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Abstract: Tumor therapy escape due to undesired side effects induced by treatment, such as prosur-
vival autophagy or cellular senescence, is one of the key mechanisms of resistance that eventually
leads to tumor dormancy and recurrence. Glioblastoma is the most frequent and practically incurable
neoplasm of the central nervous system; thus, new treatment modalities have been investigated to
find a solution more effective than the currently applied standards based on temozolomide. The
present study examined the newly synthesized compounds of aziridine–hydrazide hydrazone deriva-
tives to determine their antineoplastic potential against glioblastoma cells in vitro. Although the
output of our investigation clearly demonstrates their proapoptotic activity, the cytotoxic effect
appeared to be blocked by treatment-induced autophagy, the phenomenon also detected in the case
of temozolomide action. The addition of an autophagy inhibitor, chloroquine, resulted in a signifi-
cant increase in apoptosis triggered by the tested compounds, as well as temozolomide. The new
aziridine–hydrazide hydrazone derivatives, which present cytotoxic potential against glioblastoma
cells comparable to or even higher than that of temozolomide, show promising results and, thus,
should be further investigated as antineoplastic agents. Moreover, our findings suggest that the
combination of an apoptosis inducer with an autophagy inhibitor could optimize chemotherapeutic
efficiency, and the addition of an autophagy inhibitor should be considered as an optional adjunctive
therapy minimizing the risk of tumor escape from treatment.

Keywords: autophagy; apoptosis; tumor therapy escape; glioblastoma; aziridine derivatives; hy-
drazide hydrazone derivatives; chloroquine

1. Introduction

Glioblastoma (GB) is the most common aggressive and lethal tumor of the central
nervous system (CNS), accounting for 15% of all CNS tumors and about 45% of primary
malignant brain tumors. Despite treatment, only a small fraction of patients (up to 20%)
survive two years from the initial diagnosis, while the five-year survival rate for GB is lim-
ited to 5%. Current optimal therapy results in a modest 14-month overall median survival
in patients undergoing maximum safe resection and adjuvant chemo- and radiotherapy. In
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spite of great efforts taken by scientists in the field of translational research, the prognosis
for GB remains extremely poor since realistic curative treatment is still unavailable [1].

The reasons underlying drug-resistance of GB are diverse and include, among oth-
ers, diffuse and infiltrative growth, the intra-heterogeneous nature of tumor that consists
of molecularly different cells, rapid proliferative rate, presence of tumor stem cells, dys-
functional DNA damage repair mechanisms, the dynamically switching phenotype of
neoplastic cells [2–5]. Moreover, the initial therapy often induces processes hindering the
desired response to therapy, such as pro-survival autophagy and apoptosis inhibition,
and cell senescence, leading to tumor dormancy and subsequent remodeling to a more
malignant phenotype and senescence-associated secretory phenotype (SASP) promoting a
variety of aspects of tumorigenesis [6–8]. Consequently, those mechanisms may result in
tumor therapy escape and expansion of resistant cell populations, which eventually leads
to GB recurrence.

Considering the current advances in the field of GB treatment, further efforts aimed
at searching for new therapeutic options are fully justified. Although a variety of po-
tential drugs have been investigated so far, temozolomide (TMZ) is still the first-choice
chemotherapeutic in GB. However, the development of resistance to this agent often limits
the effective treatment [9].

Apart from the most intensively investigated candidate drugs, hydrazide hydrazone-
derivatives and aziridine-derivatives are two classes of chemicals presenting anti-tumor
potential, including anti-proliferative and apoptogenic properties [10–14]. Their anti-
neoplastic action was revealed against several neoplastic cell lines, including lung carci-
noma, pancreatic carcinoma, breast cancer, liver cancer, ovarian cancer, prostate cancer,
renal cancer, and hematological tumors in vitro. The recognized mechanisms underlying
the anti-tumor action of these agents comprise oxidative stress generation, EGFR inhibitory
activity, cell cycle arrest, inhibition of tubulin polymerization, and genotoxic potential (e.g.,
via alkylating properties) [13,15–18]. However, a review of a modest amount of published
data suggests that the molecular background of their anti-cancer activity depends on the
chemical structure of particular agents and the type of neoplastic cells.

Aziridines are widely used as building blocks in multi-step syntheses of more complex
molecules; however, due to the presence of the aziridine ring, their derivatives exhibit
significant biological activity [19]. To obtain the anti-cancer activity of new potential
drugs containing the aziridine ring, we additionally introduced the N-acylhydrazone
group (NAH), another pharmacophore fragment known in the literature [20]. This moiety
is crucial in the synthesis of drugs having anti-cancer properties, and it also produces
clinically proven effects. Currently, there are preparations based on the NAH derivatives
available on the market, such as nitrofurazone, nitrofuraxide, or dantrolene [21].

To the best of our knowledge, the classes of compounds based on hydrazide hydrazone
(NAH) and aziridine derivatives have not yet been tested on a neoplastic model of CNS
tumors. Therefore, our study is aimed at investigating the anti-tumor potential of newly
synthesized compounds of aziridine–hydrazide hydrazone derivatives with the use of
GB-derived in vitro models.

2. Materials and Methods
2.1. In Vitro Models of Glioblastoma and Non-Neoplastic Cells (NHA)

Tumor samples were obtained from the Department of Neurosurgery and Oncology
of the Central Nervous System, Medical University of Lodz, Poland. All the procedures
were performed in accordance with the ethical standards of the Bioethics Committee of the
Medical University of Lodz (Approval Ref. No. RNN/148/08/KE and RNN/160/15/KE)
and informed consent was obtained from all the patients, in compliance with the Decla-
ration of Helsinki. According to the WHO criteria, the tumor samples intended for cell
culture generation were classified as glioblastoma, NOS/not otherwise specified (the mu-
tational status of the IDH gene family was not verified) [22]. Glioblastoma cultures were
derived from three tumor samples obtained from three patients according to the procedure
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of culture generation described in our previous reports [23,24]. Subsequently, the GB
cells were cultured as an adherent model in serum-supplemented medium (DMEM/F12,
Gibco, Life Technologies Europe B.V., Bleiswijk, The Netherlands; with 10% FBS, Gibco,
Life Technologies Limited, Paisley, United Kingdom; and antibiotics: Gentamycin solution
and Penicilin-Streptomycin, Sigma-Aldrich, St. Louis, MO, USA). Depending on prolifera-
tion activity, cells were passaged to a new culture dish every 3–5 days and expanded for
further analysis. The neoplastic status of cells was verified according to rules previously
described and based on expression of astrocytoma-associated antigens IL13Rα2, Fra-1, and
EphA2 [23].

Commercially available normal human astrocytes (NHA) were used as non-neoplastic con-
trol cells. NHA were cultured according to manufactures protocol (Lonza, Basel, Switzerland).

2.2. Synthesis of Tested Compounds

General: Melting points were determined in a capillary using a STUART SMP30 and
were uncorrected. The 1H (600 MHz) and 13C{1H} (150 MHz) spectra were measured on a
Bruker Avance III instrument (Bruker, Billerica, MA, USA) using solvent signals as reference.
Chemical shifts (δ) were given in ppm and coupling constants J in Hz. Assignments of
signals in 13C-NMR spectra were made based on HMQC experiments. HR-MS: Bruker
Esquire LC spectrometers (Bruker Daltonics, Billerica, MA, USA). All the solvents are
commercially available reagents and were used as received. Aziridine carbohydrazide was
obtained according to a published procedure [25].

The general procedure for the synthesis of chiral hydrazones ARA12 and ARA13 from
aziridine-2-carbohydrazide was the following: an equimolar quantity of appropriate alde-
hyde was added to a stirred solution of an aziridine-2-carbohydrazide (1 mmol) in ethanol
(5 mL) at 20 ◦C; the mixture was refluxed for three hours, the solution was concentrated,
and the products were purified by the crystallization from methanol.

(2S)-N-[(E)-[4-(Trifluoromethyl)phenyl]methyleneamino]-1-trityl-aziridine-2-carboxamide
(ARA12): colorless oil; yield: 77%. 1H-NMR (600 MHz, CDCl3, δ, ppm): 9.76 (1H, br. s, NH);
8.36 (1H, s, =CH); 7.82–7.58 (4H, 2m, 4 arom. H); 7.40–7.19 (15H, 3m, 15 arom. H); 2.15
(1H, dd, J = 2.7 Hz, J = 6.6 Hz, 1 aziridine H); 2.08 (1H, d, J = 2.7 Hz, 1 aziridine H); 1.55
(1H, d, J = 6.6 Hz, 1 aziridine H). 13C-NMR (150 MHz, CDCl3, δ, ppm): 167.0 (C=O); 146.9
(C=N); 142.9, 129.5, 129.3, 128.0, 127.9, 127.6, 127.5, 126.9, 125.7 (Carom); 74.9 (C-N); 33.9,
30.2 (Caziridine). HR-EI-MS: 498.1871 (M+, C30H23F3N3O+; calcd. 498.1871).

(2S)-N-[(Z)-(5-fluoro-2-hydroxyphenyl) methyleneamino]-1-trityl-aziridine-2-carboxamide
(ARA13): colorless crystals; yield: 50%; m.p. 115–117 ◦C (MeOH). 1H-NMR (600 MHz,
CDCl3, δ, ppm): 10.66 (1H, br.s, OH); 9.60 (1H, br.s, NH); 8.46 (1H, s, N=CH); 7.40–7.20
(15H, 4m, 15 arom. H); 6.99–6.86 (3H, 2m, 3 arom H); 2.12 (1H, ddd, J = 2.7 Hz, J = 6.6 Hz,
1H); 2.08 (1H, d, J = 2.7 Hz, 1H); 1.56 (1H, d, J = 6.6 Hz, 1H). 13C-NMR (150 MHz, CDCl3,
δ, ppm): 166.5 (C=O); 144.5 (C=N); 142.8, 129.6, 129.3, 128.7, 128.1, 127.9, 127.8, 127.7, 127.5,
126.8 (Carom); 74.7 (C-N); 33.8, 30.2 (Caziridine). HR-EI-MS: 464.1851 (M+, C29H24FN3O2

+;
calcd. 464.1852).

2.3. Drug Cytotoxicity Assay

The Cell Counting Kit-8 (CCK-8) assay (Sigma-Aldrich, St. louis, MO, USA) was used
to measure the cytotoxicity of the tested drugs on glioblastoma cells. The amount of the
formazan dye generated by the activity of cellular dehydrogenases is directly proportional
to the number of living cells.

Glioblastoma cells and NHA cells cultured under traditional adherent conditions
(5 × 103 cells/mL) were grown in 96-well plates for 24 h and treated with the tested com-
pounds (six new synthesized compounds of aziridine–hydrazone derivatives) over a range
of concentrations (0, 25, 50, 100, 150, 200, 300, 500 µg/mL).

After 48 h, the extent of cell growth was assessed using the CCK-8 assay. The CCK-8
solution (10 µL) was added to each well, followed by incubation for 3 h at 37 ◦C. The
absorbance of the cell culture medium at 450 nm was determined by a multiplate reader
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(Glomax Multi Detection System; Promega, Madison, WI, USA). Cell viability was ex-
pressed as a percentage of that of the control (untreated) cells. All the results obtained in
the study were based on at least three experiments.

2.4. Assay for Cell Apoptosis by Annexin V/PI Double Staining

The extent of apoptosis/necrosis was measured using the FITC Annexin V Apopto-
sis Detection Kit I, (BD Biosciences, Erembodegem, Belgium) according to the manufac-
turer’s instructions. In brief, the glioblastoma cells were plated at a seeding density of
1 × 105 cells/mL and treated with different concentrations of the tested drugs (ARA12:
0, 100, 150, 200 µg/mL; ARA13: 0, 100, 200, 300 µg/mL; TMZ: 500 µM) for 48 h and
96 h. After the incubation period, cells were harvested and washed twice with PBS and
stained with annexin V-FITC/propidium iodide (PI) at room temperature in the dark for
15 min, according to the manufacturer’s instructions. Data acquisition and analysis were
performed by flow cytometry (CytoFLEX; Beckman Coulter Inc., Brea, CA, USA). The four
populations of cells were analyzed. Viable cells were negative for both PI and annexin
V; early-stage apoptotic cells were positive for annexin V and negative for PI; late-stage
apoptotic cells were positive for both annexin V and PI, and necrotic cells were positive
for PI. The results are presented as the means of percentage of apoptotic cells from at least
three independent experiments.

2.5. Assay for Autophagy Detection by FACS with the Use of Autophagy Detection Kit

According to the manufacturer (Abcam, Cambridge, MA, USA), the Autophagy Detec-
tion Kit (ab139484) measures autophagic vacuoles and monitors autophagic flux in living
cells using a dye that selectively labels autophagic vacuoles. The cationic amphiphilic
tracer dye (Green Detection Reagent) was optimized through the identification of titrat-
able functional moieties that allow for minimal staining of lysosomes while exhibiting
bright fluorescence upon incorporation into pre-autophagosomes, autophagosomes, and
autolysosomes (autophagolysosomes). The assay offers a rapid and quantitative approach
to monitoring autophagy in living cells. The glioblastoma cells were plated at a seeding
density of 1 × 105 cells/mL and treated with the tested drugs alone (ARA12—150 µg/mL,
ARA13—200 µg/mL, TMZ—500 µM) or in combination with a known autophagy inhibitor,
chloroquine (CQ—10 µM).

After 48 h, the cells were harvested and processed according to the manufacturer’s
protocol (Abcam). The control and treated cells were incubated for 30 min at 37 ◦C with
Green Detection Reagent (GDR). Data acquisition and analysis were performed by flow
cytometry (CytoFLEX; Beckman Coulter Inc., Brea, CA, USA). Finally, the results yielded
as mean fluorescence intensity (MFI) were expressed as autophagy activity factor (AAF)
calculated according to the following equation:

AAF = 100 × (MFItreated −MFIcontrol/MFItreated).

Fluorescence microscopy images of control and drug-treated cells were performed
using an Olympus BX-41 fluorescence microscope to validate the staining capability of
Green Detection Reagent (autophagy dye). The analyses were performed as previously
described [24,26].

2.6. Immunofluorescence Analysis

The glioblastoma cells were plated at a seeding density of 2.5 × 104 cells/well
and treated with tested drugs alone or in combination with CQ (ARA12—150 µg/mL,
ARA13—200 µg/mL, TMZ: 500 µM; CQ—10 µM). After 48 h of treatment, the cells were
fixed with 4% PFA for 15 min and subjected to immunofluorescence analysis. The cells were
permeabilized with 0.1% Triton X-100 for 10 min. Non-specific binding sites were blocked
with 2% donkey serum in PBS for 1 h. Subsequently, the cells were incubated for 2 h with
the primary antibodies (1:500, anti-LC3B rabbit polyclonal antibody, SAB5700240, Sigma-
Aldrich; 1:500, mouse monoclonal Anti-Caspase3 (active form) Antibody; MAB10753;
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Sigma-Aldrich). For visualization, the appropriate species-specific fluorochrome-conjugated
secondary antibodies (1:500 donkey anti-rabbit Alexa-Fluor488; 1:500, donkey anti-mouse
Alexa-Fluor594; Molecular Probes) were applied for 1 h in the dark. Controls were cre-
ated with secondary antibodies alone and matched isotype controls in place of the pri-
mary antibodies, and these were processed in the same manner. Slides were mounted
with ProLongGold Antifade Reagent with DAPI (Molecular Probes, Invitrogen, Eugene,
Oregon, USA), coverslipped, and examined using an Olympus BX-41 fluorescence mi-
croscope. Microphotographs of DAPI staining were also used to show cells presenting
apoptotic hallmarks.

Immunofluorescence results of caspase-3 active form detection were subjected to semi-
quantitative analysis based on assessment of mean fluorescence intensity of particular cells
(for each sample, signal from at least 100 cells were counted from 3 separate micropho-
tographs performed with the same exposure time). The data were presented as histograms
showing distribution of cells presenting different levels of fluorescence intensity.

2.7. Western Blot Analysis

Glioblastoma cells of each patient-derived cell line were harvested from samples
comprising about 5 × 105 cells incubated for 48 h in the following conditions: untreated
cells with no additions, incubated with 500 µM TMZ, incubated with 500 µM TMZ and
10 µM CQ, incubated with ARA12—150 µg/mL, incubated with 150 µg/mL ARA12 and
10 µM CQ, incubated with 200 µg/mL ARA13, incubated with 200 µg/mL ARA13 and
10 µM CQ. The protein extracts from cell cultures was obtained with the use of RIPA buffer
(SERVA). Equal amounts of protein extracts (30 µg) were separated by gradient 8–16%
SDS-PAGE on ExpressPlus™ PAGE Gels (GenScript, Piscataway, NJ, USA) before being
transferred onto 0.2 µm PVDF membranes with Trans-Blot Turbo RTA Mini 0.2 µm PVDF
Transfer Kit (Bio-Rad, Hercules, CA, USA) using the Trans-Blot® Turbo™ Transfer System
(Bio-Rad, Hercules, CA, USA). Nonspecific binding sites were blocked by incubating the
membranes 1h at RT in TBST buffer (TRIS Buffered Saline with Tween 20; pH 7.6) containing
5% non-fat milk powder. The membranes were then incubated 2 h at RT with anti-LC3B
rabbit polyclonal antibody (Sigma-Aldrich, 1:1000 dilution) for LC3B visualization and
anti- β-actin rabbit polyclonal antibody (Invitrogen, Waltham, MA, USA; dilution 1:1000).
Then, the membranes were extensively washed in TBST buffer and incubated for 1 h at RT
with goat anti-mouse horseradish peroxydase-conjugated secondary antibody or goat anti-
rabbit horseradish peroxydase-conjugated secondary antibody (Invitrogen, Waltham, MA,
USA; dilution 1:10,000). After washing in TBST buffer, antigen–antibody complexes were
detected by enhanced chemiluminescence, using Pierce™ ECL Western Blotting Substrate
(Thermo Scientific, Rockfold, IL, USA) according to the manufacturer’s instructions.

Western blot results were subjected to densitometric analysis to assess autophagic flux
based on LC3-II turnover according to previously described method [27–29].

2.8. Detection of subG0/G1 Phase

In order to confirm apoptosis occurrence, subG0/G1 phase was detected by flow
cytometry analysis of cells processed with Cycle Analysis Kit (BioVision Inc., Milpitas, CA,
USA) based on propidium iodide staining. GB cells were seeded at 1 × 105/well density
and, after 24 h of growing, were incubated with TMZ (500 µg/mL), ARA12 (150 µg/mL), or
ARA13 (200 µg/mL) for 48 h. After the treatment, cells were harvested, prepared according
to manufacturer’s instruction, and then subjected to flow cytometry analysis.

2.9. Statistical Analysis

All the experiments were repeated at least three times, and the data were expressed as
the means ± SD. Comparisons between the two groups were performed using Student’s
t-test, and differences among three or more groups were determined using one-way analysis
of variance (ANOVA) followed by Holms–Sidak post hoc test. Multiplicity adjusted value
of p < 0.05 was considered statistically significant.
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3. Results
3.1. Synthesis of New Aziridine–Hydrazide Hydrazone Derivatives and Initial Screening of Their
Anti-Tumor Activity

A typical procedure for the synthesis of carboxylic acid hydrazide derivatives is
the treatment of the corresponding carbohydrazide with diverse electrophilic agents. As
previously described, aziridine-2-carbohydrazide can be easily obtained from methyl (S)-
N-triphenylmethyl aziridinate in the reaction with hydrazine hydrate [25]. The reaction
of aziridine carbohydrazide with aromatic aldehydes in boiling methanol afforded the
expected enantiopure hydrazide hydrazones ARA12 and ARA13. Their structures were
confirmed based on spectroscopic data; optical purity was established by HPLC using the
Chiralpak AD-H column.

Initial screening of newly synthesized aziridine–hydrazide hydrazone derivatives
on GB cells in vitro allowed to single out two compounds presenting cytotoxic potential
against tumor cells—ARA12 and ARA13. Figure 1 presents structures of the most promising
derivatives selected for further research on their anti-neoplastic potential.
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Figure 1. Structures of aziridine–hydrazide hydrazones with anti-tumor activity (ARA12; ARA13).

To evaluate the utility of these agents as candidate drugs for the therapy of CNS
tumors, the BBB Scores were calculated for both examined aziridine–hydrazide hydrazone
derivatives. The BBB Score is an algorithm to assess the probability of an investigated
drug passing the blood–brain barrier based on the drug’s physicochemical properties. The
obtained BBB Score values were 3.66 for ARA12 and 3.40 for ARA13 [30].

3.2. Newly Synthesized Aziridine–Hydrazide Hydrazone Derivatives Present Proapoptotic
Potential against GB Cells Higher than TMZ

To evaluate the anti-neoplastic activity of the newly synthesized aziridine–hydrazide
hydrazone derivatives, the three GB cell lines (G16, G114, G116) established previously
from resected tumors were employed.

Since the results of the viability assay (CCK 8 test) performed for the three GB-derived
cell lines (G16, G114, G116) revealed differences in the treatment response between particu-
lar tumors, the concentrations of 100, 150, 200 µg/mL for ARA12 and 100, 200, 300 µg/mL
for ARA13 were selected for further experiments for all the tested GB cell lines. As com-
pared to normal human astrocytes (NHA), both compounds presented a stronger cytotoxic
effect on tumoral cells; however, a greater difference was detected for ARA12. Starting
from a concentration point of 150 µg/mL for ARA12 and 200 µg/mL for ARA13, all the
tested GB cell lines have a significantly higher sensitivity to the applied treatment than
NHA; p < 0.05 (Figure 2).

To evaluate the proapoptotic potential of selected aziridine–hydrazide hydrazone
derivatives, FACS analyses based on annexin V/PI staining were performed. Cytotoxi-
city of examined compounds was initially assessed for GB cells incubated with ARA12
(150 µg/mL) and ARA13 (200 µg/mL) for 24 h. Results obtained for samples derived
from two of the three tumors have shown no difference in cell viability when compared to
untreated cells (results available in Supplementary Material—Table S1). Therefore 48-h and
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96-h incubation periods were applied in further investigations. The GB cells were subjected
to treatment for 48 h with the three concentrations of ARA12 (100, 150, 200 µg/mL), ARA13
(100, 200, 300 µg/mL), and TMZ (500 µM) as the standard drug used in GB therapy.
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Figure 2. Dose-dependent response of GB cells and NHA treated with new aziridine–hydrazide
hydrazone derivatives—ARA12 and ARA13. Results of CCK-8 assay revealed cytotoxic potential of
ARA12 and ARA13 against GB cells after a 48-h treatment; however, individual tumors (G114, G116,
G16) presented differences in treatment sensitivity. Starting from concentration of 150 µg/mL for
ARA12 and 200 µg/mL for ARA13, all the tested GB cell lines have a significantly higher sensitivity
to the applied agents than normal human astrocytes (NHA); p < 0.05 (*).

For both tested compounds, ARA12 and ARA13, the dose-dependent analysis did
not reveal any significant changes in apoptosis efficiency after 48-h treatment (p < 0.05).
The percentage of apoptotic cells did not exceed the threshold of 25% in the case of G16
and G116. G114 tumor cells presented higher sensitivity to the applied treatment, which
resulted in about 50% of apoptotic cells for ARA12 and close to 40% of apoptotic cells for
ARA13. After 48 h, the proapoptotic potential of ARA12 and ARA13 was similar to or
even higher (p < 0.05) than the activity of TMZ as a drug routinely used in GB treatment;
however, a slight difference between the tumors was observed (Figure 3).
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Figure 3. Concentration-dependent analysis of viability of GB cells after a 48-h treatment with
aziridine-hydrazide hydrazone derivatives (ARA12, ARA13) and TMZ—results of apoptosis assay
(annexin V/PI staining) based on FC analysis for G114, G116, and G16 tumors. ARA12 (150 µg/mL)
and ARA13 (200 µg/mL) induced apoptosis of GB cells within 48 h, yielding a significantly higher
number of apoptotic cells as compared to untreated control, except from G116 treated with ARA13 (*);
p < 0.05. Dose increase of ARA12 (100, 150, 200 µg/mL) and ARA13 (100, 200, 300 µg/mL) did not
result in any significant changes in apoptotic cell percentage (ns). Aziridine–hydrazide hydrazone
derivatives (ARA12—150 µg/mL and ARA13—200 µg/mL) demonstrate a similar or even stronger
pro-apoptotic activity than that of TMZ (500 µM) in the case of G16 and G114 tumors (#); p < 0.05.
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Since the dose increase did not result in any significant cytotoxicity enhancement, the
time of treatment was prolonged to 96 h. GB cells were subjected to treatment with ARA12
at a concentration of 150 µg/mL, ARA13 at a concentration of 200 µg/mL, and TMZ at a
dose of 500 µM.

The time-dependent analysis resulted in a marked increase in treatment efficiency
both in the case of ARA12 and ARA13. Overall, the percentage of apoptotic cells was about
two to three times higher when compared to the period of the 48-h treatment (p < 0.05),
finally reaching values of 50–70% for ARA12 and 50–80% for ARA13. An unexpected
phenomenon was noted in the case of G114 treated with ARA12 when the number of late
apoptotic cells after 48 h was higher than that detected after 96 h. This occurrence could
be caused by the overgrowth of a more resistant cell population subsequently visible as
early apoptotic fraction after 96 h of treatment; however, further investigation is needed to
elucidate this phenomenon. Finally, after 96 h, both drug candidates presented significantly
higher proapoptotic potential than TMZ (p < 0.05); (Figure 4).

The proapoptotic potential of the newly tested agents was also confirmed by the
detection of cells presenting changes in nuclear morphology visualized with DAPI staining,
as well as the occurrence of DNA fragmentation in cells belonging to subG0/G1 population
identified via FACS analysis of cell cycle with propidium iodide (Figure 5). The method
based on PI incorporation shows that ARA12 treatment generated a subG0/G1 fraction
comprising about 28% of cells in the case of G114 and G116 and about 12% of cells in
the case of G16 tumor. ARA13 treatment yielded about 30–38% of cells classified as
subG0/G1 population in the case of G114 and G116 and close to 15% of cells presenting
DNA fragmentation for G16 tumor. Analysis of TMZ-treated cells confirmed the ability of
this drug to block the GB cell cycle in the G2/M phase, while the subG0/G1 fraction did
not exceed 10% after 48 h for all analyzed tumors (Figure 5).

3.3. Inhibition of Treatment-Induced Autophagy Facilitate Apoptotic Cell Death of GB Cells

In our previous study, we demonstrated that TMZ treatment induces autophagy in
GB cells [24]. This phenomenon was confirmed in the present experiment. An autophagy
assay also revealed that the newly tested compounds, ARA12 and ARA13, were able to
stimulate autophagic flux in GB cells within 48 h at a level comparable to or even stronger
than that of TMZ (Figure 6).

Data are expressed as autophagy activity factor: AAF = 100 × (MFItreated −MFIcon-
trol/MFItreated).

Since treatment-induced autophagy can hinder apoptosis, we hypothesized that
autophagy inhibition may facilitate the activation of apoptotic cell death by the tested
drug candidates. The GB cells were treated simultaneously with the tested compounds
(ARA12, ARA13, and TMZ) and the well-known autophagy inhibitor, chloroquine (10 µM).
Chloroquine blocks autophagic flux by impairing lysosomal function and autophagosome–
lysosome fusion [31,32], causing accumulation of autophagosomes; thus, it could be de-
tected as a higher autophagy activity factor (AAF). Quantitative analysis of autophagy
assay by FACS confirmed this phenomenon, yielding higher values of AAF for GB cells
subjected to treatment with a combination of the tested compounds (ARA12 or ARA13)
and chloroquine. Similar results were obtained for GB cells treated with TMZ with the
addition of the autophagy inhibitor (CQ) (Figure 6).
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Figure 4. Time-dependent analysis of viability of GB cells after 48- and 96-h treatments with aziridine–
hydrazide hydrazone derivatives (ARA12, ARA13) and TMZ—results of apoptosis assay (annexin
V/PI staining) based on FACS analysis for G114, G116, and G16 tumors. (a) Analysis of apoptosis
efficiency after a 96 h treatment with ARA12 and ARA13 revealed significantly higher percentage of
apoptotic cells for each tumor as compared to untreated control (*) and to the status detected after a
48-h treatment (s); p < 0.05; ns—p > 0.05. Pro-apoptotic potential of aziridine–hydrazide hydrazone
derivatives expressed as percentage of apoptotic cells was also compared to TMZ, yielding significant
results for all tumors after 96-h treatment (#); p < 0.05. (b) Results of FACS analysis show response of
G114, G116, and G16 tumors to the tested agents (TMZ, ARA12, ARA13) after 48- and 96-h treatments
(mean percentage values of cells for distinguished populations were provided).
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Figure 5. GB cells treated with new aziridine–hydrazide hydrazone derivatives (ARA12, ARA13)
show hallmarks of apoptosis. (a) results of DAPI staining demonstrated presence of apoptotic
cells (in circles) showing changes in the nuclear morphology—chromatin condensation and nuclear
fragmentation in samples treated with ARA12 and ARA13, with weaker effects observed after TMZ
treatment. (b) estimation of fractional DNA content by PI incorporation analyzed by FACS revealed
presence of subG0/G1 population being the result of ARA12 and ARA13 treatment, while main effect
of TMZ action was a block of cell cycle in G2/M phase after 48-h treatment.
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Additionally, autophagy occurrence in GB cells treated with newly tested agents was
verified by the detection of LC3 puncta and conversion of LC3I to LC3II form, the phenom-
ena related to autophagosome formation. The immunofluorescence output demonstrated
the presence of LC3 puncta in GB cells treated with ARA12 and ARA13, while CQ addition
resulted in a block of autophagy process confirmed by the abundance of cells strongly
positive for LC3 puncta (Figure 7a). Autophagic flux in GB cells treated with tested com-
pounds was monitored by LC3-II turnover using Western blot analysis in the presence and
absence of the lysosomal degradation inhibitor, chloroquine, according to guidelines of
data interpretation [27–29]. The levels of LC3-II (normalized to beta-actin) were higher in
the samples treated with a combination of ARA12 or ARA13 with CQ than the amounts of
LC3-II detected in the samples treated with single agents, providing evidence of autophagic
flux stimulation by ARA12 and ARA13. A similar phenomenon, however less intense, was
observed in cells treated with TMZ (Figure 7b).

Data obtained from Western blot regarding LC3II protein status were concurrent with
output from immunofluorescent staining of said protein (Figure 7) and results generated
by means of autophagy detection assay (Figure 6). The latter technique is independent
of the detection of protein markers of autophagy and based on selective staining of pre-
autophagosomes, autophagosomes, and autolysosomes with a cationic amphiphilic tracer
dye. Altogether, autophagic flux in GB cells treated with TMZ, ARA12, and ARA13 was
more prominent than in untreated cells. The effect was visualized independently with
methods involving different means of detecting autophagy.

Subsequently, we verified if autophagy block influenced apoptosis initiated by aziridine–
hydrazide hydrazone derivatives and TMZ in GB cells. The output of the apoptotic
assay demonstrated that the addition of autophagy inhibitor to the tested compounds
resulted in a significant increase in apoptosis efficiency after 48- and 96-h treatments
(p < 0.05). However, the effect was stronger in the initial period. For 48-h incubation,
the number of apoptotic cells was significantly higher for treatment comprising CQ ad-
dition in all tumors (p < 0.05), giving an increase in apoptotic cells count by 10–21%
for TMZ with CQ (20.84%—G114, 10.39%—G116, 12.57%—G16), 15–31% for ARA12
with CQ (15.72%—G114, 18.94%—G116, 31.32%—G16) and 12–50% for ARA13 with CQ
(30.02%—G114, 50.05%—G116, 12.50%—G16), however, differences in response between
individual tumors were observed (table with p values for individual tumors were pro-
vided in Supplementary Material—Table S2). The percentage of apoptotic cells in samples
exposed to 48-h combined treatment and in samples undergoing 96-h treatment with a
single agent showed no statistically significant difference when compared, except for TMZ
treatment in G114, ARA12 treatment in G116 and ARA13 treatment in G16. The apoptotic
cells percentage values were 30–54% for 48 h TMZ with CQ and 23–47% for 96 h TMZ,
40–70% for 48h ARA12 with CQ, and 49–68% for 96h ARA 12, 30–68% for 48 h ARA13
with CQ and 51–75% for ARA 13. In the case of a 96-h incubation, the differences between
tumors’ responses to a particular mode of treatment were more pronounced (Figure 8).

Analysis of the percentage of cells classified as early and late apoptotic after a particular
mode of treatment with both new aziridine–hydrazide hydrazone derivatives demonstrated
that the addition of CQ facilitates apoptosis causing more cells to enter the early phase
of this process after 48 h of combined treatment (Figure 8). ARA12 treatment combined
with CQ resulted in 2- to 3-fold increase in the early apoptotic population of G116 and
G114 and even an 8.5-fold increase in G16. ARA13-CQ combined treatment yielded close
to three-fold enrichment of early apoptotic fraction in the case of G16 and G114 tumors,
while for G116, a four- to five-fold increase in both the early and late apoptotic populations
was noted. The strength of the final effect resulted in a decrease in cell viability and was
dependent on individual tumor responsiveness. A similar tendency was observed for TMZ
treatment; however, the effect appeared to be weaker (Table 1).
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Figure 6. Autophagic response of GB cells treated with TMZ, ARA12, ARA13 and combination of
the tested agents with an inhibitor: chloroquine; (a) Fluorescence microscopy images of GB cells
stained with autophagy dye (GDR) after a 48-h treatment with the tested agents revealed ability of
ARA12 and ARA13 to stimulate the autophagy process similarly to TMZ; (b) Output of FACS analysis
demonstrated that CQ (Inh) addition results in blockage of the autophagy process in cells treated
with TMZ, ARA12 or ARA13; the effect is visible as an increase in mean fluorescence intensity (MFI)
of cells stained with GDR-sample results of autophagy assay for one tumor; quantitative analysis
of FACS data for G114, G116, and G16 tumors, confirmed ability of ARA12 and ARA13 to induce
autophagy in GB cells and demonstrated inhibition of this process in CQ presence.
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Figure 7. LC3II turnover confirms stimulation of autophagic flux by aziridine–hydrazide hydrazone
derivatives (ARA12, ARA13). (a) Immunofluorescence analysis with anti-LC3 antibody shows
presence of LC3 puncta (indicated by arrows and enlarged in boxes) related to autophagosome
formation in GB cells treated with ARA12 and ARA13, combined treatment with CQ resulted in block
of autophagy progress and accumulation of cells strongly positive for LC3 puncta. (b) Results of
Western blot assay for LC3 protein followed by semiquantitative analysis confirmed autophagic flux
stimulated by ARA12 and ARA13 (data presented for G16 and G116 tumors subjected to various
modes of treatment; pictures of uncropped membranes were provided as Supplementary Figure S1a).
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analysis of FACS data revealed a significant increase in apoptosis efficiency in samples treated with 
combination of a particular tested agent (ARA12, ARA13, or TMZ) with an autophagy inhibitor 
(Inh) after 48 h (*) when percentage of apoptotic cells was close to the values detected after a 96-h 
treatment with a single compound (s—differences significant, ns—differences non-significant); p < 
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Figure 8. Inhibition of treatment-induced autophagy by chloroquine facilitate apoptosis initiated by
TMZ and new aziridine–hydrazide hydrazone derivatives—ARA12 and ARA13. (a) Quantitative
analysis of FACS data revealed a significant increase in apoptosis efficiency in samples treated with
combination of a particular tested agent (ARA12, ARA13, or TMZ) with an autophagy inhibitor (Inh)
after 48 h (*) when percentage of apoptotic cells was close to the values detected after a 96-h treatment
with a single compound (s—differences significant, ns—differences non-significant); p < 0.05. (b)
Results of FACS analysis show response of G114, G116, and G16 tumors to the tested agents (TMZ,
ARA12, ARA13) alone or in combination with CQ (Inh) after 48-h treatment (mean percentage values
of cells for distinguished populations were provided).

Since activation of caspases is one of the best-recognized biochemical hallmarks of both
the early and late stages of apoptosis, the pro-apoptotic activity of the tested compounds
was additionally verified by the detection of the cleaved form of caspase 3, being the key
executioner protein. Immunofluorescence assay performed with the use of an antibody
recognizing only the cleaved form of caspase-3 demonstrated that both ARA12 and ARA13
were able to initiate apoptosis in GB cells, thus leading to activation of caspase-3 within
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48 h. Simultaneous treatment with a particular tested agent and CQ yielded results cohesive
with FC experiments, showing enhancement of apoptosis, the phenomenon confirmed by
the presence of GB cells expressing high levels of cleaved caspase-3 (Figure 9).
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Figure 9. Caspase-3 activity status in GB cells after a 48-h treatment with TMZ, ARA12, ARA13,
and combination of the tested agents with an autophagy inhibitor–chloroquine (Inh). Immunofluo-
rescence results performed with antibody exclusively recognizing cleaved caspase-3 demonstrated
that induction of apoptosis with ARA12 or ARA13 activated caspase-3 in GB cells, while addition
of the autophagy inhibitor (CQ) enhanced apoptotic process, which was proven by the fact that the
majority of cells appeared to be positive for cleaved caspase-3. A similar phenomenon was detected
for cells treated with TMZ alone or in combination with chloroquine. The semiquantitative analysis
of immunofluorescence data is presented as histograms visualizing changes in the distribution of
cells presenting different levels of caspase-3 activity in response to treatment mode.

Table 1. Influence of autophagy inhibitor on progress of apoptotic process and viability of GB cells after
48-h treatment with TMZ, ARA12, and ARA13.

Treatment Mode
G16 G116 G114

Early
Apopt.

Late
Apopt. Viable Cells (%) Early

Apopt.
Late

Apopt. Viable Cells (%) Early
Apopt

Late
Apopt. Viable Cells (%)

(combined/single) (combined/single) (combined/single)

untreated - - 93.31 ± 2.69 - - 83.87 ± 4.99 - - 78.88 ± 4.81

TMZ ↑
(1.83)

↑
(1.62)

82.62 ± 6.32
(0.58) ↑↑

(3.09)
62.63 ± 8.85 ↑

(1.68)
↑

(1.58)
60.46 ± 3.59

TMZ + Inh 65.35 ± 8.65 * 39.90 ±13.41 * 39.24 ± 10.54 *

ARA12 ↑↑↑
(8.50) (0.53)

73.48 ± 2.55 ↑↑
(2.98)

↑
(1.75)

70.85 ± 3.88 ↑↑
(2.07) (1.05)

36.46 ± 6.44

ARA12 + Inh 43.31 ± 2.90 * 52.73 ± 7.18 * 25.63 ± 6.10 *

ARA13 ↑↑
(2.79) (1.26)

77.85 ± 6.28
↑↑↑ (5.83) ↑↑↑

(4.30)
67.49 ± 5.01 ↑↑

(2.70)
↑

(1.50)
55.47 ± 9.96

ARA13 + Inh 62.48 ± 5.69 * 28.74 ± 7.53 * 27.28 ± 1.49 *

Evaluation of CQ influence on apoptotic population enrichment (↑—weak effect, 1.5–2-fold increase; ↑↑—moderate
effect, 2–4-fold increase; ↑↑↑—strong effect, >4-fold increase) and GB cells viability compared to cells treated with single
agent (*); p < 0.05.
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4. Discussion

Despite a spectrum of potential innovative methods of anti-neoplastic treatment announced
in recent papers, glioblastoma remains practically incurable. Apart from possible modern op-
tions of anti-tumor treatments, like molecular targeted therapy or immunotherapy, chemothera-
peutics presenting selective cytotoxic or genotoxic potential are still being searched for [33,34].

Among the abundance of examined compounds, the hydrazone- or aziridine deriva-
tives appeared to have anti-neoplastic properties. Aziridine-containing compounds are
known for their alkylating potential and ability to interstrand cross-linking formation in
DNA—the genotoxic mechanisms underlying their biological activity against cancer cells.
Hydrazone-based agents present a diverse spectrum of actions influencing cell cycle and
cell death pathways (e.g., caspase activation); however, their cellular targets and final
anti-neoplastic effect seem to depend on the chemical structure of particular derivatives.
What is interesting, some of the bioactive NAH-derived scaffolds show broad synergy
with conventional chemotherapeutic agents, including temozolomide [12,13,15–18,21]. Our
study examined the newly synthesized class of compounds based on a combination of both
aziridine- and hydrazide hydrazone derivatives in one molecule. Initial screening on tumor
cells revealed the cytotoxic potential of ARA12 and ARA13—the two of several chemical
variants that have been tested.

Further results clearly showed the pro-apoptotic potential of the two selected com-
pounds, ARA12 and ARA13, against glioblastoma cells. The three GB-derived in vitro
models presented higher sensitivity to the tested compounds than normal human astrocytes.
However, some differences in the response of individual tumors were observed. Those
discrepancies may have resulted from the molecular and phenotypic heterogeneity typical
for GBs, but in the end, the final effectiveness of 96-h treatment for all tumors was higher
than the status detected after TMZ application, irrespective of their inherent differences in
drug sensitivity. Despite the fact that TMZ is still a gold standard in GB therapy, developing
tumor resistance to this agent is a common reason for disease recurrence [9].

Although TMZ has the ability to inhibit the proliferation of GB cells and stimulate
the process of their death, it has been recognized that TMZ treatment induces several
mechanisms hindering apoptosis, including pro-survival autophagy, the phenomenon also
confirmed by our current results [35,36].

Cytoprotective autophagy is an undesired side effect often induced by antineoplastic
treatment; thus, it is considered a therapeutic target to overcome tumor resistance and
execute cell death. However, autophagy in cancer is recognized as a double-edged sword, as
some medications may exert a direct cytotoxic effect via an autophagic cell death pathway,
despite the pro-survival face of this phenomenon [37–39].

Notwithstanding, recent in vitro and in vivo findings demonstrated that employing
autophagy inhibitors in protocols of anti-cancer treatment increases the effectiveness of
treatments. Chloroquine is one of the most common agents used to impair the autophagic
process [40,41]. The usefulness of CQ as a blocker of autophagy induced by TMZ was also
confirmed by our results.

The new aziridine–hydrazide hydrazone derivatives (ARA12 and ARA13) also ap-
peared to be stimulants of autophagy in GB cells within the initial period of treatment
(48 h); thus, we adopted a similar experimental approach to determine if an autophagy
block can facilitate apoptosis process in GB cells. The output of autophagy and apoptosis
assays demonstrated the inhibitory activity of CQ that resulted in increased efficiency of
cell death induced by the tested agents.

Since the mechanism of the cytotoxic action of aziridine–hydrazide hydrazone derivatives
remains unknown, we evaluated the status of caspase-3 activity as a key protein of the execu-
tioner phase of cell death to visualize the proapoptotic activity of the examined agents. One of
the well-known compounds with NAH motif scaffolds had been recognized previously as an
activator of pro-caspase 3 via the chelation of inhibitory zinc, which leads to its autocatalytic
activation [21,42,43]. Our results of immunocytofluorescence assay, showing the presence
of GB cells positive for cleaved caspase-3 after 48-h treatment with ARA12 or ARA13, were
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cohesive with quantitative FACS analysis based on annexin V/PI staining, as well as with
results showing the occurrence of DNA fragmentation detected as subG0/G1 population
and clearly demonstrate the ability of tested agents to stimulate apoptotic cell death.

Interestingly, in some research, an active form of caspase-3 is recognized as a pro-
tein that may play a role in a switch between autophagy and apoptosis, promoting the
latter [43,44]. Thus, the abundance of cells positive for cleaved caspase-3 in GB treated
with a combination of the tested agents and CQ may be considered as an endorsement
of enhanced apoptosis, which was also confirmed by FACS analysis used to compare the
progress of apoptosis in relation to treatment mode. Similarly to Lee et al., we did not
observe increased activity of caspase-3 in cells treated with CQ alone [45]. Nevertheless,
the activation of caspase-3 can not be treated as a sole indicator of autophagy inhibition, as
the relationship between caspase-3 action and autophagy appears to be more complex and
involves plenty of interlinked processes [46].

Our study is the first to show the anti-neoplastic activity of the newly synthesized
aziridine–hydrazide hydrazone derivatives, thus certain issues remain to be elucidated
at the level of the cellular model, like recognizing the molecular mechanism of the tested
compounds’ action or the reason for different sensitivity presented by individual tumors.
However, the output of our analyses clearly demonstrates the proapoptotic activity of
the tested compounds against practically incurable brain tumors, glioblastoma, although
ARA12 seems to be a more promising candidate for further investigation, considering its
higher selectivity against neoplastic cells. Since the examined agents include two types of
chemical moieties with proven bioactivity against cancer cells, the mechanisms underlying
their cytotoxic potential can be more complex and involve different cellular pathways. Anti-
tumor activity of the tested compounds may also be enhanced by the presence of fluorine
atoms in their structure, especially since the initially screened variants, devoid of these
fluorinated moieties, did not show so strong cytotoxic activity against GB cells (and fluoro-
pharmaceuticals are known for their bioactivity including anti-neoplastic properties [47].
Despite the fact that aziridine- or hydrazone-based chemicals are extensively investigated
as candidate medicines in a broad spectrum of diseases, and some of them have been
introduced in the market, further research is needed to characterize the pharmacological
properties of our newly synthesized molecules since their complex chemical nature may
not only enhance the anti-tumor potential but also influence their safety profile.

One of the causes of glioblastoma drug resistance appears to be the blood–brain barrier (BBB)
insulating neoplastic cells from applied chemotherapeutics, especially as combined therapy may
include anti-angiogenic drugs which further decrease the barrier’s permeability [48,49].

An algorithm designed by Gupta et al. for predicting the probability of the drug penetrating
the blood–brain barrier based on a dataset of 940 drug molecules was employed for preliminary
assessment of the ability of new aziridine–hydrazide hydrazone derivatives to cross BBB.

Although the results of the BBB Score obtained for ARA12 (3.66) and ARA13 (3.40) did
not reach the top values presented by the majority of tested CNS drugs (BBB score 4–5),
they do not exclude them from further investigation, since the authors claim that about
20% of drugs with BBB Scores between 3 and 4 are routinely used as CNS therapeutics [30].
The fact that preliminary assessed BBB Scores for tested compounds are shared with other
drugs already used in central nervous system therapy justifies conducting further, more
advanced research aimed at evaluating compounds’ usefulness as potential candidates
for CNS therapeutics. Therefore, at the stage of ex vivo studies, we plan to verify their
permeation via BBB with the use of a transwell system model of BBB supported with
complex in silico analyses [50].

The BBB remains an impenetrable obstacle for many new promising antineoplastic
agents and limits the effectiveness of plenty of drugs delivered through the systemic route.
The main alternatives to systemic route delivery comprise delivering the drug directly to
the brain tissue through surgical intervention by cerebrospinal fluid, convection-enhanced
delivery, or implants containing therapeutics [51–53]. The other examined approach is fo-
cused on enhancing the bioavailability of therapeutics in the brain tissue by facilitating their
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way through the blood–brain barrier. Those include increasing compounds liposolubility
by liposome encapsulation and modulating the blood–brain barrier itself by inhibiting
efflux pumps, increasing blood–brain permeability with bradykinin receptors adenosine
receptors activation, treating tight junctions physically, for example, with ultrasounds
or osmotic agents [53–55]. Currently, engineered nanomaterials can encapsulate thera-
peutic compounds in a shell with programmable size, charge, and surface biochemistry,
which allows for exploiting blood–brain barrier transportation pathways [56]. A variety of
nanocarriers, such as polymeric nanoparticles, liposomes, lipid nanoparticles, dendrimers,
or inorganic nanoparticles, have been formulated to overcome BBB and subjected to clinical
trials [57]. Also, molecular carriers like cryptands, calixarenes, cyclophanes, spherands,
cyclodextrins, and crown ethers, which can form intermolecular interactions with small
molecules based on the “host–guest” relation, have been investigated as potential devices
allowing for effective drug delivery [58]. Those types of supramolecular structures based
on cyclodextrin cages, with the proven ability to cross the BBB, could be utilized as poten-
tial carriers of new aziridine–hydrazide hydrazone derivatives (ARA12 and ARA13) [59].
Presented compounds have the right substituents and are the appropriate size to form
hydrogen bonds and adapt to such molecular carriers. An alternative option is linking the
tested compounds to BBB-penetrating peptide shuttles so as to create peptide–drug conju-
gates able to get through the BBB by using the peptides with BBB-penetrating properties as
vectors to deliver small therapeutic molecules to brain parenchyma [60]. This approach
will require the use of a suitable ester linker but is still possible.

Additionally, the carriers can be modified to selectively target tumoral cells in order
to minimize the undesired side effects of injuring the non-neoplastic microenvironment.
Il13Rα2 receptor specific for astrocytoma cells had been previously investigated as a route
to specific delivery of drugs to GB cells based on different types of nanocarriers conjugated
with IL13 homing-peptide being a ligand for Il13Rα2 [23,61–66].

Although our results demonstrated the different sensitivity of GB and normal cells
(NHA) to tested agents, the compounds are not neutral for non-neoplastic cells. Thus, we
will further examine the optimal effective treatment dosage in vitro using the co-culture
of GB with NHA cells. To minimize the cytotoxic effect on normal cells, we will test
an alternative method of targeted drug delivery with the use of Il13-peptide-conjugated
innovative carriers (based on the cryptand-like supramolecular complex type of “host-
guest”) for delivery of tested compounds to GB cells expressing Interleukin- 13 rα2.

Moreover, our findings proved the importance of pro-survival autophagy as an undesired
effect of treatment that impairs the execution of cell death. This phenomenon seems to be
underrated, though it is already at the stage of new candidate drug testing, which may lead
to premature abandonment of research. Thus, the standard search for new chemotherapeutics
could be more effective if accompanied by an analysis of the mechanisms of tumor resistance to
tested agents. Such an experimental approach could initially verify if tested compounds are
able to stimulate undesired processes responsible for therapy escape and treatment failure.

Extrapolating our findings from bench to clinic, we postulate that including an au-
tophagy inhibitor in the treatment protocol would constitute great assistance in designing
a more effective therapy, not only by facilitating the death of neoplastic cells but also by
minimizing the risk of tumor therapy escape.

Additionally, implementing treatment with an optimal combination of an apoptosis
inducer and an autophagy inhibitor would create a chance to decrease the concentration of
a chemotherapeutic or shorten treatment periods, which seems to be important, especially
in the case of highly cytotoxic drugs presenting limited selectivity to tumor cells.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells12141906/s1, Table S1: Influence of tested compounds on progress of
apoptotic process and viability of GB cells after 24-h treatment; Table S2: Comparison of percentage of
apoptotic cells after combined and single treatment mode (results of statistical analysis for individual
tumors); Figure S1: Results of Western blot analysis for LC3 protein (uncropped membranes);
Figure S2: Results of apoptosis assay (FACS analysis) for NHA cells treated with ARA12.
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