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Abstract: A Pleural effusion cytology is vital for treating metastatic breast cancer; however, concerns
have arisen regarding the low accuracy and inter-observer variability in cytologic diagnosis. Al-
though artificial intelligence-based image analysis has shown promise in cytopathology research,
its application in diagnosing breast cancer in pleural fluid remains unexplored. To overcome these
limitations, we evaluate the diagnostic accuracy of an artificial intelligence-based model using a large
collection of cytopathological slides, to detect the malignant pleural effusion cytology associated with
breast cancer. This study includes a total of 569 cytological slides of malignant pleural effusion of
metastatic breast cancer from various institutions. We extracted 34,221 augmented image patches
from whole-slide images and trained and validated a deep convolutional neural network model
(DCNN) (Inception-ResNet-V2) with the images. Using this model, we classified 845 randomly
selected patches, which were reviewed by three pathologists to compare their accuracy. The DCNN
model outperforms the pathologists by demonstrating higher accuracy, sensitivity, and specificity
compared to the pathologists (81.1% vs. 68.7%, 95.0% vs. 72.5%, and 98.6% vs. 88.9%, respectively).
The pathologists reviewed the discordant cases of DCNN. After re-examination, the average accuracy,
sensitivity, and specificity of the pathologists improved to 87.9, 80.2, and 95.7%, respectively. This
study shows that DCNN can accurately diagnose malignant pleural effusion cytology in breast cancer
and has the potential to support pathologists.

Keywords: breast neoplasms; cytology; pleural fluid; artificial intelligence; metastasis; deep learning

1. Introduction

In 2020, breast cancer was the leading cancer worldwide and the fifth leading cause
of cancer mortality [1]. Most of these deaths have been attributed to metastatic breast
cancer. Breast cancer can spread to various organs in the body, with the most common sites
being the bone, lung, liver, and brain [2,3]. In the United States, women with metastatic
breast cancer have a 5-year survival rate of 30% [4]. The presence of malignant pleural
effusions suggests advanced disease and is associated with poor survival rates [5]. Pleural
metastasis occurs when cancer cells from a primary breast tumor spread to the pleural lining
surrounding the lungs. Patients with breast cancer often experience pleural metastasis
in the first few years after diagnosis, although this becomes less frequent with longer
periods of disease-free survival [6]. Aspiration cytology is a widely used and efficient

Cells 2023, 12, 1847. https://doi.org/10.3390/cells12141847 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12141847
https://doi.org/10.3390/cells12141847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-8615-3064
https://orcid.org/0000-0003-2840-6603
https://orcid.org/0000-0001-8767-9033
https://orcid.org/0000-0002-1908-9696
https://orcid.org/0000-0002-0045-6441
https://orcid.org/0000-0003-2292-424X
https://doi.org/10.3390/cells12141847
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12141847?type=check_update&version=1


Cells 2023, 12, 1847 2 of 14

method for diagnosing malignant pleural effusions. This technique is recognized for its
simplicity, cost-effectiveness, and rapid results [7]. Malignant pleural effusion cytology
plays a pivotal role in the diagnosis, treatment planning, and monitoring of metastatic
breast cancer. Patients with malignant effusions may also experience additional symptoms,
such as dyspnea. Proper management of the respiratory decline can significantly enhance
the patient’s quality of life. Timely information obtained from pleural effusion cytology
assists in optimizing patient care, facilitating personalized treatment approaches, and
improving overall patient outcomes.

However, there are concerns regarding the accuracy of cytological diagnosis, which
vary depending on the category. The accuracy is higher for negative and malignant cate-
gories, at 76% and 81%, respectively [8]. On the other hand, for the intermediate suspicious
malignancy cases, there is a lower agreement observed, with rates of 32% and 22%, respec-
tively. In the previous study, the overall agreement among pathologists for cytological
diagnosis was 68% [8]. A recent meta-analysis reported that overall diagnostic sensitivity
for malignant pleural effusions was 58% [9,10]. Cytological diagnosis varies according to
the type of malignancy, particularly in primary thoracic malignancies. The sensitivity for
lung adenocarcinoma was found to be 83.6%, while for lung squamous cell carcinoma, it
was 24.2% [9,10]. The report revealed that the diagnostic sensitivity of malignant pleural
effusion for breast cancer was 65.3%, indicating a relatively low performance as a screening
tool. Suspected malignant pleural effusion patients with negative cytology may need
flow cytometry, tissue biopsy, and other tests for evaluation. Flow cytometry is useful
for malignant hematological effusions, while immunochemistry and fluorescence in situ
hybridization aid in identifying non-hematologic malignancies [11]. However, these tests
can be costly and time-consuming. The limitations of cytological diagnosis, including
its subjective nature and potential for human error, have driven researchers to explore
alternative approaches that offer more reliable and accurate assessments. Consequently, re-
searchers have actively utilized deep learning methods to diagnose cytological images and
address the drawbacks and weaknesses associated with conventional cytology approaches.
This study aimed to assess the diagnostic accuracy of AI in detecting malignant pleural
effusion cytology, specifically that related to breast cancer. This will be accomplished by
analyzing a larger number of cytopathology slides gathered from multiple institutions
across the nation. Additionally, this study aimed to utilize z-stacked cytology slide images
to develop an AI model.

Deep learning-based artificial intelligence (AI) image analysis technology has re-
cently been actively researched in the medical field, and it has been showing remarkable
results [12–14]. In addition, a recently published study on the classification of lung can-
cer cells in pleural fluid using a deep convolutional neural network showed promising
results [10]. Several studies have already indicated that AI achieves diagnostic accuracy
equal to or better than that of human experts in the diagnosis of cervical cytology slide im-
ages [7–9]. AI models have been increasingly used in cytology, with an initial focus on the
examination of gynecological samples, showing promising results [15]. Currently, AI mod-
els are used to classify various nongynecological samples, including urinary tract cytology,
thyroid fine needle aspiration cytology (FNAC), breast FNAC, and pleural fluids [16–19].
However, only a few studies have been conducted on AI classification in malignant serous
fluid cytology [12,19]. In addition, no studies have diagnosed breast cancer in pleural fluid
using AI to the best of our knowledge, and only two studies on breast cancer FNAC using
artificial neural networks have been published [19,20]. These studies have shown perfect
results in distinguishing benign from malignant tumors. However, the number of cases
was relatively small; therefore, it was necessary to use a larger number of slide images
for validation. Furthermore, many studies have employed image datasets to develop AI
models for cytological diagnosis; however, these datasets often lack z-stacking images. For
this study, we collected a larger number of cytopathology slides with z-stacked images and
developed an AI model.
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2. Materials and Methods

This study was approved by the Institutional Review Boards of the Catholic University
of Korea, College of Medicine (UC21SNSI0064); Yonsei University College of Medicine
(4-2021-0569); the National Cancer Center (NCC2021-0145); and St. Vincent Hospital,
Catholic University of Korea, College of Medicine (VC22RISI0131). An outline of the
method for classifying malignant and benign cells in pleural cell slide images of breast
cancer patients using a deep convolutional neural network model (DCNN) is presented
in Figure 1.

Cells 2023, 12, x FOR PEER REVIEW 3 of 14 
 

 

2. Materials and Methods 
This study was approved by the Institutional Review Boards of the Catholic Univer-

sity of Korea, College of Medicine (UC21SNSI0064); Yonsei University College of Medi-
cine (4-2021-0569); the National Cancer Center (NCC2021-0145); and St. Vincent Hospital, 
Catholic University of Korea, College of Medicine (VC22RISI0131). An outline of the 
method for classifying malignant and benign cells in pleural cell slide images of breast 
cancer patients using a deep convolutional neural network model (DCNN) is presented 
in Figure 1. 

 
Figure 1. Overview of the study. 

  

Figure 1. Overview of the study.

2.1. Data Collection

In this study, we used 569 cytologic whole-slide images (WSIs) collected from the
Open AI Dataset project for cytopathology in 2021 (https://www.aihub.or.kr accessed
on 19 June 2023). In collaboration with the Korean Society of Cytopathology, the Catholic
University of Korea Uijeongbu St. Mary’s Hospital, the National Cancer Center, the
Korea Cancer Center Hospital, and ten other medical institutions constructed a digi-

https://www.aihub.or.kr


Cells 2023, 12, 1847 4 of 14

tal cytology learning dataset. This dataset was created by refining, labeling, storing,
and quality-controlling cytopathology images, consisting of 5506 WSIs for ten types of
cancer and benign cases. Furthermore, 207,037 patch images were extracted from this
dataset. All malignant cytopathological slides were confirmed via histological exami-
nation. The cytopathological dataset collection and preparation processes are shown in
Supplementary Figures S1 and S2, respectively.

2.2. Image Preprocessing

The collected WSIs were scanned as extended depth-of-field images by merging
multilayered z-stacked images through slide scanners to correct for image defocusing. The
scanners used were AT2 (Leica Biosystems, Nussloch, Germany), Pannoramic Flash 250 III
(3DHISTECH, Budapest, Hungary), and NanoZoomer S360 (Hamamatsu, Shizuoka, Japan).
After obtaining the WSIs, color normalization was performed for color constancy. Then,
we split those images into non-overlapping small image patches of 1024 × 1024 pixels.
Pathologists classified and labeled the split images as malignant or benign. After labeling,
downsampling was performed to convert the images into 256 × 256-pixel images. Finally,
the image patch data were augmented via horizontal flip, vertical flip, and clockwise
rotation to improve the sufficiency and diversity of the training data (Figure 2).
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Figure 2. Overview of image preparation in the study. All cytology slides were scanned in multiple
layers by z-stacking and merged to obtain an image with appropriate focus. WSIs were segmented
into small image patches and labeled by pathologists as benign or malignant. Image augmentation
was performed after labeling.

2.3. Pretesting for DCNN Model Selection

We pretested several DCNN models, including Inception ResNet-V2, Efficientnet-b1,
ResNext50, Mobilenet v2, Densenet 121, and ResNet 50. A total of 344 WSIs, including
152 malignant and 192 benign, were used in the pre-testing. After preprocessing, 14,526 im-
age patches were acquired (7203 malignant/7323 benign). We used 11,575 patch images
(5765 malignant/5810 benign) for training, 1475 patch images (722 malignant/756 benign)
for validation, and 1473 patch images (716 malignant/757 benign) for testing. After a
comparison of the performances, we selected Inception-ResNet-V2 as the model for this
study. To prevent overfitting, we employed data augmentation techniques. Additionally,
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we implemented early stopping to obtain the best possible model. The data were made
more quantitative by extracting patches from WSIs.

2.4. AI Model Training

We experimented with 165-layer Inception-ResNet-v2, as in Figure 3. The Inception-
Resnet-V2 model is used in this experiment. Inception-ResNet-V2 is a convolutional neural
network developed by Google that has satisfactory performance in image analysis. The
Inception-ResNet approach combines the residual network with an inception architecture
previously developed by Google [21]. A residual network is a neural network designed to
address the issue of increasing training and test errors as the number of layers significantly
increases in existing deep learning. In addition, residual networks use shortcut connections
to jump directly to the classification stage when training reaches the optimal depth, thus
enabling faster training than Inception V3 [21,22]. In this experiment, we substituted the
softmax function in the output layer with a sigmoid function for the binary classification.
The augmented patch images were randomly assigned to train, validate, and test the
DCNN model (Table 1). The malignant probability of each image patch was estimated; if
the probability was 50% or more, the image patch was classified as malignant. The dataset
was divided into three parts, namely training, validation, and testing, following an 8:1:1
ratio as specified. The patch-wise distribution of positive and negative images is well
balanced, with a ratio of 6:5. Details of the number of WSIs/image patches used for the
DCNN model are shown in Table 1.
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Table 1. Number of whole-slide images used for the deep convoluted neural network (DCNN) model.

No. of Whole Slide Images (Image Patches)
Training Validation Testing Total

Benign 330 (12,389) 44 (1545) 43 (1568) 417 (15,502)
Malignant 111 (17,274) 18 (719) 23 (726) 152 (18,179)
Total 441 (29,663) 62 (2264) 66 (2294) 569 (34,221)
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2.5. Comparison of the Performance of the AI Model and the Pathologists

To evaluate the performance of the AI model, we randomly selected 845 Pap smear
images, including 338 malignant and 507 benign, from the 34,221 image patches. Subse-
quently, three pathologists and the AI model diagnosed the patch images, and the results
were compared. After comparison, each pathologist re-diagnosed the patch images that
were inconsistent with the AI diagnosis.

3. Results
3.1. Data Characteristics

We collected Papanicolaou-stained 569 WSIs, consisting of 417 benign and 152 metastatic
breast carcinoma cases, which included 564 conventional smears and 5 liquid-based prep
(LBP) slides. The WSIs contained at least three z-stack layers, and 94.9% of the WSIs were
scanned using a Pannoramic Flash 250 III (3DHISTECH, Budapest, Hungary). Table 2
shows the characteristics of the cytological slides used in this study.

Table 2. Data characteristics of the enrolled cytologic slides.

Characteristics Number of Cases (n = 569)

Age (median) 18–104 (66)
Cytologic diagnosis

Malignant lesions 152 (26.7%)
Benign lesions 417 (73.3%)

Preparation method
Conventional 564 (99.1%)
Liquid-based preparation 5 (0.9%)

Z-stack layers
3-layers 490 (86.1%)
5-layers 79 (13.9%)

Scanner
Pannoramic Flash 250 III (3DHISTECH) 540 (94.9%)
AT2 (Leica) 2 (0.4%)
NanoZoomer S360 (Hamamatsu) 27 (4.7%)

3.2. Pretesting for DCNN Model Selection

The overall accuracy of the image classification ranged from 89.48% to 93.82%. Incep-
tion ResNet v2 showed the highest accuracy of 93.8%, whereas Efficientnet-b1, ResNext50,
MobileNet v2, Densenet 121, and ResNet 50 showed accuracies of 92.7, 93.5, 89.5, 92.5, and
91.9%, respectively. Among the DCNN models, Inception-ResNet-v2 showed the most
accurate results, with a sensitivity and specificity of 97.77 and 90.09%, respectively. The
comparison of the performances of the models with the pre-testing model selection results
is listed in Table 3.

Table 3. Pretesting performance of DCNN models. Inception-ResNet-V2 exhibited the highest
accuracy and best performance among the pretesting models.

Accuracy Sensitivity Specificity

Inception ResNet v2 0.9382 0.9777 0.9009
Efficientnet-b1 0.9267 0.8855 0.9657

ResNext50 0.9348 0.9679 0.9036
Mobilenet v2 0.8948 0.9162 0.8745
Densenet 121 0.9246 0.9218 0.9273

ResNet 50 0.9192 0.8980 0.9392

3.3. AI Model Training

The Inception ResNet v2 model showed accuracy, sensitivity, and specificity values of
95.0, 93.4, and 95.8%, respectively, for an oversampled training dataset. The model showed
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accuracy, sensitivity, and specificity values of 92.9, 87.6, and 96.6%, respectively, when
using all training datasets and 93.8, 97.8, and 90.1%, respectively, when using a reduced
training dataset.

3.4. Comparison of the Performances of the AI Model and Pathologists

The average of the three pathologists showed 72.49% sensitivity, 88.89% specificity,
and 68.74% accuracy with a Fleiss kappa coefficient of 0.482. Pathologist A showed a
sensitivity of 67.8%, a specificity of 94.9%, and an accuracy of 70.2%; Pathologist B showed
a sensitivity of 56.8%, a specificity of 98.0%, and an accuracy of 68.1%; and Pathologist C
showed a sensitivity of 92.9%, a specificity of 73.8%, and an accuracy of 68.0%. The AI
showed a sensitivity of 95.0%, a specificity of 98.6%, and an accuracy of 81.1%.

The AI diagnosed 321 out of 845 true positives, 500 true negatives, 7 false positives,
and 17 false negatives (Table 4). Examples of AI-diagnosed images are shown in Figure 4. In
cases where both the AI and a pathologist made diagnoses, the AI alone correctly diagnosed
18 true positives and 3 true negatives. There was one false positive and two false negatives
when only the AI was incorrect. Images showing the discrepancies in the diagnosis by the
AI and pathologists are shown in Figure 5.

Table 4. Confusion matrix of the AI classification.

Actual Diagnosis AI Diagnosis
Total (n = 845) Malignant (328) Benign (517)

Malignant (338) True positive (321) False negative (17)
Benign (507) False positive (7) True negative (500)
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Cases with inconsistencies in the diagnosis by the AI and the pathologist were re-
examined by all pathologists, and the average result improved to 86.19% sensitivity, 95.66%
specificity, and 76.71% accuracy (Figure 6). In addition, the kappa coefficient for the pathol-
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4. Discussion

Diagnosing pathological WSIs in various organs using AI is currently showing consid-
erable progress, with various patents and applications in the medical field [23,24]. A recent
systematic review found that there are not many studies that have used artificial neural
networks in the field of effusion cytology [25]. Consequently, additional research is imper-
ative for exploring the potential of neural networks to aid in diagnostic cytology. In this
study, we successfully demonstrated that AI exhibited remarkable accuracy in diagnosing
breast cancer pleural effusion cytopathology for the first time. Our research is the first of its
kind to use the largest dataset that includes z-stacking.

In this study, we used 569 qualitatively assured WSIs obtained from various medical
institutions nationwide. The sample size was sufficiently large and exhibited a high level
of demographic diversity and heterogeneity, surpassing the findings of previous studies.
Moreover, we employed merged z-stacked images in our study, which resulted in an
improved focus. The AI model developed for this experiment exhibited an accuracy of
81.13% in classifying patch images, outperforming the average accuracy of 72.49% achieved
by experienced pathologists. Furthermore, when the cases in which the AI and patholo-
gists disagreed on the diagnosis were reevaluated, the pathologists’ diagnostic accuracy
improved. This suggests that AI assistance can enhance cytopathologists’ interpretive
capabilities by striking a balance between sensitivity and specificity.

The morphological features of metastatic breast carcinomas are variable and can exhibit
non-cohesive isolated cells, large cell balls, and linear arrangements [26,27]. Diagnosing
metastatic breast carcinoma in pleural fluid is challenging even for experienced pathologists,
especially when dealing with predominantly isolated cell patterns that are difficult to
differentiate from reactive mesothelial cells and histiocytes [28]. Pleural fluid can serve
as a culture medium for floating cells, leading to a decrease in the nuclear-to-cytoplasmic
ratio compared to typical cancer cells; this phenomenon can mimic the appearance of
mimicking normal or reactive cells [29]. Mesothelial cells can be readily activated and mimic
phenotypic traits reminiscent of malignant cells, particularly when exposed to inflammatory
stimuli such as pneumonia or tuberculosis. Macrophages, which are integral components
of the mononuclear phagocytic system, can be activated in response to pleural effusion
or inflammation. This activation can result in macrophages exhibiting characteristics that
resemble malignant cells. Breast cancer cells, particularly metastatic lobular carcinomas,
possess distinct characteristics such as smaller size and a more blended appearance that
differentiate them from other types of carcinomas such as lung cancer [30–34]. This disparity
in cellular morphology poses a challenge for accurately diagnosing these conditions via
pleural fluid cytology.

In this study, AI performed well in identifying and classifying cells with distinct
malignant features, such as nuclear hyperchromasia, pleomorphism, a high N:C ratio,
and nuclear overlapping (Figure 4A). In addition, AI helped diagnose a small number
of atypical cells that are difficult for humans to recognize (Figure 5A). However, it also
tended to misdiagnose as malignant if the mesothelial cells showed severe pleomorphism,
hyperchromasia, or nuclear overlap (Figures 4C and 5). In addition, there were cases in
which AI could not correctly classify malignant cells because of an unclear cytoplasmic
border, a low N:C ratio, or other unknown reasons (Figures 4D and 5C).

Inception-ResNet-V2 was introduced in 2016 and showed satisfactory top-1 and top-5
accuracies of 77.8 and 94.1%, respectively, in the ImageNet examination [35]. In addi-
tion, Inception-ResNet-V2 has been used in many pathological image and medical data
diagnostic studies and has shown promising results. For example, a study in which
Inception-ResNet-V2 classified tissue slides of skin melanoma reported high accuracy
(96.5%), sensitivity (95.7%), and specificity (97.7%) [36]. Moreover, a study published in
2022, which analyzed cervical Pap smear cytology images, reported a compliance accuracy
of 96.44% [37].

Currently, numerous AI-based models are emerging to aid pathologists in the diagno-
sis of breast cancer. Many AI-based applications have been developed in the field of breast
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pathology, including primary tumor detection, breast cancer grading, the identification
of histological subtypes of breast cancer, analysis of mitotic figures, and the prediction of
survival outcomes [38–42]. Recently, AI algorithms have been developed to offer quanti-
tative analysis of immunohistochemistry-stained images, specifically for evaluating the
KI-67, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor-2 (HER2) markers [41,43–45]. A recent study successfully developed an AI
model for diagnosing lymph node metastasis in breast cancer, achieving an impressive
accuracy of 98.8% [46]. Another study developed an AI model using pleural effusion cell
blocks from breast, gastric, and lung carcinoma [47]. This model achieved an area under the
curve (AUC) of 0.91, identifying benign and malignant pleural effusion, and successfully
determined the primary site of metastatic carcinoma [47]. Previously, an AI model was
developed to diagnose metastatic carcinoma using effusion cytology. The dataset used in
this study consisted of 57 benign cases, 54 metastatic adenocarcinoma cases, 1 squamous
cell carcinoma case, and 1 signet ring carcinoma case [48]. Although this study achieved
an impressive 100% accuracy, the dataset used was relatively small [48]. This study did
not clarify the number of patients with metastatic breast cancer pleural effusion that were
included in the analysis. Our present study differs from previous studies in that this AI
model specifically targeted breast cancer metastasis using a larger dataset. In another study,
a computer-aided diagnostic approach was employed utilizing the nuclear structure of
mesothelial cells to classify malignant mesothelioma in effusion cytology specimens [49].
This study also achieved 100% accuracy; however, it was based on a small dataset that
included 16 cases of malignant mesothelioma and 18 cases of benign pleural effusion [49].
Recently, a few studies have employed AI for the FNAC cytology of breast cancer. Dey
et al. successfully identified lobular carcinomas in FNAC samples [19]. Another study used
an AI model to accurately identify fibroadenomas and infiltrating carcinomas of the breast
in FNAC cases with 100% sensitivity and specificity [20]. However, these studies used
small datasets. In this study, we utilized a larger dataset comprising 596 cytological WSIs
of metastatic breast cancer, collected from various universities and hospitals throughout
South Korea. Typically, malignant pleural effusion fluids contain a high number of benign
background cells, leading to a low population of tumor cells. False-negative or inconclusive
results may occur in samples with a low number of cancer cells during morphological
analysis. The findings of the current study demonstrated superior accuracy, sensitivity, and
specificity compared with pathologists in diagnosing malignant pleural effusion cytology
related to breast cancer.

This study has some limitations. First, the diagnosis was limited to patch images
and was not applied to the diagnosis of WSIs. Therefore, it is necessary to construct the
malignancy probability of each image tile and set a cutoff value for the probability of all
tiles. In addition, we divided the classification into malignant and benign two-tiers and did
not designate the atypical category. Therefore, if a few atypical cells are present on WSI,
this model will likely lead to an inappropriate diagnosis. Second, this AI model does not
explain why cells are viewed as malignant or benign, which can confuse the pathologist
and lead to an inappropriate diagnosis when the diagnoses of the pathologist and the AI do
not match. Due to the black-box nature of AI systems, the mechanism by which they arrive
at conclusions is not well understood. Therefore, it is necessary to introduce explainable AI
(XAI) to address this shortcoming [50,51]. XAI focuses on developing AI models that can
be understood by humans. XAI is used to create AI models that can not only make accurate
predictions but also provide an explanation of how they arrived at those predictions. When
the diagnoses of the pathologist and AI do not match, the pathologist can make a diagnosis
more accurately and quickly by receiving real-time feedback from AI [52].

In future studies, the application of this AI model to WSI diagnosis and further
validation with external WSIs will be necessary. If this model undergoes validation using
data from a multi-ethnic population, then the performance of the model can be generalized.
In addition, it is necessary to develop a more accurate AI model. Currently, various AI
image classification models, showing higher classification accuracy and potential for use in
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pathological image diagnosis, are being actively studied. Xie et al. reported that the noisy
student training (EfficientNet-L2) method, which comprised pseudo-labeled images in the
training dataset to add noise inside the dataset, improved the top-1 and top-5 accuracies of
ImageNet classification to 88.4 and 98.7%, respectively [53]. In 2021, Pham et al. announced
meta-pseudo labels and semi-supervised learning that improved noisy student training
and enhanced the top-1 and top-5 accuracies of ImageNet classification to 90.2 and 98.8%,
respectively [54].

The second aspect to be investigated is the use of fewer computer resources for model
training to increase availability. In general, DCNN training requires increased computing
power and data storage as accuracy increases. MobileNet is a lightweight convolutional
neural network architecture for mobile and embedded vision applications. MobileNet uses
depthwise separable convolutions to reduce the number of parameters and computations
required for image classification. The top-1 and top-5 accuracies of this model on the
ImageNet dataset are above 70 and 89%, respectively [55]. In addition, EfficientNet uses
fewer parameters and calculations and is a relatively accurate model. EfficientNet-B0
showed top-1 and top-5 accuracies of 77.1 and 93.3%, respectively, in the ImageNet tests. In
addition, EfficientNet-B7 showed top-1 and top-5 accuracies of 84.3 and 97.0%, respectively,
but required more computer resources [56]. Other DCNN techniques can be considered
when lower resources and faster training rates are required.

5. Conclusions

The AI model developed for this experiment exhibited an accuracy of 81.13% in
classifying patch images, outperforming the average accuracy of 72.49% achieved by
experienced pathologists. Cases with inconsistencies in the diagnosis by the AI and the
pathologist were re-examined and the average accuracy, sensitivity, and specificity of the
pathologists improved to 87.9, 80.2, and 95.7%, respectively. This study demonstrated
that AI could provide significant accuracy in diagnosing breast cancer pleural effusion
cytopathology, which could enhance the interpretative ability of cytopathologists. Future
studies should focus on applying this AI model to WSI diagnosis, validating it with external
WSIs. Additionally, efforts should be directed towards exploring methods to develop a
more accurate AI model that requires fewer computer resources for model training, thereby
increasing its availability.
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