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Figure S1. AITC does not induce bioelectrical signals in hCMEC/D3 cells. A, planar whole-cell
patch-clamp recordings showed that AITC (30 uM) failed to activate transmembrane currents, while
NS309 (10 uM), a selective opener of SKca/IKca channels, evoked an outwardly-rectifying K* current
that reversed at around -70 mV, as shown in the inset. B, current-clamp recordings confirmed that
AITC (30 uM) did not change the resting membrane potential, which ranges between -50 mV and -
10 mV, as reported in other endothelial cell types (Moccia et al., 2002). C, NS309 (10 uM) induced a

rapid and reversible membrane hyperpolarization, as predicted by the opening of SKc./IKca channels.
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Figure S2. 4-HNE evokes TRPA1-mediated Ca?* signals in hCMEC/D3 cells. 4-HNE (1 uM), a
selective TRPA1 agonist, evoked a rapid increase in [Ca%*]iin hCMEC/D3 cells (n=73 from three
independent experiments). Conversely, 4-HNE failed to induce any detectable Ca?* signal in the

presence of HC-030031 (30 uM) (n=45 from three independent experiments).
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Figure S3. NAC prevents AITC effect on CPA-evoked Ca?* release in hCMEC/D3 cells. A,
pretreating hCMEC/D3 cells with the antioxidant NAC (1 mM) prevents AITC (30 uM) from converting
CPA-evoked transient Ca®* release into a long-lasting elevation in [Ca%*]i presenting a discernible Ca?*
plateau. CPA was administered at 10 uM. Ctrl: control. B, meanzSE of the amplitude of CPA-evoked
ER Ca?* release in the absence (Ctrl) and presence of AITC+NAC. NS: not significant, Student’s t-test.
C, meanzSE of Tgo-20 of CPA-evoked ER Ca?* release in the absence (Ctrl) and presence of AITC+NAC.

Student’s t-test: * p < 0.05.
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Figure S4. H,0, prevents the decay to the baseline of CPA-evoked Ca?* release. A,
pretreating hCMEC/D3 cells with H,0;, (100 uM) reduces the amplitude of CPA-induced ER Ca?*
release from 0.1533% 0.00702 a.u. (n=42) measured under control (Ctrl) conditions to 0.06147+
0.004823 a.u. (n=42) (H20;) (Student’s t-test: **** p < 0.0001). The reduction in the peak amplitude
of CPA-induced ER Ca?* release is due to the reduction in the driving-force promoting intraluminal
Ca?* efflux because of the previous Ca?* response to H,0; (not shown). Nevertheless, in the presence
of H,0,, the rise in [Ca?*]; induced by CPA failed to decay to the baseline, resulting in a long-lasting
plateau phase (0.01584+ 0.003552 a.u., n=42). The baseline of the Ca?* tracings shown in the Figure

have been overlapped for representative purposes.
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