVs are shown to be non-
selectively taken up by a wide variety of recipient cells [75], at times, the release of specific
morphogens by the target recipient cells may guide the EVs towards them [76]. However,
an interesting study by Sharif et al. demonstrates that Wharton’s jelly-mesenchymal stem
cell (WJ-MSC)-derived EVs specifically deliver miR-124 to glioblastoma multiforme (GBM),
resulting in the down-regulation of GBM migration while increasing its chemosensitiv-
ity [77]. This indicates the possibility of a ligand–receptor interaction in the specific uptake
of EVs by the target recipient cells. In this context, the role of EVs’ membrane proteins,
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lipids, and glycans becomes indispensable. Table 4 briefly summarizes the role of EVs’
membrane components in the uptake of EVs by target recipient cells.

EVs’ membrane proteins. EVs’ membrane proteins play a major role in their uptake by
specific target cells. Tetraspanins (CD63, CD9, CD82, and CD81), the abundantly expressed
molecules on the surface of EVs [78], in association with other adhesion molecules such as
intercellular adhesion molecule (ICAM) [79] essentially mediate the docking and uptake
of EVs by the recipient cells upon interacting with cellular integrins and other adhesion
molecules [78]. Hoshino et al. further demonstrate that α6β4- and α6β1-integrin + EVs
are associated with lung metastasis, whereas αvβ5-integrin + EVs are involved in liver
metastasis, and targeting the EVs’ integrins not only interferes with the EVs’ uptake but
also decreases the EV-associated metastasis [80].

Lipids of EVs’ membrane. EVs are enriched with a negatively charged phospholipid,
phosphatidylserine (PS), which is indirectly identified by the growth arrest-specific protein
6, Gas6, leading to the activation of Mer receptor tyrosine kinase (MERTK) on the surface
of macrophages, thereby facilitating the EVs’ uptake and associated anti-inflammatory
response [81].

EVs’ membrane glycans. In most cases, glycans are abundantly found on the surface
of the EVs, and targeting glycans, more specifically proteoglycans, is believed to reduce
EVs’ uptake by interfering with the glycans–lectin interaction [82]. Moreover, mannose-
containing glycoproteins are glycan structures that are often found on the EVs’ membrane
whose inhibition significantly down-regulates the uptake of the EVs by ovarian cancer
cells [36].

Table 4. The role of EVs’ membrane components in the uptake of EVs by target recipient cells.

Membrane
Component Type Specific Name Function Reference

Membrane proteins Tetraspanins CD63, CD9, CD82,
CD81

EVs’ tetraspanins, in association with
adhesion molecules, such as ICAM,
bind to cellular integrins and other

adhesion molecules, hence promoting
EVs uptake by target recipient cells

[78]

Integrins α6β4, α6β1, αvβ5

Targeting α6β4- and α6β1-integrins on
the EVs decreases lung metastasis,

whereas αvβ5-integrin targeting of EVs
reduces liver metastasis, via interfering

with the uptake of the EVs

[80]

Membrane lipids Glycero-Phospholipids PS

EVs-PS is indirectly recognized by Gas6,
leading to MERTK activation in the

recipient macrophages, thereby
facilitating EVs’ uptake and associated

anti-inflammatory response

[81]

Membrane glycans Proteoglycans -

Proteoglycans are abundant on the EVs’
surface, and targeting proteoglycans

would reduce EVs’ uptake by inhibiting
the glycan–lectin interaction

[82]

Mannose-containing
glycoproteins -

Mannose-containing glycoproteins are
enriched on the EVs’ surface, the
blocking of which significantly

attenuates EVs’ uptake by ovarian
cancer cells

[36]

Abbreviations: CD, cluster of differentiation; ICAM, intercellular adhesion molecule; PS, phosphatidylserine; Gas6,
growth arrest-specific protein 6; MERTK, Mer receptor tyrosine kinase.

EVs in various diseases. The abundance and heterogeneity of different cargoes en-
trapped within EVs often turn out to be important biomarkers in various pathophysiological
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conditions. For example, the level of pro-coagulant tissue factor (TF) expression is shown to
be well-elevated on the plasma EVs of Gram-negative sepsis-induced urinary tract infection
(UTI) patients, which often contributes significantly to the hyper-coagulative responses [83].
In contrast, EVs derived from activated platelets are believed to confer anti-coagulative
effects [84]. In the case of atherosclerosis, the plaque-derived EVs transport ICAM-1 to the
endothelial cells depending on the PS, thereby leading to the recruitment of inflammatory
cells to promote atherosclerotic plaque progression [85]. Moreover, in acute kidney injury
(AKI), fetuin-A and AQP1 + EVs may be used as diagnostic biomarkers. The level of
fetuin-A is significantly up-regulated in the urinary EVs, whereas EVs’ AQP1 expression is
shown to be down-regulated in AKI [86]. Furthermore, ten signature miRNA molecules
(miR-199a-5p, miR-143-3p, miR-4532, miR-193b-3p, miR-199b-3p, miR-199a-3p, miR-629-5p,
miR-25-3p, miR-4745-3p, and miR-6087) are found to be up-regulated, whereas another
ten miRNAs (miR-23b-3p, miR-10a-5p, miR-141-3p, miR-98-5p, miR-382-5p, miR-200a-3p,
miR-200c-3p, miR-483-5p, miR-483-3p, and miR-3911) are significantly down-regulated
in the human follicular fluid (HFF)-derived EVs of polycystic ovary syndrome (PCOS)
patients, which can serve as PCOS biomarkers [87]. The cerebrospinal fluid (CSF) of pa-
tients with Parkinson’s disease (PD) is shown to be enriched with α-synuclein + EVs which
facilitate the aggregation of α-synuclein in healthy cells, leading to the progression of
PD [88]. Circulating EVs from the differentiating myoblasts actively participate in the
enhancement of muscle regeneration during congenital myopathies, and thus the elevated
level of circulating EVs could be considered as the biomarker for congenital myopathy
progression [89]. The composition of microbial EVs in the feces, blood, and urine of patients
with gastrointestinal tract disease is significantly altered as compared to healthy individu-
als, and hence these EVs have the potential of being recognized as a diagnostic biomarker
for microbial infection [90]. Numerous studies have mentioned the important contributions
of EVs in the progression of cancer. For example, breast cancer cell-derived EVs transfer
miR-125b to the normal fibroblasts in the tumor microenvironment (TME) rendering their
transformation into cancer-associated fibroblasts (CAFs) [91]. Moreover, the population of
triple-negative breast cancer (TNBC) cell-secreted EVs is shown to be significantly increased
in the presence of FVIIa, which imparts epithelial to mesenchymal transition (EMT) to the
EMT-negative cells via miR-221 transfer, leading to the progression of TNBC [9]. Again,
the level of miR-144 is shown to be well-elevated in the EVs derived from nasopharyngeal
carcinoma (NPC) which is readily transferred to the endothelial cells following EVs uptake,
thereby resulting in the enhanced migration, invasion, and angiogenesis of the endothelial
cells [92]. In the majority of instances, EVs have been associated with the modulation of
inflammatory responses in different ways and are often considered an important regulator
in various inflammation-associated diseases.

The role of EVs in inflammatory diseases. Inflammation, the defense mechanism of the
immune system against harmful stimuli [93] such as radiation [94], toxic compounds [95],
damaged cells [96–99], and most importantly pathogens [100], is characterized by tissue
redness, swelling, heat, pain, loss of tissue functions, and recruitment of the immune cells
at the site of infection [101–103], the results of which help eliminating the harmful cause
and initiate the healing process [104–106]. However, just as ‘too much of anything is bad’,
prolonged inflammation often gives rise to several chronic disorders [107–110]. Therefore,
a balance between pro- and anti-inflammatory responses is a prerequisite in the removal
of injurious stimuli with minimal damage to the host. Inflammation is often shown to
play a pivotal role in various pathophysiological anomalies such as neurological disorders,
cardiovascular diseases, respiratory syndrome, defects in the digestive and integumentary
systems, disease associated with musculoskeletal, urinary, and reproductive systems, and
endocrine as well as lymphatic disorders. The emerging role of EV-associated inflammatory
responses in various diseased conditions is briefly illustrated in the present review (Table 5).
Moreover, it has been established that inflammation and blood coagulation are intrinsically
related: the activation of one process often leads to the activation of the other [111–113].
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The latter part of the review focuses on how EVs influence the inflammatory responses in
various coagulation-associated disorders.

Evs in neuroinflammatory diseases. Emerging evidence implicates the active involvement
of Evs in various neuroinflammatory diseases. For example, the concentration of plasma
Evs is shown to be significantly up regulated in the central nervous system (CNS). Autoim-
mune disease, multiple sclerosis (MS) [114], and EVs of endothelial as well as platelet origin
from the plasma of MS patients have been revealed to induce blood–brain barrier (BBB)
permeability, leading to the transmigration of myeloid- and T-cells into the CNS, thereby
contributing to the neuropathology in MS [115–117]. Moreover, EVs in the plasma and CSF
of patients suffering from neurodegenerative disorders such as Alzheimer’s disease (AD),
PD, etc., are enriched with neurotoxic molecules including β-amyloid (Aβ), α-synuclein,
and tau, whose origin are believed to be microglia and neuronal cells, and the uptake
of toxic molecule-laden EVs to the local and distant neurons contributes to the neuronal
loss, the characteristic feature of neurodegenerative disorders [118–121]. Another neu-
rodegenerative disease, Creutzfeldt–Jakob disease (CJD), is caused by the misfolded and
transmissible form of the prion protein (PrP) PrPSc. PrPSc is readily detected in the plasma
EVs of CJD patients [122], and the selective packaging of PrPSc into the neuronal EVs often
contributes to the EV-associated pathogenetic spread of CJD [123]. EVs often contribute to
CNS infection. For example, JC polyomavirus (JCPyV), the causative agent of progressive
multifocal leukoencephalopathy (PML), is shown to be transferred via serum EVs between
glial cells and is highly infectious and leads to the pathogenesis of PML [124]. Furthermore,
Plasmodium-infected red blood cells and other host cells have been demonstrated to release
a significant amount of EVs in circulation [125] which contribute to the pathogenesis of
cerebral malaria (CM), the most severe form of malaria, and targeting EV biogenesis has
proven to be highly effective against CM in an animal model system [126]. In contrast to
the above, EVs have also proved to be beneficial in a few instances.

In stroke, MSC-derived EVs have been reported to perturb the microglial differenti-
ation of pro-inflammatory M1 phenotypes, thereby prohibiting neuroinflammation and
brain injury following middle cerebral artery occlusion (MCAO) in rats [127]. Again, during
spinal cord injury (SCI), infiltrating macrophages release NADPH oxidase 2 (NOX2)-loaded
EVs which are readily taken up by the injured neuronal axons, and inside the neurons,
NOX2 inactivates PTEN, thereby stimulating the PI3K-AKT pathway to regenerate neuronal
outgrowth [128]. In addition, microglial EVs are shown to be enriched with miR-124-3p
in conditions such as traumatic brain injury (TBI), which not only inhibits neuronal in-
flammation but also induces neurite outgrowth via PDE4B-targeted down-regulation of
the mTOR signaling pathway [129]. In the majority of the above-mentioned studies, dif-
ferential centrifugation techniques have been employed to isolate the EVs, which often
reduces the purity, always leaving behind the possibilities of protein contaminants’ pres-
ence in the EV preparation which could affect the inflammatory responses of the EVs.
However, Asai et al. [118] and Robertson et al. [122] used ultracentrifugation followed by
density-gradient centrifugation for isolating the EVs, which improves the purity of the
EVs markedly. In addition to this, Guo et al. utilized ExoQuick-TC PLUS followed by
ultracentrifugation for EVs isolation which also yields highly purified EVs [121]. Figure 2
illustrates how EVs contribute to the progression of different neuroinflammatory diseases
via different mechanisms.

EVs and cardiovascular inflammatory responses. Inflammation plays a key role in the
pathogenesis of various cardiovascular diseases such as atherosclerosis, myocardial infarc-
tion and ischemic heart disease, heart failure, aneurysms, etc.
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Figure 2. The role of EVs in different forms of neuroinflammatory diseases. EVs from multiple
sclerosis (MS) patients induce BBB permeability, leading to the transmigration of T-cells and myeloid
cells into the CNS, contributing to MS neuropathology. In the case of Alzheimer’s disease (AD)
and Parkinson’s disease (PD), microglial EVs, enriched with neurotoxic molecules, are incorporated
into the neurons, leading to neuronal loss. EVs, loaded with infectious PrPSc, are released from
infected neurons and are readily incorporated into healthy neurons, leading to pathogenic spread of
Creutzfeldt–Jakob disease (CJD). In progressive multifocal leukoencephalopathy (PML), JCPyV-laden
EVs are transferred between the glial cells which contribute to the pathogenesis of PML. Plasmodium-
infected RBC-derived EVs are also known for increasing the pathogenesis of cerebral malaria (CM).
In stroke, MSCs-EVs perturb microglial neuroinflammatory responses and the subsequent brain
injury. Again, in spinal cord injury (SCI), EVs from infiltrating macrophages transport NOX2 to
the neuronal cells which leads to the regeneration of neuronal outgrowth. Similarly, microglial EVs
carried miR-124-3p, which not only prohibits neuronal inflammation but also induces neurite growth
in the context of traumatic brain injury (TBI).

A growing body of evidence highlights the active participation of EVs in these
inflammation-associated cardiovascular anomalies. For example, during initial athero-
genic stages, EVs from atherogenic plaque, circulating monocytes, and neutrophils induce
the endothelial expression of ICAM-1. This facilitates leukocyte recruitment, adhesion,
and trans-endothelial migration, mostly via the activation of pro-inflammatory signal-
ing pathways [85,130,131]. This is followed by the plaque maturation stages, wherein
EVs from platelets and adipose cells play a pivotal role by enhancing the formation of
foam cells depending on the pro-inflammatory signaling. Platelet-derived EVs trigger
the macrophages’ phagocytosis of oxidized LDL (ox-LDL) [132]. Adipose cell-derived
EVs, on the other hand, perturb the cholesterol efflux of macrophages [133]. Both the
platelet- and adipose cell-derived EVs are shown to stimulate the formation of foam cells.
In the final stage, atherosclerotic plaque progression essentially requires calcification, and
EVs from pro-inflammatory macrophages are shown to induce microcalcification both
in human and murine systems [134,135]. EVs also play a pivotal role in inflammation-
associated myocardial infarction (MI) and ischemic heart disease. For example, EVs in
the myocardium, originating from cardiomyocytes and endothelial cells, trigger the secre-
tion of pro-inflammatory cytokines and chemokines from infiltrating monocytes. These
pro-inflammatory molecules contribute to the pathogenesis of MI and ischemic heart dis-
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ease [136]. On the other hand, EVs’ miR-155 is reported to be transferred from activated
macrophages to cardiac fibroblasts. This leads to the inhibition of fibroblast proliferation
and triggers the inflammatory responses, thereby contributing to the cardiac rupture [137].
EVs are also demonstrated to be involved in heart failure (HF)-associated inflammatory
responses. For example, cardiac fibroblasts are well known for releasing miR-27a*- and
miR-21*-laden EVs, capable enough of promoting cardiac hypertrophy [138,139]. On the
other hand, cardiac hypertrophy is also driven by cardiomyocytes which promote fibrob-
last proliferation via the release of miR-217-laden EVs [140]. Moreover, the role of EVs
in aneurysm is widely documented. For example, neutrophil EVs, in the intraluminal
thrombus of aortic aneurysms, are known for carrying ADAM10 and ADAM17 which,
due to their proteolytic activities, cause the degradation of aortic walls [141]. Additionally,
ficolin-3 + platelet-derived EVs are well elevated in the plasma of aortic aneurysms patients
which contribute to the progression of aneurysms [142]. In the above-mentioned studies,
the authors used either differential centrifugation or ultracentrifugation for EVs’ isolation,
which reduces EVs’ purity and hence could influence the inflammatory behavior of the EVs.
Figure 3 briefly summarizes the role of EVs in the progression of different cardiovascular
inflammatory diseases.

EVs in respiratory inflammatory diseases. EVs often influence inflammation-associated
respiratory diseases, such as acute lung injury (ALI) and acute respiratory distress syn-
drome (ARDS), chronic obstructive pulmonary disease (COPD), pulmonary hypertension
(PH), idiopathic lung fibrosis (ILF), asthma, etc. In ALI and ARDS, EVs are released into the
BALF upon infection (LPS or Gram-negative bacteria) or sterile stimuli (acid aspiration or
oxidative stress) from alveolar macrophages or alveolar type-I epithelial cells, respectively.
These EVs trigger the release of pro-inflammatory cytokines and mediators from naïve
alveolar macrophages, leading to the development of lung inflammation [143]. In the case
of COPD, bronchial epithelial cell-derived EVs are shown to be enriched with miR-210.
These miR-210-laden EVs are associated with autophagy functions and myofibroblasts
differentiation, the dysregulation of which leads to the pathogenesis of COPD [144]. Fur-
thermore, in PH, more specifically pulmonary arterial hypertension (PAH), miR-143-laden
EVs from pulmonary arterial smooth muscle cells (PASMCs) promote migration and an-
giogenesis of pulmonary arterial endothelial cells (PAECs) [145]. These contribute to the
pathogenesis of PH. BALF-EVs of ILF patients have an abundance of WNT5A, believed to
originate from the lung fibroblasts, and are shown to promote fibroblast proliferation and
the pathology of ILF [146]. In asthma, plasma EV-associated miR-145 plays a crucial role in
epithelial and smooth muscle cell functions [147] related to inflammation. The inhibition
of miR-145 is often observed during asthma which is accompanied by low eosinophilic
inflammation, Th2 cytokine production, airway hyperresponsiveness, and hypersecretion
of mucous, characteristic features of asthma-induced bronchial stress [148]. The use of
ultracentrifugation in EV isolation, in the above-mentioned studies, limits the purity of the
EVs except for Martin-Medina et al. who used highly purified EVs, isolated by ExoQuick
followed by ultracentrifugation, in their study [146]. Figure 4 briefly demonstrates how
EVs play their part in various respiratory inflammatory syndromes.

EVs in inflammatory diseases of the digestive system. A growing body of evidence indicates
that EVs also play important roles in the inflammatory diseases of the digestive system,
such as necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). Numerous
studies have demonstrated the active involvement of EVs in influencing NEC and IBD;
however, the present review highlights a few of them. NEC is considered to be one of the
catastrophic diseases of newborns with mortality rates of ~20–30% [149]. EVs from stem
cells often show protective responses against NEC, indicating the therapeutic potential of
the stem cell-derived EVs in NEC. Pisano et al., in a recent study, demonstrated that pre-
treatment of intestinal epithelial cells (IEC) with bone marrow (BM)-derived EVs, which are
abundant in the breast milk, rescues IEC against hypoxia/reoxygenation (H/R)-triggered
inhibition of proliferation and induction of apoptosis in a rat model [149]. Furthermore,
amniotic fluid stem cell (AFSM)-derived EVs are shown to promote epithelial prolifera-
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tion and anti-inflammation, leading to the regeneration of normal intestinal epithelium,
ultimately contributing to the intestinal recovery following NEC [150]. IBD, the other in-
flammatory disease of the gastrointestinal tract, is caused by the dysbiosis of the intestinal
microenvironment, currently affecting more than 3.5 million people worldwide [151]. IECs,
under physiological conditions, produce TGF-β1-laden EVs which induce regulatory T-cells
(Treg) and immunosuppressive dendritic cells, thereby decreasing the severity of IBD [152].
Moreover, mast cell (MC)-derived EVs transfer miR-223 to the IECs, hence targeting IECs’
Claudin 8 (CLDN8), resulting in the loss of intestinal epithelial tight junctions which leads
to increased intestinal epithelial permeability, the characteristic feature of IBD [153]. IBD-
induced injury to the epithelial barrier triggers the release of annexin A1 (ANXA1) + EVs
from the IECs, which is associated with the activation of the wound repair process [154].
Unlike others, Li et al. [150] and Jiang et al. [152] used the ExoQuick kit for the isolation
of EVs in their studies, which not only improves the yield as compared to conventional
ultracentrifugation but also consumes less time. However, ExoQuick-purified EVs without
subsequent centrifugation steps may result in a high degree of lipoprotein contamination.
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Figure 3. The role of EVs in cardiovascular inflammatory diseases. EVs are shown to play important
roles in the progression of various cardiovascular inflammatory diseases including atherosclero-
sis, myocardial infarction (MI) and ischemic heart disease, heart failure (HF), and aneurysm. In
atherosclerosis, during initial atherogenic stages, monocyte-, neutrophil-, and plaque-derived EVs
interact with the endothelium, leading to transendothelial migration of leukocytes. During plaque
maturation stages, platelet- and adipose cell-derived EVs convert macrophages into foam cells.
Furthermore, during plaque progression stages, inflammatory macrophage derived EVs promote
calcification of the plaque. In MI and ischemic heart disease, endothelial cell- and cardiomyocyte-
derived EVs trigger macrophage pro-inflammatory responses. On the other hand, macrophage-EVs
induce cardiac fibroblasts’ pro-inflammatory responses. In the case of HF, cardiomyocyte derived EVs
promote the proliferation of cardiac fibroblasts, thereby contributing to cardiac hypertrophy. More-
over, EVs generated from cardiac fibroblasts also trigger cardiac hypertrophy. In aortic aneurysms,
neutrophil-derived EVs cause degradation of aortic walls whereas platelet-derived EVs contribute to
the progression of aneurysms.
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Figure 4. The role of EVs in various respiratory inflammatory diseases. EVs’ role is well-established
in various inflammation-associated respiratory diseases, such as acute lung injury (ALI) or acute
respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), pulmonary
hypertension (PH), idiopathic lung fibrosis (ILF), and asthma. In ALI/ARDS, infected alveolar
macrophage- and oxidative stress-induced alveolar type-I epithelial cell-derived EVs trigger pro-
inflammatory cytokines’ release from naïve alveolar macrophages. In COPD, bronchial epithelial
cell secreted EVs promote myofibroblast differentiation and influence autophagy functions. In PH,
PASMC-released EVs promote migration and angiogenesis of PAECs. ILF-infected lung fibroblast-
derived EVs promote proliferation of normal lung fibroblasts. EVs from the plasma of asthma patients
influence the functions of lung epithelial and smooth muscle cells.

The role of EVs in integumentary inflammatory diseases. EVs are sometimes shown to be
involved in the inflammatory responses of various integumentary diseases such as systemic
lupus erythematosus (SLE), psoriasis, atopic dermatitis (AD), etc. In SLE, the number of
circulating EVs is found to be well-elevated, and those EVs target the endothelial cells
leading to the secretion of pro-inflammatory cytokines, induction of endothelial apoptosis,
and enhancement of vascular permeability, ultimately contributing to secondary tissue
leukocyte infiltration [155]. In psoriasis, interferon α (IFN-α)-induced mast cell-derived EVs
transfer cytoplasmic phospholipase A2 (PLA2) to nearby CD1a-expressing cells, thereby
generating neo lipid antigens and their recognition by CD1a-reactive T-cells to induce the
release of IL-22 and IL-17A, ultimately leading to skin inflammation [156]. Furthermore,
in AD patients, Staphylococcus aureus-derived EVs (SEVs) trigger dermal microvascular
endothelial cells (DMECs) to induce the expression of E-selectin, ICAM-1, VCAM-1, and
IL-6 release via TLR4-NF-κB signaling, thereby promoting leukocytes’ adhesion to the
endothelium and their subsequent transmigration to promote AD progression [157]. In
the above-mentioned studies, the isolation of EVs was carried out through differential or
ultracentrifugation. However, it is important to note that these methods leave behind the
possibility of soluble protein contaminants, which can have a significant impact on the
inflammatory responses under investigation.

EVs’ role in musculoskeletal inflammatory diseases. An increasing body of evidence
indicates that EVs also play a crucial role in inflammatory responses associated with muscu-
loskeletal diseases, which include osteoporosis (OP), osteoarthritis (OA), etc. For example,
oxidative stress and aging result in the elevated expression of miR-183-5p in the EVs iso-
lated from bone marrow interstitial fluid (BMIF). miR-183-5p is shown to arrive from aged
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bone marrow stromal cells (aBMSCs) and is capable of targeting heme oxygenase-1 (Hmox1)
in young BMSCs (yBMSCs), thereby not only inhibiting the proliferation and osteogenic dif-
ferentiation of yBMSCs but also promoting yBMSCs senescence, the characteristic features
of OP [158]. In OA, EVs from IL-1β-stimulated synovial fibroblasts (SFBs) are observed
to induce MMP-13 and ADAMTS-5, whereas inhibiting COL2A1 and ACAN expression
in articular chondrocytes contributes to the pathogenesis of OA [159]. Unlike others,
Kato et al. [159] used both ultracentrifugation and ExoQuick for the isolation of EVs in
their studies. As stated before, the use of ExoQuick without subsequent ultracentrifugation
improves the yield significantly but leaves behind the possibility of lipoprotein contam-
ination. Figure 5 briefly illustrates the role of EVs in different inflammation-associated
diseases of the digestive system, integumentary system, and musculoskeletal system.
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Figure 5. The role of EVs in various inflammatory diseases associated with the digestive system,
integumentary system, and musculoskeletal system. (1) The role of EVs in digestive inflammatory
diseases. In necrotizing enterocolitis (NEC) (sky dotted arrows), BM-EVs promote IEC proliferation
and anti-apoptosis. Moreover, amniotic fluid stem cell derived EVs promote the proliferation and anti-
inflammation of IEC. In inflammatory bowel disease (IBD) (red dotted arrows), IEC-EVs promote the
induction of Treg and immunosuppressive dendritic cells, as well as wound repair. MC-derived EVs
increase IEC permeability. (2) EVs’ roles in integumentary inflammatory diseases. In systemic lupus
erythematosus (SLE) (violet dotted arrows), plasma EVs promote endothelial apoptosis, permeability,
and release of pro-inflammatory cytokines, leading to leukocytes transmigration. In psoriasis (green
dotted arrows), MC-EVs containing PLA2 are taken up by CD1a-expressing cells which present a lipid
antigen (red dot) to the CD1a-reactive T-cell, leading to the release of pro-inflammatory cytokines IL22
and IL17A. In atopic dermatitis (AD) (blue dotted arrows), SEVs trigger the expression of E-selectin,
VCAM-1, and ICAM-1 and the release of IL-6, thereby promoting vascular permeability to induce
leukocytes transendothelial migration. (3) EVs in musculoskeletal diseases. In osteoporosis (OP)
(pink dotted arrows), aBMSC-derived EVs inhibit proliferation and differentiation, while promoting
senescence of yBMSC. In the case of osteoarthritis (OA) (orange dotted arrows), SFB-EVs induce
pathogenicity to articular chondrocytes.
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The role of EVs in urinary inflammatory diseases. EVs also play critical roles in the
progression of several urinary inflammatory diseases. For example, the level of plasma
or urine-derived EVs is often used as a predictive biomarker for the progression of acute
kidney injury (AKI) [160]. Guan et al. showed that hypoxia or ischemia-reperfusion (I/R)-
induced injured tubular epithelial cells (TECs) release a significant amount of miR-150-laden
EVs which develop profibrotic manifestations to renal fibroblasts. Moreover, the expression
of urinary EVs’ chemokine (C-C motif) ligand 2 (CCL2) mRNA is shown to be significantly
higher in IgA nephropathy (IgAN) patients as compared to other glomerulopathy controls,
which is correlated with the tubular interstitial inflammation and C3 deposition, reflecting
renal injury and impaired renal functions [161]. Again, as in the majority of cases, using
ultracentrifugation to isolate EVs frequently results in a drop in EV purity.

EVs’ role in inflammatory diseases of the reproductive system. In the uterine microenvi-
ronment (UME), EVs play a crucial role in maternal–embryo interaction by promoting
implantation defects which often lead to several pregnancy-related disorders. Maternal
immune macrophage-derived EVs are shown to be endocytosed by placental trophoblasts,
resulting in the release of pro-inflammatory cytokines, thereby contributing to the ma-
ternal inflammatory responses to protect the fetus [162]. On the other hand, placental
trophoblast-derived EVs are loaded with chromosome 19 miRNA cluster (C19MC) which
attenuates autophagy-mediated virus replication in non-placental cells, thereby protecting
the embryo from viral infections [163]. Delorme-Axford [163], unlike others, employed
ultracentrifugation followed by density-gradient centrifugation in their EV preparation
which is shown to yield highly purified EVs.

The role of EVs in inflammatory diseases of the endocrine system. A few studies indicate
the active participation of the EVs in inflammatory responses of the endocrine system.
For example, EVs derived from obese adipose tissues and plasma show a significantly
lower expression of miR-141-3p, which is associated with glucose intolerance and insulin
resistance [164,165]. EVs released into the serum from brown adipocytes contain a signifi-
cant level of miR-99b, which targets FGF21 in the liver, thereby contributing to metabolic
dysfunctions such as glucose intolerance in obesity [166]. Adipose tissue macrophage
(ATM)-EVs are shown to be over-expressed with miR-155 under obese conditions, which
targets PPARγ in adipocytes, myocytes, and primary hepatocytes, leading to glucose in-
tolerance and insulin resistance [167]. As with most cases, the use of ultracentrifugation
to isolate EVs in the mentioned studies raises questions about the presence of protein
contaminants in the EV suspension.

EVs of the lymphatic system in inflammatory diseases. EVs of the lymphatic system often
influence various inflammation-associated diseases. For example, the concentration of
EVs derived from the lymph is shown to be well-elevated in atherosclerotic conditions as
compared to healthy controls, which is believed to contribute to lymphatic dysfunction and
associated-inflammatory disease progression [168]. Pronounced inflammation-induced
vascular leakage promotes the egress of platelet-derived EVs into the lymphatic system,
which is shown to contribute to the pathogenesis of rheumatoid arthritis (RA) [169]. Figure 6
demonstrates the role of EVs in inflammation-related diseases of the urinary system,
reproductive system, endocrine system, and lymphatic system.

Apart from the above-mentioned conditions, inflammation is shown to play a major
role in the pathogenesis of diseases, associated with memory T-cells. Inflammation is
often controlled by the memory T-cells during repeated exposure to infectious agents.
The duration of their existence is significantly enhanced by the telomeres, which are
shown to be transferred via the EVs in immunological synapse, as discovered recently by
Lanna et al. [170]. The intriguing discovery by the group indicates that the interaction of
T-cells with the antigen-presenting cells results in the cleavage of telomeres in the antigen-
presenting cells and their subsequent incorporation into the EVs at the immunological
synapse. These EVs are positive for recombination factor Rad51, which is readily transferred
to the T-cells following EV fusion. Inside the T-cells, Rad51-mediated recombination
enables the fusion of EVs-carried telomeres with the T-cells’ chromosome ends, leading to
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an increase in chromosome length. This further contributes to the protection of T-cells from
senescence, ultimately imparting long-lasting immune protection [170].
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Figure 6. The role of EVs in various inflammatory diseases associated with the urinary, reproductive,
endocrine, and lymphatic system. (1) EVs and urinary inflammatory diseases. In acute kidney injury
(AKI), I/R-induced TEC-derived miR-150-laden EVs promote profibrotic manifestations to renal
fibroblasts. In IgA nephropathy (IgAN), CCL2 mRNA-loaded EVs promote inflammation-induced
renal injury and impaired renal functions. (2) EVs’ roles in reproductive inflammatory diseases. In
pregnancy-related diseases, maternal macrophage-derived EVs trigger inflammatory responses in the
placental trophoblast. On the other hand, EVs from placental trophoblasts prevent virus replication
of non-placental cells, thereby protecting the embryo from viral infections. (3) EVs and endocrine
inflammatory responses. In obesity, adipose tissue derived EVs influence glucose intolerance and
insulin resistance. Again, brown adipocyte derived EVs promote glucose intolerance after migrating
to the liver tissues. Furthermore, ATM-EVs target adipocytes, myocytes, and primary hepatocytes
leading to glucose intolerance and insulin resistance. (4) EVs of the lymphatic system influencing
various inflammatory diseases. In atherosclerosis, EVs’ level in the lymph is significantly increased,
contributing to inflammation and associated disease progression. On the other hand, in rheumatoid
arthritis (RA), inflammation-induced vascular leakage renders the transmigration of platelet-EVs into
the lymph, thereby contributing to the pathogenesis of RA.
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Table 5. The role of EVs in various inflammatory diseases.

Disease EVs Found in Function Reference/s

Neuroinflammatory
disease

MS CSF and Plasma
Endothelial- or platelet-EVs from MS patients’ plasma
promote BBB leakage, resulting in myeloid- and T-cells’

transmigration into CNS contributing to MS neuropathology
[115–117]

AD and PD CSF and Plasma
Microglia and neuronal-EVs from AD or PD patients

transport Aβ, α-synuclein, and tau to the local/distant
neurons, leading to neuronal loss

[118–121]

CJD Plasma
PrPSc is selectively packaged into neuronal EVs and

EV-mediated transfer of PrPSc contributes to the pathogenetic
spread of CJD

[123]

PML Serum
JCPyV transfer via the serum EVs of PML patients between

the glial cells is infectious and contributes to
PML pathogenesis

[124]

CM Plasma
Plasmodium-infected red blood cell-derived EVs are

implicated in the pathogenesis of CM, and blocking EV
biogenesis shows protection against CM

[126]

Stroke -
MSC-EVs inhibit pro-inflammatory M1 microglial

differentiation, preventing neuroinflammation and brain
injury following MCAO

[127]

SCI -
EVs released from infiltrating macrophages are loaded with

NOX2 which targets PTEN in the recipient neurons and
promotes PI3K-AKT-driven outgrowth

[128]

TBI Serum

Microglial EVs transfer miR-124-3p to the neurons and target
PDE4B to down-regulate the mTOR pathway leading to
inhibition of neuronal inflammation and thus promoting

neurite growth

[129]

Cardiovascular
inflammatory diseases

Atherosclerosis Plaque and plasma

EVs from atherogenic plaque, monocytes, and neutrophils
trigger the endothelial ICAM-1 expression leading to

leukocyte recruitment, adhesion, and trans-endothelial
migration via pro-inflammatory signaling mechanisms

[85,130,131]

Plasma

During plaque maturation stages, platelet-EVs trigger the
phagocytosis of ox-LDL by macrophages, and adipose

cell-derived EVs stimulate cholesterol efflux by macrophages
via pro-inflammatory signaling, both of which lead to the

formation of foam cells

[132,133]

Plasma During plaque progression, EVs from inflammatory
macrophages promote microcalcification [134,135]

MI and ischemic heart
disease Myocardium

Cardiomyocytes and endothelial-EVs induce the release of
pro-inflammatory cytokines and chemokines from infiltrating

monocytes, thereby contributing to MI and ischemic heart
disease progression

[136]

Myocardium

Activated macrophage-derived miR-155-enriched EVs are
incorporated into cardiac fibroblasts and promote

inflammation while suppressing fibroblast proliferation,
leading to cardiac rupture

[137]
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Table 5. Cont.

Disease EVs Found in Function Reference/s

HF Plasma Cardiac fibroblast-derived EVs are enriched with miR27a*
and miR-21*, promoting cardiac hypertrophy [138,139]

Plasma Cardiomyocyte-derived EVs promote fibroblast proliferation
depending on miR-217 transfer [140]

Aneurysms Intraluminal thrombus
of aortic aneurysm

Neutrophil-EVs carry proteases ADAM10 and ADAM17
which degrade aortic walls [141]

Plasma Ficolin-3 + platelet-EVs often contribute to the progression of
aortic aneurysms [142]

Respiratory
inflammatory diseases

ALI or ARDS BALF

EVs from alveolar macrophages or alveolar type-I epithelial
cells upon infection or sterile stimulation, respectively, trigger

pro-inflammatory cytokines and mediators’ release from
naïve alveolar macrophages, contributing to the

lung inflammation

[143]

COPD

EVs from bronchial epithelial cells are enriched with miR-210,
which regulates autophagy functions and myofibroblast

differentiation, the dysregulation of which leads to
COPD pathogenesis

[144]

PH miR-143-loaded EVs from PASMCs promote migration and
differentiation of PAECs, leading to PH pathogenesis [145]

ILF BALF BALF-EVs, loaded with WNT5A, trigger the proliferation of
lung fibroblasts, leading to ILF pathogenesis [146]

Asthma Plasma EVs derived from the plasma of asthma patients are related to
epithelial and smooth muscle cell functions [147]

Inflammatory diseases of
the digestive system

NEC Breast milk BM-EVs protect IEC against H/R-induced apoptosis and loss
of proliferation [149]

Amniotic fluid
AFSC-EVs promote intestinal epithelial proliferation and

anti-inflammation, leading to epithelial regeneration to help
intestinal recovery from NEC

[150]

IBD Intestinal luminal fluid
TGF-β1+ EVs from IECs under physiological conditions

induce Treg and immunosuppressive dendritic cells, leading
to the downregulation of IBD severity

[152]

Intestinal mucosa
miR-223+ EVs from MCs target CLDN8 in the IECs, resulting
in the loss of intestinal epithelial tight junctions and increased

epithelial permeability
[153]

Serum ANXA1+ EVs from injury induced IECs help in the activation
of the wound repair process [154]

Integumentary
inflammatory diseases

SLE Plasma

SLE plasma-EVs promote endothelial release of
pro-inflammatory cytokines, endothelial apoptosis, and

increased vascular permeability, contributing to secondary
tissue leukocyte infiltration

[155]
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Table 5. Cont.

Disease EVs Found in Function Reference/s

Psoriasis Plasma

IFN-α-triggered mast cell-derived cytoplasmic PLA2+ EVs
promote neo-lipid antigen presentation by CD1a+ cells and

their concomitant recognition by CD1a-reactive T-cells,
leading to IL22 and IL17A release and skin inflammation

[156]

AD Plasma

SEVs trigger DMECs to induce the expression of E-selectin,
VCAM-1, and ICAM-1 as well as IL-6 release to promote
endothelial adhesion and subsequent transmigration of

leukocytes, leading to AD progression

[157]

Musculoskeletal
inflammatory diseases

OP BMIF

aBMSCs, under oxidative stress, release miR-183-5p-laden
EVs which target Hmox1 in yBMSCs, thereby leading to the
inhibition of proliferation and osteogenic differentiation as

well as senescence induction of yBMSCs

[158]

OA -
IL-1β-stimulated SFB-derived EVs promote MMP-13 and

ADAMTS-5 expression while inhibiting COL2A1 and ACAN
expression in articular chondrocytes, leading to OA pathology

[159]

Urinary inflammatory
diseases

AKI Plasma and Urine
Hypoxia or I/R-induced injured TECs release miR-150-loaded

EVs which trigger profibrotic manifestations in
renal fibroblasts

[171]

IgAN Urine

CCL2 mRNA expression in urinary EVs of IgAN is
significantly higher as compared to controls, which is

correlated with tubular interstitial inflammation and C3
deposition, reflecting renal injury and impaired

renal functions

[161]

Reproductive system
inflammatory diseases

Pregnancy disorders Plasma

Maternal macrophage derived EVs induce the release of
pro-inflammatory cytokines from placental trophoblasts,

contributing to maternal inflammatory responses to protect
the fetus

[162]

Amniotic fluid
Placental trophoblast derived EVs, via the transfer of C19MC,

prevent virus replication in non-placental cells, leading to
embryonic protection against viral infections

[163]

Inflammatory diseases of
the endocrine system

Obesity Adipose tissue and
Plasma

Obese adipose tissue or plasma EVs show a significant
down-regulation of miR-141-3p expression which contributes

to glucose intolerance and insulin resistance
[164,165]

Serum
Brown adipocyte-derived miR-99b-laden EVs target FGF21 in

the liver, leading to metabolic dysfunctions such as
glucose intolerance

[166]

Serum
ATM-EVs are highly expressed with miR-155, which targets
PPARγ in adipocytes, myocytes, and primary hepatocytes,

leading to glucose intolerance and insulin resistance
[167]

EVs of the lymphatic
system in

inflammatory diseases
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Table 5. Cont.

Disease EVs Found in Function Reference/s

Atherosclerosis Lymph
Lymph-derived EVs in atherosclerotic conditions influence

lymphatic dysfunction and associated inflammatory
disease progression

[168]

RA Lymph
In RA, prolonged inflammation-induced vascular leakage

promotes the egress of platelet-derived EVs in the lymphatic
system, contributing to the pathogenesis of RA

[169]

Abbreviations: MS, multiple sclerosis; CSF, cerebrospinal fluid; BBB, blood–brain barrier; CNS, central nervous
system; AD, Alzheimer’s disease; PD, Parkinson’s disease; Aβ, β-amyloid; CJD, Creutzfeldt–Jakob disease;
PrPSc, transmissible prion proteins; PML, progressive multifocal leukoencephalopathy; JCPyV, JC polyomavirus;
CM, cerebral malaria; MSC, mesenchymal stem cell; MCAO, middle cerebral artery occlusion; SCI, spinal cord
injury; NOX2, NADPH oxidase 2; PTEN, phosphatase and tensin homolog; PI3K, phosphatidylinositol 3-
kinase; TBI, traumatic brain injury; PDE4B, phosphodiesterase 4B; mTOR, the mammalian target of rapamycin;
ICAM-1, intercellular adhesion molecule 1; ox-LDL, oxidized low-density lipoprotein; MI, myocardial infarction;
HF, heart failure; ADAM, a disintegrin and metalloproteinase; ALI, acute lung injury; ARDS, acute respira-
tory distress syndrome; BALF, bronchoalveolar lavage fluid; COPD, chronic obstructive pulmonary disease;
PH, pulmonary hypertension; PASMC, pulmonary arterial smooth muscle cell; PAEC, pulmonary arterial en-
dothelial cell; ILF, idiopathic lung fibrosis; WNT5A, Wnt family member 5A; NEC, necrotizing enterocolitis;
BM, bone marrow; IEC, intestinal epithelial cell; H/R, hypoxia/reoxygenation; AFSC, amniotic fluid stem
cell; IBD, inflammatory bowel disease; TGF-β1, transforming growth factor β1; Treg cell, regulatory T-cell;
MC, mast cell; CLDN8, claudin 8; ANXA1, annexin A1; SLE, systemic lupus erythematosus; IFN, interferon;
PLA2, phospholipase A2; CD, cluster of differentiation; IL, interleukin; AD, atopic dermatitis; SEV, Staphylococcus
aureus-derived EV; DMEC, dermal microvascular endothelial cell; VCAM-1, vascular cell adhesion molecule 1;
OP, osteoporosis; BMIF, bone marrow interstitial fluid; aBMSC, aged BM stromal cell; yBMSC, young BMSC;
Hmox1, heme oxygenase-1; OA, osteoarthritis; SFB, synovial fibroblast; MMP, matrix metalloproteinase; ADAMTS-
5, ADAM metalloproteinase with thrombospondin motifs 5; COL2A1, collagen type II α1; ACAN, aggrecan;
AKI, acute kidney injury; I/R, ischemia-reperfusion; TEC, tubular epithelial cell; IgAN, IgA neuropathy; CCL2,
(C-C motif) ligand 2; C3, complement component 3; C19MC, chromosome 19 miRNA cluster; FGF21, fibroblast
growth factor 21; ATM, adipocyte tissue macrophage; PPARγ, peroxisome proliferator activated receptor γ;
RA, rheumatoid arthritis.

The role of EVs in coagulation-associated inflammatory diseases. Blood coagulation
is a tightly regulated biological process which prevents excessive bleeding when a blood
vessel is injured [172]. Blood coagulation and inflammation are intrinsically related; the
activation of one process often leads to the activation of the other [111–113]. Vessel injury re-
sults in the outburst of thrombin, the central key molecule of the coagulation system, which
acts on vascular endothelium to induce the release of pro-inflammatory cytokines [173,174].
Inflammation, on the other hand, often leads to endothelial barrier leakage which further
enhances the coagulation process [175–177]. A recent study delineates the active involve-
ment of Grb2-associated binder 2 (Gab2) in IL-1β-induced exocytosis of P-selectin and von
Willebrand factor (vWF) as well as expression of tissue factor (TF) and VCAM-1, which
together often results in the pro-coagulant functions [178]. In the past two decades, EVs
have slowly emerged as a key molecule which not only influence the coagulation process
but also influence both pro- and anti-inflammatory responses. In most of the cases, the EVs
are believed to enhance the coagulation process, due to the presence of pro-coagulant pro-
tein TF [179] and negatively charged phospholipid PS [180] on the surface. Although EVs’
TF directly activates the coagulation cascade, PS-dependent activation of the coagulation
system requires the assembly of factor VIIIa, IXa, and X (tenase complex) as well as factors
Va, Xa, and thrombin (prothrombinase complex) in the presence of Ca2+ [181]. In contrast
to the above, EVs also exert anticoagulant properties. For example, EVs released from the
endothelial cells upon exposure with anticoagulant protease activated protein C (APC) turn
out to be anti-coagulant [182]; however, in this case, the anticoagulant activity is largely
due to the bound APC on the EVs’ surface [182]. Similar to coagulation, EVs also confer
both pro- and anti-inflammatory responses in the context of clotting. The pro-inflammatory
effects of the platelet-derived EVs are well-established, which prevent their clinical use
as a pro-coagulant factor against hypo-coagulable conditions, such as trauma-induced
coagulopathy (TIC) [183,184]. On the other hand, Njock et al. demonstrated that EVs
released from unperturbed endothelium confer anti-inflammatory responses via the en-
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richment of anti-inflammatory miRNAs [185]. Despite the advancement of EV research, it
was still unknown how EVs generated from the unperturbed vascular endothelium upon
exposure of coagulation proteases contribute to the inflammatory responses, until the recent
intriguing discovery by Das et al. who demonstrated, for the first time, that FVIIa-triggered
endothelial EVs (EEVs) suppress monocytic inflammation against bacterial-LPS-induced
sepsis (Figure 7) [8,19]. The study delineates the fact that FVIIa triggers the endothelial
release of EVs by endothelial cell protein C receptor (EPCR)-driven activation of protease
activated receptor 1 (PAR1) both in vitro and in vivo [19]. Unlike FVIIa-TF-PAR2 signaling,
observed predominantly in cancer [186], FVIIa-induced EV generation from unperturbed
endothelial cells is shown to be independent of both TF and PAR2 [19]. FVIIa-EEVs are en-
riched with anti-inflammatory miRNAs, the predominant being miR-10a, and the transfer
of EVs-miR-10a to monocytes confers anti-inflammatory responses against LPS-induced
sepsis [8,19]. Furthermore, FVIIa infusion into hemophilia patients increases the level of
plasma EEVs enriched with miR-10a [4], and these EEVs also impart miR-10a-dependent
anti-inflammatory responses [4].
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Figure 7. Schematic representation showing the release of miR-10a-enriched EVs from endothelial
cells and their uptake by the recipient monocytes, leading to the phenotypic alteration. FVIIa binding
to the endothelial EPCR leads to the cleavage of PAR1 at R41 which not only triggers the induction of
miR-10a expression but also promotes the release of miR-10a-laden EVs. The FVIIa-released EVs are
readily taken up by the recipient monocytes via endocytic mechanism, ultimately resulting in the
release of EVs’ miR-10a into the recipient cell’s cytosol. The released cytosolic miR-10a targets TAK1,
thereby preventing LPS-induced activation of the NF-κB pathway to increase the release of TNF-α,
IL-1β, and IL-6 and subsequent pro-inflammatory responses.

EVs in inflammation therapy. EVs are known for transporting bioactive cargoes, such
as proteins, nucleic acids, lipids, etc., between the cells, thereby playing an important role in
cell–cell communication. EVs could be engineered at the surface and bestowed with target-
specific moiety, rendering the target-specific therapeutic applications of the EVs in various
inflammation-associated diseases. For example, therapeutic drugs entrapped within the
EVs often reach the target-specific sites with higher efficacy through EVs. The present
section provides a brief overview of how EVs could be used as a potential therapeutic agent
in the context of various inflammatory diseases (Table 6).
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Table 6. Therapeutic roles of EVs in various inflammatory diseases.

Disease Model EVs’ Source Function Reference

Neuroinflammatory
diseases Ischemic stroke MSC

MSC-EVs prevent activation of
astrocytes, infiltrating leukocytes, and

microglial cells
[187]

LPS-induced brain
inflammation T-lymphoblast Curcumin-laden EVs induce apoptosis

of inflamed brain microglial cells [188]

Cocaine-induced brain
inflammation DC

miR-124-laden EVs attenuate microglial
activation and expression of

pro-inflammatory mediators, TLR4,
MYD88, STAT3, and NF-κB p65

[189]

Cardiovascular
inflammatory diseases I/R-induced cardiac CDC

CDC-EVs with Y-RNA fragments
promote IL-10 release in the infarcted

myocardium and trigger inflammation
post-MI cardiac repair

[190]

Cardiac MI
inflammation DC

DC-EVs promote IL-10 release from
CD4+T-cells, reducing inflammation

and improved cardiac functions
[191]

Ischemia-induced
cardiac injury ADSC

ADSC-EVs with miR-93-5p target Atg7
and TLR4, thereby attenuating

autophagy and inflammation to protect
against infarction-induced

myocardial damage

[192]

Respiratory
inflammatory diseases Asthma and COPD MSC

MSC-EVs’ miR-21-5p targets
ROS-triggered apoptotic pathway in

epithelial cells
[193,194]

Lung inflammation MSC

MSC-EVs promote the conversion of
alveolar macrophages into M2

phenotypes, leading to
anti-inflammation and would healing

[195]

ALI/ARDS MSC

MSC-EVs inhibit proliferation and
differentiation of B-cells and promote
differentiation of TH-cells to Treg cells,

leading to anti-inflammatory cytokines
release while attenuating

pro-inflammatory cytokines

[196]

Integumentary
inflammatory disease Diabetes HK

miR-21+ HK-EVs promote angiogenesis
and facilitate fibroblast function, leading

to skin wound healing
[197]

Sepsis-induced
inflammation -

srIκB-EVs inhibit the NF-κB pathway in
neutrophils and monocytes, alleviating
sepsis-induced inflammatory responses

[198]

Autoimmune
inflammatory diseases Arthritis DC

IL-10-treated DC-EVs not only inhibit
the onset of arthritis but also lower the
severity of already-established disease

[199]

Collagen-induced RA MSC MSC-EVs exert anti-inflammatory
effects on B- and T-lymphocytes [200]

Abbreviations: MSC, mesenchymal stem cell; LPS, lipopolysaccharide; DC, dendritic cell; TLR4, Toll-like receptor 4;
MYD88, myeloid differentiation primary response 88; STAT3, signal transducer and activator of transcription 3; NF-
κB, nuclear factor kappa-light-chain-enhancer of activated B-cells; I/R, ischemic-reperfusion; CDC, cardiosphere-
derived cell; IL, interleukin; MI, myocardial infarction; CD, cluster of differentiation; ADSC, adipose-derived stem
cell; Atg7, autophagy related 7; COPD, chronic obstructive pulmonary disease; ROS, reactive oxygen species;
ALI, acute lung injury; ARDS, acute respiratory distress syndrome; TH, helper T; Treg, regulatory T; HK, human
keratinocyte; srIκB, super repressor of IκB; RA, rheumatoid arthritis.

Therapeutic roles of EVs in neuroinflammatory diseases. MSC-derived EVs are often used
as a promising therapeutic mode in various neuroinflammatory diseases. For example,
the activation of infiltrating leukocytes, astrocytes, and microglial cells has been shown
to be attenuated upon intra-arterial injection of MSC-EVs in an ischemic stroke-induced
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rat model [187]. Moreover, T-lymphoblast-derived EVs, packaged with a neuroprotective
drug, curcumin, are efficiently taken up by the inflamed brain microglial cells, thereby
triggering apoptosis, when administered intranasally in a LPS-induced brain inflammation
murine model [188]. Furthermore, in a cocaine-induced brain inflammation murine model,
DC-secreted EVs, further engineered to over-express miR-124, are shown to attenuate
microglial activation and the expression of pro-inflammatory molecules, TLR4, MYD88,
STAT3, and NF-κB p65 [189].

Therapeutic roles of EVs in cardiovascular inflammatory diseases. EVs often exert beneficial
roles in cardiovascular inflammatory diseases in the context of post-MI cardiac repair
processes. For example, in an I/R-induced cardiac inflammation rat model, cardiosphere-
derived cell (CDC)-derived EVs, laden with Y-RNA fragments, promote the release of
IL-10 in the infarcted myocardium, thereby contributing to post-MI cardiac repair [190].
Moreover, DC-EVs are shown to activate CD4 + T-cells, leading to the perturbation of
pro-inflammatory cytokines’ release and improvement of cardiac functions in a cardiac
MI mice model [191]. Again, adipose-derived stem cell (ADSC)-derived EVs are found
to over-express miR-93-5p, which down-regulates autophagy and pro-inflammation by
targeting Atg7 and TLR4, respectively, thereby showing protection against infarction-
induced myocardial damage in an ischemia-induced cardiac injury rat model [192].

EVs’ therapeutic roles in respiratory inflammatory diseases. MSC-EVs often show promis-
ing effects against respiratory inflammatory diseases, which render them to be considered
an effective therapeutic entity. For example, MSC-EVs, via delivering miR-21-5p, pro-
tect the epithelial cells from reactive oxygen species (ROS)-induced apoptotic damage in
asthma and COPD [193,194]. Moreover, MSC-EVs also trigger the polarization of alveo-
lar macrophages into M2 phenotypes, thereby inducing the release of anti-inflammatory
cytokines and promoting wound healing [195]. MSC-EVs also produce promising thera-
peutic outcomes in ALI/ARDS by inhibiting the proliferation and differentiation of B-cells
as well as promoting the differentiation of TH-cells to Treg cells, leading to the down-
regulation of pro-inflammatory cytokines TNF-α, IL-1β, and IFN-γ and up-regulation of
anti-inflammatory cytokines PEG2, IL-10, and TGF-β [196].

Therapeutic roles of EVs in integumentary inflammatory diseases. Research indicates that
EVs also confer therapeutic potential in several integumentary inflammatory diseases. For
example, human keratinocyte (HK)-derived EVs are shown to carry miR-21, which not
only promotes angiogenesis but also facilitates fibroblast functions, leading to skin wound
healing in diabetic rats [197]. Murine intraperitoneal injection of the EVs, engineered with
a super repressor of IκB (srIκB, the dominant active form) by the optogenetic method,
are shown to inhibit the NF-κB pro-inflammatory signaling pathway in liver and spleen
neutrophils and monocytes, leading to the attenuation of sepsis-induced inflammation and
associated mortality [198].

EVs’ therapeutic roles in autoimmune inflammatory diseases. EVs also play their therapeutic
roles in autoimmune inflammatory disorders. For example, EVs from IL-10-treated DCs
are associated with the inhibition of arthritis onset as well as the already-established
severity [199]. Furthermore, in a collagen-induced arthritis (CIA) model of RA, MSC-
EVs exert anti-inflammatory effects on B- and T-lymphocytes, thus demonstrating the
therapeutic potential of MSC-EVs in RA [200].

Due to commendable success in preclinical studies, EVs have now mostly reached
phase I and phase II clinical trials as briefly mentioned in Table 7 [201].

Artificial EVs and disease therapy. So far, the present review discussed how EVs
influence different inflammation-associated diseases and their potential use in therapeu-
tic purposes. The natural tropism [202], fine biodistribution and less clearance from the
system [203], ability to transfer bioactive cargoes efficiently [39], biocompatibility [204],
and most importantly, the extraordinary capacity to cross blood–brain barriers (BBB) [205]
render EVs to be an excellent means in various disease therapies. However, the natural
EV-based therapies also have their limitations: (1) the heterogeneity of EVs makes EV
isolation and purification difficult [206]; (2) although less, EVs still show immunogenic
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responses [207]; and (3) as this review already discussed, most of the conventional methods
of EV isolation are time-consuming, with the yield and purity always remaining a concern.
However, in the past decade, the concept of bioengineered EVs has evolved, which includes
the isolation of natural EVs followed by some modifications to generate the biomimetic
nanocarriers which are not only being used as an efficient drug delivery system but also
improved the target specificity significantly [208–210]. Recently, two unique mechanisms
have evolved. The first one, termed as top-down method, employs the disruption of
membranes into small fragments which reassembles automatically to form nano- or mi-
crovesicles [211,212]. In the second approach, molecular components such as synthetic
lipids are used to generate the artificial lipid bilayers which mimic the EVs [213]. These
recently developed artificial EVs have several advantages over the natural EVs [214] which
include the fact that (1) the size of the EVs can be easily controlled, and in this sense these
EVs reduce the heterogeneity unlike natural EVs, (2) the ingredients, such as synthetic
lipids, are commercially available, (3) more standardized and high scale production can be
achieved, and (4) these EVs are safe to be used and are highly reproducible. However, ad-
ditional bioengineering on these artificial EVs could improve the target specificity which is
essential in the delivery of EV-based therapeutic drugs against various diseases, including
inflammation-associated disorders.

Table 7. EVs, associated with inflammatory diseases in human clinical trials.

NTA Number Disease Phase EVs’ Source Age and Sex No. of
Participants

Recruitment
Status

NCT03384433 Cerebrovascular
disease I and II Allogenic MSCs 40–80 years,

both M and F 5 Unknown by
15 January 2021

NCT04602104 ARDS I and II Allogenic
human MSCs

18–70 years,
both M and F 169 Unknown by

2 November 2021

NCT04493242 COVID-19,
ARDS II BM-MSCs 18–85 years 102 Completed by 11

April 2023

NCT04602442 SARS-CoV-2
pneumonia II MSCs 18–65 years

both M and F 90 Unknown by
26 October 2020

NCT04276987 Coronavirus I Allogenic
adipose MSCs

18–75 years
both M and F 24 Completed by

7 September 2020

NCT02565264 Ulcer Early I Platelets Child, adult,
Older adult 5 Unknown by

9 September 2020

NCT04664738 Skin graft I Platelets 18–75 years
both M and F 37

Enrolling by
invitation by
27 June 2023

NCT02138331 Diabetes
Mellitus type 1 II and III MSCs 18–60 years

both M and F 20 Unknown by
14 May 2014

Abbreviations: MSC, mesenchymal stem cell; ARDS, acute respiratory distress syndrome; COVID-19, Coronavirus
disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; BM, bone marrow; M, male; F, female;
Note: Recruitment status; ‘Unknown’, A study on Clinical Trials.gov whose last known status was recruiting; not
yet recruiting; or active, not recruiting but that has passed its completion date, and the status has not been last
verified within the past 2 years; ‘Completed’, The study has ended normally, and participants are no longer being
examined or treated (that is, the last participant’s last visit has occurred); ‘Enrolling by invitation’, The study is
selecting its participants from a population, or group of people, decided on by the researchers in advance. These
studies are not open to everyone who meets the eligibility criteria but only to people in that particular population,
who are specifically invited to participate.

2. Conclusions and Future Directions

There is much evidence suggesting that submicron-sized EVs are crucial and have
an immense therapeutic approach because of their biocompatibility, at the experimental
and clinical level, against several inflammation-associated diseases such as neurological
disorders, cardiovascular anomalies, respiratory syndromes, integumentary disorders, and
autoimmune diseases and in regenerative medicine. EVs play a vital role in innate and
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adaptive immunity, including inflammation, as they carry autoantigens, cytokines, lipid
mediators, tissue-degrading enzymes, etc. As a non-cellular membrane structure, EVs
can regulate immune cell activity, suppress excessive inflammation, and promote immune
tolerance. This suggests that EV-based therapies may hold promise for the treatment of
inflammatory diseases, providing a targeted and personalized approach. EVs are safe, are
efficient, and have many advantages in clinical application due to low immunogenicity,
flexibility in engineering the membrane or cargo, and potential for tissue-specific targeting,
long half-life, in vivo stability, and high delivery efficiency. Now, several EV-based treat-
ments are being studied in phase I and II clinical trials. EVs’ research is rapidly advancing,
and several directions are being explored in the future. Although EVs hold great promise for
clinical applications, the toxicity, long-term safety, and immunoregulatory functions of EVs
in the human body need to be further evaluated. Additionally, there are several challenges
to overcome, including standardization of isolation and characterization, cost-effective
production methods with consistent quality, developing robust cargo loading strategies
and improving cargo stability within the EVs and biodistribution, targeted delivery and
tissue specificity, and establishing clear regulatory guidelines and frameworks to ensure
safety, quality, and efficacy for gaining regulatory approvals. To address these challenges,
researchers, clinicians, regulators, and industry partners will have to collaborate. In order to
overcome these hurdles and unlock the full therapeutic potential of EVs in clinical settings,
further research and clinical trials are required to fully explore the therapeutic efficacy and
safety of EV-based therapies. Nevertheless, the potential impact of EVs in revolutionizing
disease treatment is undeniable. However, if the aforementioned difficulties are addressed,
EVs could be used as an excellent mode of delivery system in the therapeutic implications
of various inflammation-associated diseases. In addition to these, the present review also
delineates how EVs play their part in promoting inflammation-associated diseases. In
these conditions, the therapeutic approach includes targeting the EVs. Numerous studies
indicate that intracellular signaling mechanisms, leading to the actomyosin reorganization,
play a critical role in the biogenesis of EVs. Therefore, targeting EVs’ formation could be a
potential therapeutic means to limit EV-associated promotion of inflammatory diseases.
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Abbreviations

Aβ β-amyloid
aBMSC aged BM stromal cell
ACAN aggrecan
AD Alzheimer’s disease
ADAM a disintegrin and metalloproteinase
ADAMTS-5 ADAM metallopeptidase with thrombospondin type 1 motif 5
ADSC adipose-derived stem cell
AFSM amniotic fluid stem cell
AKI acute kidney injury
ALI acute lung injury
Alix ALG-2-interacting protein X
ANXA1 annexin A1
APC activated protein C
AQP1 aquaporin 1
ARDS acute respiratory distress syndrome
Atg7 autophagy related 7
ATM adipose tissue macrophage
BALF bronchoalveolar lavage fluid
BBB blood brain barrier
BM bone marrow
BMIF BM interstitial fluid
C3 complement component 3
CAF cancer-associated fibroblasts
CCL2 chemokine (C-C motif) ligand 2
CD cluster of differentiation
CDC cardiosphere-derived cell
CJD Creutzfeldt-Jacob disease
CLDN8 Claudin 8
CM cerebral malaria
C19MC chromosome 19 miRNA cluster
CNS central nervous system
COL2A1 collagen type II alpha 1 chain
COPD chronic obstructive pulmonary disease
CSF cerebrospinal fluid
CIA collagen-induced arthritis
COVID-19 coronavirus 19
DLD deterministic later displacement
DMEC dermal microvascular endothelial cell
DNA deoxyribonucleic acid
EEV endothelial EV
EMT epithelial to mesenchymal transition
EPCR endothelial cell protein C receptor
ESCRT endosomal sorting complexes required for transport
EV extracellular vesicle
FGF21 fibroblast growth factor 21
FPLC fast protein liquid chromatography
FVIIa activated factor VII
Gab2 Grb2-associated binder 2
Gas6 growth arrest-specific protein 6
GBM glioblastoma multiforme
GRP78 glucose-regulated protein 78
HF heart failure
HFF human follicular fluid
HK human keratinocyte
Hmox1 heme oxygenase 1
HPLC high performance liquid chromatography
H/R hypoxia/reoxygenation
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HSC70 heat shock cognate 70 kDa protein
HSP heat shock protein
ICAM-1 intercellular adhesion molecule 1
IBD inflammatory bowel disease
IEC intestinal epithelial cell
IFN interferon
IgAN immunoglobulin A nephropathy
IL interleukin
ILF idiopathic lung fibrosis
I/R ischemia-reperfusion
ISEV international society for extracellular vesicles
JCPyV JC polyomavirus
LC3 microtubule-associated proteins 1A/1B light chain 3B
LPS lipopolysaccharide
MC mast cell
MCAO middle cerebral artery occlusion
MERTR Mer receptor tyrosine kinase
MI myocardial infarction
miRNA microRNA
MMP matrix metalloproteinase
MISEV minimal information for studies of extracellular vesicles
MP microparticle
MS multiple sclerosis
MSC mesenchymal stem cell
mTOR mammalian target of rapamycin
MV microvesicle
MVB multivesicular body
MYD88 myeloid differentiation primary response 88
NEC necrotizing enterocolitis
NF-κB nuclear factor kappa-light-chain-enhancer of activated B-cells
NOX2 reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2
NPC nasopharyngeal carcinoma
OA osteoarthritis
OP osteoporosis
ox-LDL oxidized low density lipoprotein
PAEC pulmonary arterial endothelial cell
PAH pulmonary arterial hypertension
PAR protease-activated receptor
PASMC pulmonary arterial smooth muscle cell
PBMC peripheral blood mononuclear cell
PCOS polycystic ovary syndrome
PD Parkinson’s disease
PDE4B phosphodiesterase 4B
PEG polyethylene glycol
PH pulmonary hypertension
PI3K phosphoinositide 3-kinase
PLA2 phospholipase A2
PML progressive multifocal leukoencephalopathy
PPARγ peroxisome proliferator-activated receptor gamma
PrP prion protein
PrPSc misfolded and transmissible form of PrP
PS phosphatidylserine
PTEN phosphatase and tensin homolog
RA rheumatoid arthritis
ROS reactive oxygen species
RNA ribonucleic acid
SCI spinal cord injury
SEC size exclusion chromatography
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SEV Staphylococcus aureus-derived EV
SFB synovial fibroblast
SLE systemic lupus erythematosus
SNARE soluble N-ethylmaleimide-sensitive factor activating protein receptor
srIκB super repressor NF-kappa-B inhibitor alpha (I-kappa-B)
STAT3 signal transducer and activator of transcription 3
TAK1 TGF-β-activated kinase 1
TBI traumatic brain injury
TEC tubular endothelial cell
TF tissue factor
TGF-β1 transforming growth factor β1
TH helper T-cell
TIC trauma-induced coagulopathy
TLR4 toll-like receptor 4
TME tumor microenvironment
TNBC triple-negative breast cancer
TNF tumor necrosis factor
Treg regulatory T-cell
TSG101 tumor susceptibility gene 101
UME uterine microenvironment
UTI urinary tract infection
VCAM-1 vascular cell adhesion molecule 1
vWF von Willebrand factor
WNT5A Wnt family member 5A
yBMSC young BMSC
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