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Abstract: The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds
of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key
model organism, has been extensively studied to understand the mechanisms governing growth and
development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming
millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided
into growth and asexual development (conidiation). After a certain period of vegetative growth, some
vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A.
nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia.
This vegetative-to-developmental transition requires the activity of various regulators including
FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in
the formation of immature conidia. Subsequent conidial maturation requires multiple regulators
such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability
against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate
and form new colonies, and this process is governed by a myriad of regulators, such as CreA and
SocA. To date, a plethora of regulators for each asexual developmental stage have been identified
and investigated. This review summarizes our current understanding of the regulators of conidial
formation, maturation, dormancy, and germination in A. nidulans.

Keywords: Aspergillus nidulans; asexual development; conidial dormancy; conidial germination

1. Introduction

Filamentous fungi are eukaryotic organisms that are ubiquitous in our surrounding
environments, and they have large and small effects on human life [1–3]. Several fungi, such
as Fusarium, Aspergillus, and Penicillium, produce mycotoxins that can cause plant diseases
or contaminate stored foods, leading to economic losses [4]. Some fungi can directly exert
adverse clinical effects on humans [1]. Conversely, other filamentous fungi have been
used as industrial cell factories for producing various proteins because of their efficient
secretion and sustainable production systems [5,6]. Therefore, to suppress side effects or
maximize positive effects, it is important to understand the biological characteristics of
filamentous fungi.

Aspergillus is one of the filamentous fungi that comprise the maximum proportion
of airborne organisms. Among the numerous species, Aspergillus flavus is a saprophytic
fungus that contaminates preharvest and postharvest crops and produces potent hepato-
carcinogenic secondary metabolite aflatoxins; it is known to be the second leading cause of
invasive aspergillosis [7,8]. Aspergillus fumigatus is an opportunistic pathogenic fungus that
causes life-threatening disease (aspergillosis) in immunocompromised individuals [9,10]. In
contrast, Aspergillus niger and Aspergillus oryzae are biochemical cell factories in the fermenta-
tion and enzyme industry, which efficiently produce several enzymes and useful secondary
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metabolites [11,12]. These Aspergillus species have some limitations in controlling and han-
dling for research; therefore, many scientists have explored the specie Aspergillus nidulans
for decades as a referential model organism to uncover fungal growth, asexual/sexual
development, spore properties, germination, and secondary metabolites [13–15].

The asexual spore (conidium) is the primary reproductive structure with long-term via-
bility and contains various secondary metabolites including mycotoxins [14,16,17]. Conidia,
which float through the air, settle on crops, foods, or humans; consume organic/nonorganic
nutrients; and grow vegetatively, by expanding their habitats. In the presence of some stim-
uli, growing hyphae form thick-walled foot cells and branch to the aerial stalks. Swollen
stalks successively form multinucleate vesicles, metulae, and phialides and finally develop
conidiophores with immature conidia [15,18,19]. Then, the conidia on the conidiophores
are matured and remain in the dormant stage. They transform their external structures, tol-
erate environmental stresses, maintain long-term viability, and prepare for the next stage of
development through the activity of transcription and translation [20,21]. Under favorable
conditions, quiescent conidia establish isotropic growth and germinate by producing the
germ tubes. This lifespan of asexual spores may be delicately regulated by complicated
and efficient mechanisms of genetic regulators.

This review describes the genetic regulatory factors involved in each developmental
stage of A. nidulans conidia, from conidiogenesis, conidial maturation and dormancy
to conidial germination. A comprehensive understanding of the functions of various
regulators in the model organism A. nidulans can help prevent the formation of conidia
that act as infectious particles, i.e., spores, or induce the maximal production of desired
enzymes and proteins in filamentous fungi.

2. Research on A. nidulans Asexual Spores

Basic scientific studies on A. nidulans spores have been conducted for decades. To
gain a broad understanding of various genetic regulators in conidia, we searched the
keyword “Aspergillus nidulans spore” in the PubMed database. We obtained 648 articles
published from 1969 to 2022, of which 200 studies explored the genetic regulatory factors
in A. nidulans asexual spores. Studies on the regulators of A. nidulans conidia have been
actively conducted worldwide, including in America, Asia, and Europe, with scientists
primarily located in the USA, South Korea, and Germany (Figure 1).
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Table 1. List of Aspergillus nidulans genes involved in different asexual developmental stages. 

Name Stages Description Reference(s) 

DnfD Vesicles Phospholipid flippase, homolog of S. cerevisiae Drs2-Neo1-Family Neo1 [22] 

PabA Vesicles Putative regulatory subunit of protein phosphatase 2A (PP2A) [23] 

DopA Vesicles, Metulae Dopey protein [22] 

NimX Vesicles, Metulae Cyclin-dependent kinase involved in cell cycle control [24] 

GmtA/B Metulae Putative GDP-mannose transporter [25] 

HymA Metulae Hypha-like metulae [26] 

Figure 1. Studies on Aspergillus nidulans asexual spores. The worldwide distribution of studies on A.
nidulans spores. The darkness of color indicates a high ratio of published articles. Only countries
where the ratio of studies on A. nidulans spores is >1% are indicated.

A. nidulans conidia undergo a series of processes to form a specialized developmental
structure known as the conidiophore. At the tips of conidiophores, the matured conidia
remain in the dormant state and then start germinating and producing germ tubes through
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the activation of transcription and translation [18,21]. The life cycle of A. nidulans conidia
is closely related to many regulators. To understand the development of A. nidulans, all
of the regulatory factors, searched in PubMed (200 papers), were summarized by each
developmental stage. Among them, we focused on the transcription factors, and how they
act and organize their regulatory network. We also described major signaling pathways in
A. nidulans conidia.

3. Conidiogenesis

Differentiated vegetative hyphae develop thick-walled foot cells and form conidio-
phores. An overview of the roles of regulators coordinating the formation of asexual
structures and spores in A. nidulans is provided in Figure 2 and Tables 1 and 2.
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Table 1. List of Aspergillus nidulans genes involved in different asexual developmental stages.

Name Stages Description Reference(s)

DnfD Vesicles Phospholipid flippase, homolog of S. cerevisiae
Drs2-Neo1-Family Neo1 [22]

PabA Vesicles Putative regulatory subunit of protein phosphatase 2A (PP2A) [23]
DopA Vesicles, Metulae Dopey protein [22]
NimX Vesicles, Metulae Cyclin-dependent kinase involved in cell cycle control [24]

GmtA/B Metulae Putative GDP-mannose transporter [25]
HymA Metulae Hypha-like metulae [26]
BemA Metulae, Phialides Protein kinase activator [27]
FigA Metulae, Phialides Putative low-affinity calcium family protein [28]
GcnE Metulae, Phialides SAGA complex histone H3K9 acetyltransferase catalytic subunit [29]
ParA Metulae, Phialides Putative regulatory subunit of protein phosphatase 2A (PP2A) [23]

UgmA Metulae, Phialides UDP-galactopyranose mutase [30]
Axl2 Phialides Axial budding positional marker [31]
PclA Phialides Homolog of S. cerevisiae pcl cyclins [32]

SnaD Phialides Coiled-coil protein associated with the spindle pole body, named
after the suppressor of nudA1 [33]

SthA/B Phialides Sthenyo [34]

TcsA Phialides Two-component signaling protein involved in oxidative/osmotic
stress pathway [35]
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3.1. Temporal and Spatial Central Regulators of Conidiation

Approximately 50 years ago, the genes brlA, abaA, and wetA were morphologically
investigated, which demonstrated that their appropriate temporal and spatial expression
results in normal conidiophores formation in A. nidulans [36,37]. Scientists have named
them central regulators of conidiation (Figure 2). BrlA is composed of 432 amino acids
having two C2H2 zinc finger domains [38]. It has demonstrated that the brlA null mutant
blocksin a conidial formation, exhibiting defective vesicles and loss of pigment [36]. The
gene is named brlA (bristle-like) because the shape of the mutant resembles bristles. The
brlA is primarily expressed in the early asexual development stage, and BrlA protein
controls its own expression and that of various conidiation-related genes by binding to their
promoters. The binding site is termed the BrlA-response element (BRE) and the sequence is
5′-(C/A)(G/A)AGGG (G/A)-3′ in A. nidulans [39].

One of the target genes directly regulated by BrlA is abaA (abascus). The abaA deletion
mutant shows rod-like, aberrant conidiophores and fails to form proper metulae and
phialides at intervals in place of chains of conidia [36,37,40]. As with brlA, it is named abaA
because of the morphological characteristics of the mutant [41]. During the middle stage of
conidiophore development, BrlA activates abaA mRNA expression. Then, AbaA, which
has ATTS/TEA DNA binding domain factor and a potential leucine zipper, regulates its
own expression and controls brlAα or other developmental genes (such as wetA and vosA)
by recognizing the AbaA-response element (ARE) in their promoters [42]. The ARE is
5′-CATTCY-3′, where Y is a pyrimidine.

Table 2. List of Aspergillus nidulans genes involved in the proper formation of asexual spores.

Name Conidiogenesis Description Reference(s)

AclA/B Activation ATP-citrate lyase [43]
AcoA~B Activation Aconidial genes, encoding putative aconitate hydratase [44,45]

AflR Activation Sterigmatocystin/Aflatoxin Zn(II)2Cys6 transcriptional factor [46]
AspE Activation Aspergillus septin E (septin protein) [47]
BasA Activation Sphingolipid C4-hydroxylase, homolog of S.cerevisiae Sur2 [48]
Bud4 Activation Bud site selection protein [31]

CalB~H Activation Calcoflour hypersensitivity [49]
CandA-C Activation Cullin-associated-nedd8-dissociated protein [50]

ChsA Activation Chitin synthase encoding the fungal cell-wall integrity
signaling (CWIS) pathway [51]

FhbA/B Activation Flavohaemoglobins [52,53]
GfsA Activation Galactofuranosyltransferase [54]

GmcA Activation Glucose-methanol-choline oxidoreductase [55]
KfsA Activation Kinase for septation [56]
OdeA Activation Oleate ∆12 desaturases [57]
PchA Activation Homolog of S. cerevisiae cyclin T [58]
PclB Activation Homolog of S. cerevisiae pcl cyclins [58]

PhnA Repression Phosducin-like protein (PhLP) [59]
PhoA Activation PSTAIRE-containing kinase [60]

PmtA/B Activation Protein O-mannosyltransferase involved in protein glycosylation [61]
PmtC Repression Protein O-mannosyltransferase involved in protein glycosylation [61,62]

PpoA/B Repression Psi-producing oxygenase involved in oxylipin biosynthesis [63]
PpoC Activation Psi-producing oxygenase involved in oxylipin biosynthesis [64]
PufA Activation Pumilio/fem-3 binding factor [65]

SnaA~E Activation Suppressor of nudA1 [66]
StcE/J/U Repression Sterigmatocystin biosynthetic gene cluster [46]
SdeA/B Activation ∆9-stearic acid desaturases [67]
SumO Activation Small ubiquitin-like modifier involved in SUMOylation [68,69]
UgeA Activation UDP-glucose-4-epimerase [70]
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Table 2. Cont.

Name Conidiogenesis Description Reference(s)

VapA Activation FYVE-like zinc finger protein, one of the VipC-associated protein [71]

VapB Activation H3-K9 specific histone methyltransferase, one of the
VipC-associated proteins [71]

VipC Repression H3-K9 specific histone methyltransferase, one of the
Velvet interacting proteins [71]

WscA/B Activation Homolog of S. cerevisiae Wsc1 involved in the fungal cell-wall
integrity signaling pathway [72]

In the late stage of conidiation, wetA (wet-white) is activated by AbaA. The null strain
of wetA produces normal conidiophores, but it produces colorless, immature conidia in
A. nidulans [36]. The wetA mutant conidia might undergo autolysis and show reduced
viability. Moreover, the deletion strains of wetA have permeable conidia, whose wall
layers are less condensed than those of the wild-type strain [73]. WetA has a conserved
ESC1/WetA-related DNA binding domain that binds to the WetA-response element (WRE),
5′-CCGYTTGCGGC-3′ (Y = pyrimidine). The WetA, accumulated in conidia, recognizes
WRE in the promoters of spore-specific genes and regulates their expression (wA, yA, vosA,
and atfB) [74,75].

3.2. Upstream Developmental Activators (UDAs)

Previous studies have demonstrated the importance of UDAs in the development of
A. nidulans. In 1994, the Adams group revealed that some developmental mutants formed
cotton-like colonies with a “fluffy” morphology [76]. These included a mutant of fluG (fluffy
locus A), and flbA~E (fluffy low brlA expression) genes. The fluG is required to produce
an extracellular signal (a diorcinol-dehydroaustinol adduct) that initiates programmed
asexual sporulation, and the fluG-derived signal can generate sparse conidiation and brlA
expression [76]. Even the overexpression of fluG overcomes the developmental block and
results in the formation of conidiophores in submerged culture [77]. In addition to brlA, the
expressions of other early developmental regulatory genes (flb genes) are affected by FluG.
The FluG-mediated developmental regulation is divided into two independent pathways;
the activation of the Flb protein-mediated asexual development and the inhibition of
FlbA-mediated vegetative growth (Figure 2).

3.2.1. Flb Protein-Mediated Asexual Development

The transmitted FluG signal activates conidiation by derepressing SfgA-related path-
ways. SfgA, one of the suppressors of fluG, is a Gal4-type Zn(II)2Cys6 transcription fac-
tor. The sfgA null mutant exhibits hyperactive sporulation in liquid-submerged cultures,
whereas overexpressed mutant exhibits the inhibition of conidiation. In other words, SfgA
plays a role in the repression of asexual development [78]. Moreover, based on genetic
analyses, SfgA has been demonstrated as a downstream factor of FluG but an upstream
regulator of Flb proteins (flbB, flbC, flbD, and flbE, excluding flbA). As shown in Figure 2,
FluG inhibits the expression of SfgA, counteracting the inhibitory effect of SfgA on Flb
proteins. Coordinated by FluG and SfgA, four Flb proteins block hyphal growth and timely
mediate the asexual development by positively affecting brlA expression [76]. Among
these proteins, FlbB is a basic zipper-type transcription factor localized in the nucleus and
apical extension (Spitzenkörper). The flbB null mutant exhibits blockage of the synthesis
of an extracellular signaling compound, which is expressed in the early phases of veg-
etative growth for proper conidiation [79]. Further studies report that FlbB cooperates
with other UDAs for regulating conidiation. First, FlbB physically interacts with FlbE
and colocalizes at hyphal tips. FlbB-FlbE heterocomplex directly binds to the promoter
of brlA to express brlA mRNA levels for proper asexual development. Furthermore, this
complex can activate transcriptional levels of flbD for proper fungal development. FlbE
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is expressed throughout the life cycle of A. nidulans and has two conserved but hitherto
uncharacterized domains [80]. The deletion and overexpression of flbE cause defective
development, cell autolysis, and delayed brlA expression, indicating that the appropriate
amount of flbE is crucial for proper fungal growth and asexual development [81]. Second,
the FlbB complexes with FlbD, expressed by the FlbB-FlbE heterocomplex, which jointly
bind to the brlA promoter for the activation of brlA expression [82]. FlbD is a c-Myb tran-
scription factor, primarily found in the nucleus. Like other flb null strains, flbD absence
mutant shows fluffy colonies and aconidial phenotypes, whereas the flbD-overexpressed
strain causes inappropriate activation of brlA expression and the production of complex
conidiophores [82,83]. Meanwhile, FlbC is not affected by other Flb proteins and acts
independently for asexual development. FlbC has two C2H2 zinc fingers and one activation
domain. FlbC is localized in the nucleus and binds to the promoters of brlA, abaA, and
vosA, regulating their expression levels. Deletion of flbC causes delayed vegetative growth
and reduced conidiation. Moreover, the overexpression of flbC results in restricted hyphal
growth and reduced cellular activity. These indicate that modulated flbC is essential for
balancing growth and development in A. nidulans [76,84].

3.2.2. Inhibition of FlbA-Mediated Stimulation of Vegetative Growth

FlbA encodes 120 amino acids, having an RGS domain for the regulator of G protein
signaling, which negatively regulates vegetative growth signaling [85]. Deletion of flbA
results in unusual growth and abnormal conidiophores, whereas its overexpression causes
hyphal tips to differentiate into spore-producing structures [76,86]. In other words, this
protein plays an important role in mycelial proliferation and activation of asexual devel-
opment. Commonly, RGS domain-containing proteins sense and respond to appropriate
physiological and biochemical cues and function as GTPase-activating proteins in con-
junction with α subunit of heterotrimeric G-proteins. As regulators of G proteins, they
promote GTP hydrolysis of Gα to GDT, inactivating the G proteins (Figure 2). In A. nidulans,
FadA is one of the Gα proteins, and the fadA deletion strain exhibits reduced growth
without the impairment of sporulation [87]. In the heterotrimer status affected by FlbA,
inactivated FadA (GDP-bound) exists with SfaD (suppressors of the flbA-loss of function
mutations, Gβ) and GpgA (G protein gamma A, Gγ) and represses vegetative growth [88].
When GTP is bound to FadA, this protein dissociates from the complex, and the separated
FadA activates PkaA, which suppresses brlA levels, contributing to normal vegetative
fungal growth and the inhibition of asexual development [89]. The remainders (GpgA and
SfaD) separated from the complex also positively regulate hyphal proliferation and repress
asexual developmental progression [90,91].

3.3. Upstream Regulators of BrlA

For hyphal cells to enter the stage of asexual development, appropriate temporal and
spatial control of brlA expression must be applied in A. nidulans. Here, we describe the other
upstream transcription factors of BrlA involved in the asexual development of A. nidulans,
in addition to the UDAs that regulate brlA expression (Figure 2). StuA (stunted), studied
in 1969, is known as a developmental modifier and is necessary for proper conidiophore
formation [36]. StuA is one of the APSES transcription factors required for the transient and
spatial regulation of brlA and abaA expression [92]. RgdA, named after retarded growth
and development, is a putative APSES transcription factor that is important for the orderly
organization of phialide formation [93]. RgdA affects brlA and abaA expression, but it is
not influenced by brlA or stuA. RlmA, a S. cerevisiae ortholog of rlm1, is a MADS-box family
transcription factor that is involved in proper brlA expression and phialide development,
as well as in cell wall remodeling [94]. AslA, implicated in asexual differentiation with
low-level conidiation, encodes a C2H2 zinc finger transcription factor that is related to
normal asexual development and functions as an upstream activator of brlA [95]. MtfA is
denominated from master transcription factor A, which encodes a C2H2 zinc finger domain.
This protein has been demonstrated as a key factor for normal brlA expression, asexual
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development, and the production of several secondary metabolites in A. nidulans [96]. RcoA
is a member of the WD repeat proteins that plays important roles in proper vegetative
growth, asexual development, and carbon catabolite repression. This transcription factor
also affects the expression of brlA, but not the signal transduction of flbA and fluG [97].
RtfA, encoding RNA-pol II transcription factor-like protein, regulates proper branched
hyphal growth and conidiophore morphology by the accumulation of brlA transcript.
Moreover, this protein affects the biosynthesis of several secondary metabolites, including
sterigmatocystin and penicillin [98]. HbxA, a member of homeobox proteins, acts as an
activator of asexual development and affects brlA mRNA expression. Deletion of hbxA
results in aberrant asexual structures, whereas its overexpression results in enhanced
production of conidiophores in liquid-submerged cultures [99].

Although Nsd (never in sexual development) proteins were previously described as
transcription factors affecting the activation of asexual development, they are key negative
regulators of conidiation. NsdC, with two C2H2 zinc fingers and a C2HC motif, is not
only required for vegetative growth and sexual development but also negatively regulates
asexual sporulation by repressing the brlA expression [100]. Like NsdC, one of the GATA
transcription factors, NsdD, also affects conidiation by binding to the brlA promoter [101].

3.4. Other Key Regulators of Asexual Development

MedA (medusa) is also investigated in 1969 with StuA as mentioned above. This
protein, which does not have any conserved domain, is essential for proper conidiophore
formation [36]. MedA, known as an Neurospora crassa ortholog of acon-3, primarily modu-
lates the expression of core conidiation genes (brlA and abaA) for the timely formation of
metulae and phialides [102,103]. One of the WOPR fungi-specific DNA-binding proteins,
OsaA (orchestrator of sexual and asexual development), indirectly controls conidiation
by repressing downstream of the velvet regulator veA, which acts as a balancer between
asexual and sexual development [104].

4. Conidial Maturation and Dormancy

Immature spores, formed at the ends of conidiophores, mature and stay in a dormant
state. Dormant conidia modify the conidial wall, tolerate external stimuli, and maintain
their viability for a long duration. The functions of controllers related to the maturation
and quiescent phases in A. nidulans are shown in Figure 3 and Table 3.
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MAPK-mediated regulators.
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Table 3. List of Aspergillus nidulans genes involved in conidial maturation and dormancy.

Name Conidiogenesis Conidial
Viability

Conidial Stress
Response Description Reference(s)

CatA Resistant to H2O2
Spore-specific catalase A, involved in
oxidative/osmotic stress [105]

CatB Resistant to H2O2
Catalase B, involved in
oxidative/osmotic stress [106]

CchA Activation Sensitive to CFW
and CR Calcium channel [107]

CpsA Activation Resistant to MSB,
SDS and CFW Capsule polysaccharide synthase [108]

DewA Spore-wall fungal hydrophobin, named
after detergent wettable [109,110]

DlpA Resistant to heat
and H2O2

Dehydrin-like protein [111]

DnjA Activation Maintenance Resistant to heat Putative DnaJ proteinRegulation of
trehalose biosynthesis [112]

HmbB Activation Maintenance
Putative high-mobility group box
proteinRegulation of trehalose
biosynthesis and proper germination

[113]

LysB/D Resistant to heat,
UV and H2O2

Homoisocitrate dehydrogenase/synthase [114]

MidA Activation Sensitive to CFW
and CR

Stretch-activated calcium channels,
named after mating-induced death [107]

MonA Activation Maintenance Resistant to heat
A subunit of a guanine nucleotide
exchange factor
Regulation of trehalose biosynthesis

[115]

MpdA
Resistant to heat

Sensitive to
benomyl

Mannitol-1-phosphate 5-dehydrogenase [116]

MtlA Activation Resistant to CFW
and CR Mid2-like protein [117]

PufE Repression Maintenance Resistant to heat Pumilio/fem-3 binding factor
Regulation of trehalose biosynthesis [65]

RodA Rodlet protein composed of fungal
spore wall [110]

TpsA Maintenance Resistant to heat
and H2O2

Trehalose-6-phosphate synthase
Regulation of trehalose biosynthesis [118]

4.1. The Velvet Family

Members of the velvet family are known as essential regulators of fungal growth,
development, and secondary metabolism in ascomycetes and basidiomycetes [18]. They
commonly share a “velvet” DNA-binding domain that is composed of 150 amino acids [119].
There are four velvet proteins, VeA, VelB, VelC, and VosA, in A. nidulans, which interact
with each other or non-velvet regulators. Through the interaction of various combinations,
A. nidulans can control development and conidiation in a temporal and spatial manner.
Among the velvet proteins, VelB and VosA play pivotal roles in the maturation and dor-
mancy of asexual spores (Figure 3). VelB (velvet-like protein B) acts as a positive regulator
of asexual development and mediates spore viability, trehalose biosynthesis, and conidial
pigmentation [120]. VosA (viability of spores A) also regulates tolerance to several stresses
and the long-term viability of conidia and trehalose biogenesis [14]. Moreover, the VosA
and VelB form a heterocomplex in conidia and play important roles in conidial maturation,
cell wall composition, and spore germination. One example is that the VosA-VelB com-
plex directly binds to the promoter of fksA and controls β-glucan biosynthesis in asexual
spores [121]. This heterocomplex also modulates the expression of spore-specific structural
and regulatory genes during conidiogenesis. Representatively, VadA (VosA/VelB-activated
developmental gene A) is known as a gene affected by the VosA-VelB complex in conidia.
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VadA functions in conidial trehalose and β-glucan biogenesis, stress tolerance, spore viabil-
ity, and germination in A. nidulans [122,123]. VadJ, regulated by the VosA-VelB complex,
is one of the highly conserved sensor histidine kinases in A. nidulans. VadJ is required
for the proper formation of asexual spores and maintenance of conidial viability [124].
Another Vad protein, VadZ, is a GAL4-like Zn(II)2Cys6 transcription factor that is essential
for conidiogenesis and spore longevity [125].

In contrast, VidA (VosA/VelB-inhibited developmental gene A), repressed by VosA
and VelB, has two C2H2 zinc finger domains at the C-terminus. This protein is involved
in conidial trehalose and β-glucan biogenesis in A. nidulans [126]. There exists another
Vid gene, vidD, which does not contain any known domains, but VidD is essential for
normal fungal development, trehalose biosynthesis, and conidial long-term viability
in A. nidulans [127].

4.2. Transcription Factors Involved in Conidial Maturation and Dormancy

McrA (Multicluster regulator A) is one of the putative GAL4-like Zn(II)2Cys6 transcrip-
tion factors and is highly expressed in late asexual development. This protein affects proper
conidiation by modulating brlA expression through the life cycle. Furthermore, McrA is
known as a direct target of the VosA-VelB heterodimer and modulates long-term spore
viability, trehalose and β-glucan biogenesis, and proper conidial pigmentation [128]. One
of the VosA-controlled regulatory genes, sclB (sclerotia-like), contains a Zn(II)2Cys6 zinc
cluster fungal-type DNA binding domain. Unlike VosA, which represses the premature
induction of brlA, SclB induces the early activators of asexual development (FlbC, FlbD,
and BrlA) and influences conidiogenesis. In addition, SclB plays important roles in conidial
viability and tolerance to oxidative stress [129]. Another Zn cluster family member, zcfA
encodes a Zn(II)2Cys6 zinc finger protein and is known as a putative VosA target gene in
conidia. The deletion of zcfA results in increased asexual spore formation and induced
mRNA levels of brlA. Phenotypic analysis of ∆zcfA conidia shows that ZcfA plays a key
role in conidial viability, trehalose biogenesis, and thermal stress resistance [130]. HbxB,
one of the homeobox family members, is highly expressed in asexual spores and modulates
the production of asexual spores and conidial stress resistance to thermal, oxidative, and
UV stresses [99]. As a transcription factor, HbxB affects the transcriptomic levels of various
genes, regulating trehalose biosynthesis, and β-glucan degradation in conidia [131]. CsgA
is a GAL4-like Zn(II)2Cys6 transcription factor specifically expressed in A. nidulans conidia.
The deletion of csgA results in an increased number of conidia, and csgA-deleted conidia
exhibit augmented trehalose contents and increased tolerance to thermal, oxidative, and
UV stresses compared to WT conidia. In addition, CsgA is required for normal conidial
viability and germination [132].

4.3. Genetic Regulators Related to Stress Tolerance in Conidia
4.3.1. Mitogen-Activated Protein Kinase (MAPK) Cascades

During maturation, the cellular composition of immature spores is altered by several
regulators, and consequently, they possess the ability to withstand various external stresses.
Representatively, the histidine-to-aspartate (His-Asp) phosphorelay systems actively func-
tion so that spores can survive for a long time even under extreme environmental conditions.
In A. nidulans, NikA is a histidine-specific protein kinase (HK) that first recognizes stim-
uli. NikA plays important roles in proper conidial reproduction and conidial resistance
to certain fungicides and osmotic stress. In the presence of stimuli, NikA responds and
activates downstream stress-related regulators [133]. Upon activation by NikA, YpdA trans-
mits the signals to the response regulator, SskA. The deletion of sskA results in defective
asexual development, conidial viability, and sensitivity against cold and oxidative stresses
(H2O2). SskA phosphorylates SskB (MAPKKK), which subsequently phosphorylates PbsB
(MAPKK) and the ortholog of Hog1 (MAPK). There are two homologs of S. cerevisiae Hog1
in A. nidulans and other Aspergilli: SakA (stress-activated MAP kinase) and MpkC. Both of
these homologs physically interact with the upstream regulator PbsB, but they have the
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same or different functions in A. nidulans [134]. As a member of the Hog1/Sty1/p38 family,
SakA is a well-known key regulator of spore stress tolerance in filamentous fungi. Similarly,
in A. nidulans, the deletion mutant of sakA exhibits defective conidial production and ∆sakA
is sensitive to thermal, oxidative, and cell wall stresses. Conversely, the deletion of mpkC
results in increased conidial production and resistance to oxidative stress. However, both
Hog1 homologs, SakA and MpkC, are essential for the long-term survival of conidia [135].
Another MAPK, MpkB, is phosphorylated by other MAPK components (pheromone MAPK
pathway), and activated MpkB is also involved in fungal development. MpkB, regulated
by VosA, is pivotal for spore viability and inhibits conidial germination. MpkB also influ-
ences fungal autolysis [136]. The other MAPK, MpkC, is activated by the fungal cell wall
integrity signal (CWIS). Phosphorylated MpkC modulates proper conidial germination as
well as conidial cell wall integrity by upregulating genes related to α-, β-1,3-glucans and
chitin biosynthesis [137].

4.3.2. Other Transcription Factors Related to Stress Tolerance in Conidia

SrrA is one of the response regulators and components of a stress-sensing phosphore-
lay system in A. nidulans. Like SskA, SrrA is activated by YpdA. However, unlike SskA,
SrrA directly translocates into the nucleus. As a specific transcription factor, SrrA affects
conidial resistance against oxidative stress by regulating antioxidant genes such as catB. Fur-
thermore, SrrA plays important roles in conidial formation and spore viability [138]. AtfA,
an ortholog of Schizosaccharomyces pombe atf1, is a member of the activating transcription
factor/cAMP-responsive element-binding protein (ATF/CREB) family. AtfA, containing a
bZIP domain, permanently exists in the nucleus and responds to oxidative stress during
spore development. When SakA accumulates in the conidial nucleus by oxidative stress,
it physically interacts with AtfA, regulating the expression of antioxidant-related genes
in conidia. Consequently, AtfA plays pivotal roles in the conidial antioxidant response
(tBOOH and H2O2) and long-term viability [139,140]. Recent research shows that AtfA in-
teracts with another bZIP transcription factor, AtfB, for coordinating asexual development
and stress tolerance [140]. Although AtfA appears to be more important than AtfB in the
oxidative stress defense system of A. nidulans spores, AtfB is also essential for tolerating
thermal and oxidative stresses. Another transcription factor related to oxidative response
is NapA, which is an S. cerevisiae Yap1 functional homolog and contains a bZIP domain.
Similar to the functions of AtfA, NapA is involved in oxidant detoxification (menadione
and H2O2). When stimulated by oxidants, NapA protects by positively regulating both
nonenzymatic (e.g., glutathione and thioredoxin) and enzymatic (e.g., catalases and super-
oxide dismutases) pathways in conidia. Moreover, NapA regulates asexual development
and carbon utilization [141]. RsrA (regulator of stress response) is known as a C2H2 zinc
finger transcription factor that is required for fungal growth and sporulation. RsrA directly
represses antioxidant genes such as glrA, trxA, and catB as well as NapA in the presence of
reactive oxygen species such as tBOOH and H2O2 [142].

5. Conidial Germination

Under appropriate conditions, the resting conidia break the quiescent state and modify
their morphology. Through the alteration of cell wall composition and molecular organiza-
tion, they swell and produce the germ tube (polarized growth). The germinated spores can
expand their habitats such as humans, animals, and plants. Therefore, it is important to
understand the regulatory mechanisms related to conidial germination. Although there are
several coordinators mediating conidial germination (Figure 4 and Table 4), we focus on
the genetic regulators and transcription factors.
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Table 4. List of Aspergillus nidulans genes involved in asexual spore germination.

Name Conidiogenesis Germination Description Reference(s)

ArgB Activation Activation
Ornithine carbamoyl transferase, homolog of
S. cerevisiae Arg3
Conidial resistant to heat, UV, and H2O2

[114]

ApsA Activation Activation Anucleate primary sterigmata protein A [143,144]
ApsB Activation Activation Anucleate primary sterigmata protein B [144]
AspA Activation Activation Aspergillus septin A [145]
AspB Activation Activation Aspergillus septin B [146]
AspC Activation Activation Aspergillus septin C [145]

CalA Activation Activation Fungal thaumatin-like proteins, named after
calcoflour hypersensitivity [49,147]

CaM Activation Calmodulin involved in calcium-calcineurin signaling [148]

CetA Activation Fungal thaumatin-like proteins, named after
conidial-enriched transcripts [147]

ChiA Activation Chitinase involved in fungal cell-wall integrity
signaling (CWIS) [149]

CmkA/B Activation Ca2+/caM-dependent protein kinase involved in
calcium-calcineurin signaling

[150]

ConF/J Activation Conidiation-specific gene
Conidial sensitive to polyol [151]

CotA Activation Activation NDR protein kinase, homolog of S. cerevisiae Cbk1 [152,153]

CpcB Activation Activation Gβ-like protein, named after Cross pathway control WD
repeat protein B [154]

DnfA Activation Activation Phospholipid flippases, homolog of S. cerevisiae
Drs2-Neo1-Family Dnf1/2 [22,155]

DnfB Activation Activation Phospholipid flippases [22,155]
FphA Activation Fungal phytochrome (red light-sensing photoreceptor) [156]
GapA Activation Activation Ras GTPase-activating protein [157]
GcsA Activation Glucosylceramide synthase [158]
GlrA Activation Glutathione reductase [158]
GprH Activation G protein-coupled receptor [159]
HmbA Activation Activation High-mobility-group B protein A [160]
LkhA Activation Activation LAMMER kinase, homolog of S. pombe Lkh1 [161]
MobB Activation Activation Homolog of S. cerevisiae Mob2 [153]

NimA Activation Cell-cycle regulated serine/threonine protein kinase,
homolog of S. pombe Kin3 [162]

NpgA Activation Activation 4′-phosphopantetheinyl transferase, named after the null
pigmentation mutant [163]

PexC
PexE~G Activation Activation Peroxisome biogenesis protein (peroxin) [164]
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Table 4. Cont.

Name Conidiogenesis Germination Description Reference(s)

PclA Activation
Phosphatidylinositol phospholipase, homolog of
S. cerevisiae Pcl1
Conidial resistant to cold

[165]

PrsB/C Activation Phosphoribosyl pyrophosphate synthetase [166]
RasA Activation Ras-like protein [167]

RicA Activation Activation GDP/GTP exchange factor in Heterotrimeric
G protein signaling [168]

SchA Activation Sch9-like kinase [169]

SepA Activation Formin protein involved in the formation of an actin ring
at the septation site [170]

SodVIC Activation α-COP-like protein, named after the stabilization
of disomy [171]

SvfA Activation Activation Homolog of S. cerevisiae survival factor 1
Conidial resistant to cold, MSB and H2O2

[172]

PmtA
(=SwoA) Activation Protein O-mannosyltransferase (Swollen cells)

Conidial resistant to CFW [173,174]

SwoB Activation Activation Swollen cells
Conidial resistant to CFW [174]

TeaC Activation Cell end marker protein [175]
UgtA Activation Activation UDP-Galf transporter [176]
WspA Activation Activation Wiskott–Aldrich syndrome protein [177]
YpkA Activation Activation Polyphosphate kinase, homolog of S. cerevisiae Ypk1 [178]

5.1. Transcription Factors Involved in Germination

CreA is a Cys2His2 transcription factor for carbon catabolite repression (CCR). In the
presence of glucose as a carbon source, CreA directly or indirectly represses genes encoding
enzymes (cellulases, xylanases) for degrading alternative carbon sources. However, in the
absence of glucose, CreA is ubiquitinated and targeted by the proteasomes. As a result of
the degradation of CreA, enzymes for alternative carbon sources are biosynthesized in A.
nidulans [179]. In addition to CCR, the ∆creA strain shows defective spore germination [180].
SocA, a Zn(II)2Cys6 transcription factor, was first discovered by mutagenesis and isolation
of FLIP (Fluffy in Phosphate) mutant. The null mutant of socA shows deficient colony
growth and abnormal morphogenesis as well as an altered germination pattern [62].

5.2. Other Regulators Related to Germination

The cAMP-PKA pathway (PKA pathway) is closely related to A. nidulans conidial
germination. When GanB, which is Gα forming a heterotrimer with SfaD (Gβ) and GpgA
(Gγ) mentioned earlier, separates from the complex and then activates CyaA, the activated
CyaA as the adenylate cyclase produces cAMP from ATP, which attaches to PkaR and pro-
motes conidial germination [169]. In addition, PkaB, a secondary protein kinase A catalytic
subunit that is separated from PkaR by cAMP binding, promotes conidial germination and
spore resistance to oxidative stress and inhibits conidiation while remaining alone [181].
Meanwhile, the dissociated GanB and SfaD-GpgA dimers are reunited by RgsA (regulator
of G-protein signaling family), which indirectly affects asexual development and inhibits
vegetative growth. RgsA plays a vital role in proper conidial germination and tolerance to
thermal and oxidative stresses [182].

6. Conclusions

The genus of Aspergillus is one of the most abundant filamentous fungi in the air. They
proliferate by producing a number of asexual spores, which constitute the major repro-
ductive mode. Floating at short and long distances, conidia take root in the appropriate
environment or host and grow by changing their morphology. They undergo asexual
development and produce conidiophores. The matured conidia on the conidiophores stay
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in the resting phase and prepare for the next generation. These processes are coordinated
by several genetic regulators or signaling pathways, which have been investigated by
researchers. In this review, we summarized the key genetic regulators and their roles in
each stage of asexual reproduction in the model organism A. nidulans. This information will
help us gain a better understanding of the organizational and systematic developmental
process and may help prevent the development of pathogenic spores or maximize the
production of desired ones. Nevertheless, scientific studies must be continuously and
deeply scrutinized as there are still several unexplored regulators.
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