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Abstract: Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of
varying motor neurons resulting in decreased physical capabilities. Current research is focused on
hindering disease progression by determining causes of motor neuron death. Metabolic malfunction
has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism
have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing
the importance of a cohesive system. Finding metabolism changes consistent throughout both
neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review
will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for
future intervention.
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1. Introduction

Motor Neuron Diseases (MND) are characterized by the progressive loss of motor
neuron function due to untimely death of upper (UMN) and/or lower (LMN) motor
neurons [1]. The mechanism driving the motor neuron degeneration is currently unknown;
however, studies examined further in this review reveal that metabolic malfunction could
be a leading cause. These alterations in metabolism expand beyond the central nervous
system (CNS) and have been noted in the neuromuscular junction (NMJ) as well as skeletal
muscle in patients with Amyotrophic Lateral Sclerosis (ALS) [2]. Declining NMJ integrity
points to a neuron-to-muscle communication error in motor neuron diseases, proposing
a greater need to study the interaction between these two systems [3–6]. Specifically,
determining the changes of varying metabolic pathways such as glycolysis, the pentose
phosphate pathway (PPP) and oxidative phosphorylation, both in and out of the CNS, is a
top priority in the field. Therefore, understanding metabolism and recognizing alterations
in MNDs is important in uncovering disease pathogenesis.

2. Types of MNDs

There are numerous different motor neuron diseases currently classified throughout
the world. However, some of the most commonly known are ALS, Primary Lateral Sclerosis
(PLS), Spinal Muscular Atrophy (SMA) Kennedy’s Disease, and Hereditary Spastic Paraple-
gia (HSP). Differences between these diseases rely on the types of motor neurons affected.
Specifically, ALS is defined by loss of both upper and lower motor neurons [7], whereas
PLS affects primarily upper motor neurons and SMA targets lower motor neurons [8,9]. It
is important to understand the differences between these diseases in order to be able to
properly diagnose and treat patients once the disease phenotype becomes apparent.

2.1. Amyotrophic Lateral Sclerosis

ALS was originally characterized in 1869 by Jean-Martin Charcot; however, it wasn’t
until the diagnosis of the famous New York Yankee in 1939, Lou Gehrig, that the disease
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become more well-known [10]. Generally, the disease is characterized by the loss of both
upper and lower motor neurons. Clinically, disease onset presents as either bulbar onset, in
which patients suffer from more proximal weakness presented as dysarthria and dysphagia,
or limb onset, in which patients suffer from distal weakness in limbs [11,12]. Although
presentation of disease onset varies, most patients ultimately succumb to respiratory failure
resulting in mortality [13,14].

The prevalence of ALS is estimated to be around 6 cases per 100,000 people glob-
ally [15]. The mean age of onset is between 50–66 years of age, with variation between
continents [15]. Although there is a wide range of diagnosis age, typical time to mortal-
ity is between 3–5 years for all cases due to time to diagnosis after initial phenotype is
shown [16]. Among diagnosed ALS patients, about 90% of cases have an unknown origin
and are defined as sporadic ALS, whereas 10% are genetically inherited variations denoted
as familial ALS [17]. Although the mechanism of sporadic cases has yet to be discovered,
numerous genes associated with disease pathology have been associated with the familial
form of ALS [18]. In 1993, the first gene, super oxide dismutase (SOD1), was associated
with ALS [19]. The primary function of SOD1 is to reduce oxidative stress by reducing
free radicals; however, in ALS, both wild-type (WT) and mutant (MT) SOD1 are prone to
misfolding and ultimately aggregation [20]. Since the discovery of SOD1 and its relation
to ALS, genes such as transactive response-DNA binding protein (TARDBP) [21], fused in
sarcoma (FUS) [22] and C9orF72 [23] have been of primary focus in ALS research.

2.2. Primary Lateral Sclerosis

Since its discovery, PLS has been denoted a primarily upper motor neuron disease.
In 1874, Jean-Martin Charcot’s original examination confirmed the unreliable nature of
affected lower motor neurons [24]. In the early 20th century, studies began to show a
predominant loss of upper motor neurons along with decreased degeneration present in the
anterior horn, which would classify the disease under ALS [25,26]. Since then, diagnostic
criteria and methods have been refined by utilizing both magnetic resonance imaging
(MRI) for degeneration analysis and positron emission tomography (PET) for total glucose
uptake [27]. The question remains as to whether PLS will eventually evolve into ALS over
time. In order to determine disease course, 43 patients with PLS were analyzed over the
course of nine years. [28]. The results showed those with pure PLS at the time of diagnosis
did not go on to develop ALS, emphasizing differences in the diseases and the need to
determine mechanisms regarding disease phenotype. Although mean age of onset is similar
to ALS, PLS only represents about 3% of motor neuron disease patients, making it a rare
but sporadic disease [29].

As previously stated, PLS has been denoted as a primarily sporadic disease to dif-
ferentiate it from hereditary spastic paraplegia (HSP) and aid in diagnostic criteria [30].
However, patients with a genetic history of familial ALS have exhibited PLS phenotypes,
suggesting, although rare, a potential genetic cause of this previously primarily sporadic
disease [31]. The rare nature of PLS continues to be emphasized in the small number of
juvenile cases that have been reported. Juvenile PLS is a genetic variation that occurs before
the second decade of life. Mutations in the ALS2 gene encoding the protein alsin [32]
and the ERLIN2 gene encoding the protein endoplasmic reticulum lipid raft-associated
protein 2 [33] have been recorded in juvenile PLS cases, creating more layers to an already
complicated disease.

2.3. Spinal Muscular Atrophy

SMA is an autosomal recessive disease targeting both motor neurons and skele-
tal muscles [34]. The current rate of incidence reported for SMA is about 1 in every
10,000 births [35]. In 1995, the gene survival motor neuron (SMN) was discovered to be the
primary cause of SMA [36]. Two variations of this gene are found in the human genome,
SMN1 and SMN2, where SMN1 is present in all mammals and SMN2 is specific to hu-
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mans [37]. Mutations in SMN1 have been found in over 90% of SMA cases, making it the
primary target for therapeutic intervention [38].

SMA can be characterized into five types, varying by both age and severity. Typically,
the disease presents as proximal weakness of the legs and minimal effects on upper ex-
tremities [39]. Although this disease has presented itself later in life, most cases begin to
show signs as early as 18 months of age [40]. Those presenting with prenatal signs typically
succumb to the disease within 1 month of birth [41]. However, cases diagnosed later in
life, though rare, show minimal disease phenotype as well as showing no alterations in
life span [40]. Therefore, the field is currently in need of a way to tackle this disease at
early stages.

2.4. Kennedy’s Disease

Otherwise known as spinal and bulbar muscular atrophy (SBMA), Kennedy’s disease
is an X-linked recessive disease characterized by CAG repeats in exon 1 of the androgen
receptor gene [42]. This MND is different from others as it only presents in male patients.
The disease typically presents in the lower limbs; however, simultaneous limb motor
deficits have been shown in this disease [43]. Although progressive atrophy is a hallmark
of this disease, life expectancy remains unchanged in comparison to the normal population
in those diagnosed with the disease [44]. Therefore, finding early stage biomarkers is
necessary for proper therapeutic intervention.

2.5. Hereditary Spastic Paraplegia

HSP is a group of inherited heterogeneous diseases clinically defined by both stiffness
and weakness in the lower limbs [45]. HSP can be classified into numerous subtypes based
on symptoms, age, inheritance pattern or cellular mechanism [46]. Clinical classification is
defined by either pure or complicated signs [46]. Pure HSP presents with spastic paraplegia
and lower extremity hypoesthia [47]. Complicated HSP consists of neurological and
non-neurological symptoms such as dysarthria and peripheral neuropathy, in addition
to all features present with pure HSP [47]. Age of onset for the disease ranges from early
infancy to late adulthood, with symptoms before the age of 35 denoting Type 1, and
after, Type 2 [48]. Inheritance patterns recognize five specific types of HSP; autosomal
dominant, autosomal recessive, X-linked, mitochondrial and de novo, which have been
summarized previously [49].The corticospinal disease has an average prevalence of 4.5 in
every 100,000 cases in the world [49]. Over 80 genes have been associated with HSP,
83 identified as spastic paraplegia genes, 25 having only HSP designation and 12 having
yet to be associated with a specific protein [50]. With varying patterns of inheritance
involving numerous pathways, there currently is a need to find common ground in order
to effectively treat all forms of HSP [50].

3. Metabolism in Neuron-Muscle Communication

While numerous pathways have been proposed, metabolic dysfunction is heavily
represented in MNDs. Studies currently reveal that altered metabolism could either be the
cause or the result of disease pathogenesis [51]. Although motor neurons are a primary
focus when investigating MNDs, similar metabolic dysfunction has been discovered in
skeletal muscle tissue, including localization at the NMJ [52]. Therefore, understanding
dysregulated metabolism in both the CNS and periphery is necessary for diagnostic and
therapeutic intervention (Figure 1).

3.1. Neuronal

The CNS houses highly metabolic cell types requiring copious amounts of energy to
maintain physiological functions. The intricate communication between cell types in order
to maintain metabolic balance has been extensively reviewed [53,54]. The brain consumes
about 20% of the body’s total energy in order to maintain proper functioning [54]. Glucose
is the primary substrate utilized by neurons in the brain [55]. However, in states of low
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glucose availability, other substrates, such as ketone bodies, can be used as a substitute [56].
Under normal physiologic conditions, glucose is transported primarily into neurons via
glucose transporters [57]. Glucose can then be phosphorylated, where its metabolic fate can
be determined by either proceeding through glycolysis or being shunted into the pentose
phosphate pathway (PPP) [58,59]. The switch between glycolytic pathway activation and
PPP is determined by the metabolic needs of the cell. Shunting phosphorylated glucose
into the PPP is necessary when needing to battle oxidative stress [60]. Conversely, glucose-
6-phosphate continuing through glycolysis is needed in order to produce energy. The
product of glycolysis, pyruvate, is either transformed into lactate within the cytoplasm
or shunted to the mitochondria in order to be converted to acetyl CoA. Acetyl CoA is the
primary substrate for the tricarboxylic acid cycle (TCA) [61]. The byproducts of the TCA
cycle, NADH and FADH, are necessary for the mitochondrial electron transport chain (ETC)
in order to produce the vast amount of ATP necessary to maintain cellular functions [61].
The mitochondrial ETC utilizes the complexes housed on the inner membrane of the
mitochondria to create a proton gradient in order to produce ATP [62]. Defects in any of the
complexes have been shown to result in decreased energy production in neurodegenerative
disease, as described further throughout this text.

Cells 2023, 12, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 1. A summary of metabolism in neurons and skeletal muscle reflective of both physiological 

and pathological states. The panels on the left show normal metabolic output found in both cells 

types. Panels on the right emphasize the changes in metabolism within NMDs. 

3.1. Neuronal 

The CNS houses highly metabolic cell types requiring copious amounts of energy to 

maintain physiological functions. The intricate communication between cell types in order 

to maintain metabolic balance has been extensively reviewed [53,54]. The brain consumes 

about 20% of the body’s total energy in order to maintain proper functioning [54]. Glucose 

is the primary substrate utilized by neurons in the brain [55]. However, in states of low 

glucose availability, other substrates, such as ketone bodies, can be used as a substitute 

[56]. Under normal physiologic conditions, glucose is transported primarily into neurons 

via glucose transporters [57]. Glucose can then be phosphorylated, where its metabolic 

fate can be determined by either proceeding through glycolysis or being shunted into the 

pentose phosphate pathway (PPP) [58,59]. The switch between glycolytic pathway 

activation and PPP is determined by the metabolic needs of the cell. Shunting 

phosphorylated glucose into the PPP is necessary when needing to battle oxidative stress 

[60]. Conversely, glucose-6-phosphate continuing through glycolysis is needed in order 

to produce energy. The product of glycolysis, pyruvate, is either transformed into lactate 

within the cytoplasm or shunted to the mitochondria in order to be converted to acetyl 

CoA. Acetyl CoA is the primary substrate for the tricarboxylic acid cycle (TCA) [61]. The 

byproducts of the TCA cycle, NADH and FADH, are necessary for the mitochondrial 

electron transport chain (ETC) in order to produce the vast amount of ATP necessary to 

maintain cellular functions [61]. The mitochondrial ETC utilizes the complexes housed on 

the inner membrane of the mitochondria to create a proton gradient in order to produce 

Figure 1. A summary of metabolism in neurons and skeletal muscle reflective of both physiological
and pathological states. The panels on the left show normal metabolic output found in both cells
types. Panels on the right emphasize the changes in metabolism within NMDs.

3.2. Neuromuscular Junction

Connections formed at the NMJ are important for muscle function and contraction. In
short, an action potential is delivered to the synapse allowing for the release of acetylcholine
(Ach); Ach can then traverse across the NMJ and bind to the Ach receptor on the muscle
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fiber, enabling a contraction downstream [63,64]. Metabolic balance at the NMJ is necessary
for maintaining communication between neuronal and skeletal muscle cells [65]. It is
currently known that mitochondria ATP production and neurotransmitter release at the
NMJ is necessary to maintain a stable synaptic connection [66]. In a neuronal co-culture
model, motor neurons show increased distal mitochondrial accumulation, emphasizing
the highly metabolic nature of the synaptic connection between motor neurons and muscle
fibers [67]. Although it is known that metabolism is a key regulator of this communication,
more studies must be performed in order to determine the importance of the NMJ, more
specifically metabolism at the NMJ, in motor neuron diseases.

3.3. Skeletal Muscle

Muscle cells primarily utilize glucose as an energetic substrate [68]. Glucose is trans-
ported across the cellular membrane and either stored as glycogen or directly metabolized
through glycolysis [69]. Pyruvate shares a similar fate to neuronal metabolism, either being
converted to lactate or proceeding through oxidative phosphorylation. Second to glucose,
skeletal muscles can also use fatty acids in order to maintain energy homeostasis, primarily
as a result of a high stress induced environment, such as exercise [70]. Conversely, in cases
of aging muscle related disorders, such as sarcopenia, a decrease in total mitochondria via
mtDNA and altered mitochondrial complex activity are key factors in muscle atrophy [71].
Basic mitochondrial functions such as fusion and fission have been linked to increased mus-
cle atrophy in both age and disease [72], emphasizing the need for metabolic homeostasis
in order to maintain muscle function.

4. Metabolic Dysfunction in Motor Neuron Diseases
4.1. CNS Metabolic Malfunction in ALS

A hallmark of ALS is disturbed energy homeostasis, defined by either increased resting
energy expenditure, defined as hypermetabolism, or a decrease in energy production [51].
Evidence of hypermetabolism has been found in both sporadic and familial ALS [73]. Uti-
lizing changes in fat mass and fat free mass, ALS patients were denoted as hypermetabolic
in comparison to age match controls [51]. A 30-month follow-up confirmed decreased
overall function via the Revised ALS Functional Rating Scale (ALSFRS-R) and survival
in hypermetabolic ALS patients [51]. Upon diagnosis, ALS patients present with signifi-
cantly lower weight at diagnosis compared to control patients [74]. Upon further review,
patients with significant weight loss also had worse neurological function, emphasizing
a direct correlation between disease progression and hypermetabolism [74]. Although
hypermetabolism is a hallmark of ALS patients, malnutrition is also a consequence of a
progressing diseased phenotype [75]. Malnutrition is aggravated by functional decline
and creates a cycle of low supply and high demand, contributing to a worsening pheno-
type [75]. Previous studies note varying uptake of glucose throughout the CNS of ALS
patients [76,77]. This results in regional specificity of glucose uptake, creating a decrease in
glucose uptake in the motor cortex [77]. Along with decreased glucose uptake, numerous
studies have consistently noted disrupted mitochondria in ALS patient samples [53,78–81].
Increased mutated mitochondrial DNA (mtDNA), as well as a decrease in standard mtDNA,
was reported in ALS patient spinal cord samples [78]. Mutated mtDNA was increased
in the motor cortex as opposed to the temporal cortex; however, this change was not
noted in control patients [82].) Utilizing electron microscopy (EM), ALS patient lumbar
spinal cord samples demonstrated altered mitochondria morphology [83,84]. Coupled with
malfunctioning mitochondria, oxidative stress is a key factor in disease pathogenesis as
shown in ALS patients [85]. Although there is evidence for mitochondrial malfunctions
in ALS patients, not much has been proven about upstream metabolic pathways, such
as glycolysis. Previous reports show a decrease in glucose uptake in ALS patient motor
cortex via positron electron microscopy [76]. However, an increase in glucose utilization in
astrocytes and microglia propose a cell-specific response to glucose utilization.
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In vivo models of ALS mimic metabolic dysregulation within the CNS, as previously
reported in patients. Since SOD1 was the first gene found to be associated with ALS, a signif-
icant amount of what has been found in vivo has come from this mouse model. SOD1 mice
harboring the G93A mutation have shown defects in glucose uptake in the corticospinal
tract, similar to PET studies in patients, as well as a decrease in total ATP production [86].
More importantly, transgenic mice expressing either hSOD1 WT or G93A mutant show
a decrease in mitochondrial respiration and total ATP production at symptomatic stages
of the disease [87]. Importantly, ALS has been shown to have a high prevalence in men
over women, along with disease onset at an earlier age [88]. Utilizing the SOD1 G93A
mouse model, a report recapitulates the sex differences seen in patients by emphasizing a
delay in both weight loss and survival age post symptom onset [89]. Other ALS animal
models have shown decreases in mitochondrial respiration. Utilizing a TDP43 animal
model, increased TDP43 WT and mutant A315T expression showed increased mitochon-
drial malfunction and altered mitochondrial morphology, confirmed with transmission
electron microscopy (TEM) [90]. Utilizing dissected motor cortices from TDP43-A315T
mouse models, a decrease in both ATP/ADP and NAD+/NADH ratios confirms defects in
mitochondrial respiration and increased oxidative stress, respectively [91]. A group led
by Dr. Daniela Zarnescu further expanded the field of metabolic dysregulation of ALS by
determining changes of glycolysis, the TCA cycle and mitochondrial respiration utilizing
a Drosophila model. In TDP43 Drosophila models, the authors found that by increasing
the glucose transport on neurons (GLUT3) as well as increasing one of the rate-limiting
enzymes in glycolysis, phosphofructokinase (PFK), locomotive deficits can be restored back
to baseline [92]. While an increase in this enzyme was already found in their model and
increasing its presence mitigated the ALS phenotype, the authors proposed glycolysis could
be acting as a compensatory mechanism in ALS and increasing its output could continue
to eliminate locomotive defects. They continued to expand their research downstream of
glycolysis to determine if altering metabolism at any state could be beneficial. Utilizing the
same Drosophila model, they determined that increasing the TCA cycle by either genetic
modulation or through dietary mechanisms could also eliminate locomotive deficits in
this model [93]. Although other in vivo models have been created to further study ALS,
minimal studies have emphasized the importance of metabolic malfunction, which should
be emphasized moving forward to determine genetic differences in metabolic malfunction
in ALS.

In vitro models of ALS offer a short-term solution for studying motor neuron dis-
eases, and have the availability to study both familial and sporadic forms of the diseases.
Importantly, one can not only investigate mitochondrial dysfunction, but also determine
changes in other pathways such as glycolysis and the PPP to determine if there are any
changes upstream of mitochondrial deficits that could alter the total metabolic output in
these diseases. A study utilizing motor neurons derived from induced Pluripotent Stem
Cells (iPSCs) were generated as isogenic controls, sporadic ALS (sALS) or familial ALS
(fALS) [94]. The authors found, utilizing a seahorse respiration assay, that not only was
glycolysis elevated in these motor neurons but also mitochondrial respiration was reduced.
To confirm that this was specific to motor neurons, they differentiated the iPSCs into cortical
neurons exhibiting the same genotype; however, no significant respiratory changes were
found, suggesting this is a motor neuron specific response [94]. Similarly, a study utilizing
fibroblasts isolated from ALS patients consisting of the SOD1 mutant I113T confirm similar
results previously found in the G93A mutant, that mitochondrial respiration is decreased
while glycolytic activation is increased [95].

Interestingly, these changes were observed in fALS motor neurons harboring SOD1,
TDP43, and C9orf72 mutations; however, a study utilizing patient iPSCs with mutations
in the ALS-causing gene FUS found no changes in metabolic respiration in comparison
to isogenic controls, proposing a gene-specific metabolic response [96]. A separate study,
utilizing motor neurons derived from E17 rat cortex infected with SOD1 and TDP43
mutations, showed decreased glycolytic activation by a reduction in lactate but maintained
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levels of pyruvate and ATP [97]. The authors postulate their results are representative
of the short-term induction of ALS (48 h), hypothesizing that this data is an early-stage
response and that end-stage ALS could show mitochondrial deficits as described previously.
Focusing on the PPP, a previous study notes a decrease of ribose-5-phosphate and glucose-6-
phosphate dehydrogenase (G6PDH) resulting in an increase of oxidative stress in an SOD1
animal model of ALS [98]. This emphasizes alterations in numerous neuronal metabolic
pathways in ALS models (Figure 1 and Table 1).

Table 1. Summary of model specific changes in metabolism found in NMDs.

Disease Model Findings

ALS

Neuronal—Patients
• Decreased glucose uptake in motor cortex [76,77]
• Disrupted mitochondria in spinal cord samples [53,78–81]
• Increased mutated mtDNA and decreased mtDNA in cortex [82]

Neuronal—in vivo

• Defects in glucose uptake and ATP production from defective
mitochondria in SOD1 models [86,87]

• Increased mitochondrial malfunction and altered morphology [90]
• Defects in mitochondrial respiration and increased oxidative stress in

TDP43 mouse model [91]
• TDP43 Drosophila model increased PFK as compensatory [92]

Neuronal—in vitro
• iPSCs show increased glycolysis and decreased mitochondrial

respiration [94,95]
• Decreased PPP intermediates resulting in oxidative stress [98]

Skeletal—Patients • Mitochondrial dysfunction via COX-negative fibers in ALS patient
muscle biopsies [99]

Skeletal—in vivo
• Reduction of mitochondrial proteins [100]
• Defects in mitochondrial dynamics before disease onset [101,102]
• Decreased glycolytic pathway activation [2]

PLS Neuronal—Patients • Hypometabolism in the precentral gyrus [8,103]

SMA Neuronal—in vivo • SMA mouse model shows decreased mitochondrial respiration [104]

Kennedy’s Disease Neuronal—in vitro • Decreased mitochondrial genes and increased ROS [105]

HSP

Skeletal—Patients • SPG28 subtype decreased mitochondrial DNA and altered
mitochondrial morphology [106]

Neuronal—in vitro

• SPG7 subtype olfactory neurosphere-derived cells demonstrated
fragmented mitochondria, decreased mitochondrial membrane
potential, reduced oxidative phosphorylation, reduced ATP
concentration and increased oxidative stress [107]

• IPSCs derived from SPG11 and SPG48 subtypes show decreased
mitochondrial length, density and ATP levels [108]

4.2. Peripheral Metabolic Malfunction in ALS

In recent years, skeletal muscle metabolism has been evaluated in motor neuron dis-
eases in order to properly determine a therapeutic course of action for disease treatment.
ALS patient skeletal muscle tissue samples reflect what was previously shown in the spinal
cord samples. In a study utilizing the vastus lateralis from patients, a decrease in mito-
chondrial mRNA encoding mitofusin 1&2, which are important for mitochondrial fusion,
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was found in ALS patients when compared to health controls [100]. In studies utilizing
muscle biopsies from ALS patients, preferential wasting is found in the gastrocnemius
(GAS) muscle in comparison to the tibilialis anterior (TA), including a reduction of function
in terms of plantar flexion (GAS) versus dorsiflexion (TA) [109]. However, conflicting
studies emphasize the loss of the TA muscle over the gastrocnemius, proposing that the
glycolytic nature of the TA is allowing the muscle to be more susceptible to atrophy over
the oxidative GAS muscle [52,110]. Although conflicting data has been found regarding
muscles susceptible to degeneration, the “split-leg” hypothesis is still present, although
more studies must be completed in order to determine muscle susceptibility. A study
looking at SOD1 mutant carriers along with cases of sporadic ALS showed a reduction in
motor unit number estimate (MUNE) months before the onset of weakness, proposing a
potential biomarker for earlier diagnosis [111]. Muscle biopsies from ALS patients were his-
tochemically stained for COX; in ALS patients there was a higher number of COX-negative
fibers, adding to the author’s conclusion that mitochondrial dysfunction is present in ALS
patients [99].

Animal models of ALS also mimic what is seen in patient skeletal muscle tissue, simi-
larly to what was previously reported within the CNS. In SOD1 G93A mice, with increased
expression of mRNA’s allowing for the reduction of mitochondrial proteins COXIV, and
peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) emphasizing mito-
chondrial defects in skeletal muscle tissue [100]. Using confocal microscopy and markers
for mitochondria, defects in mitochondrial dynamics were found in G93A mutant mouse
in skeletal muscle samples before disease phenotype onset occurred [101,102]. Not only
are morphological changes present in mitochondria in skeletal muscles, increased reactive
oxygen species (ROS) have also been shown to be present in skeletal muscle tissues from
SOD1 G93A mice [112]. In order to determine changes in specific muscle fiber types, a study
using G93A mice determined a preferential switch from glycolytic to lipid metabolism [2].
Similarly, utilizing a different mutation, SOD1 G86R mice showed decreased glycolytic
pathway activation and increased fatty acid metabolism at pre-symptomatic stages of the
disease [113]. These mice also showed increased levels of pyruvate dehydrogenase kinase
4 (PDK4), allowing for the inhibition of the enzymatic activity of pyruvate dehydrogenase.
These studies show the importance of documenting the stages of ALS, as time course
studies emphasize changes of metabolism at varying points of the disease. Therapeutic
approaches have not only included pharmaceutical intervention [52] but also utilizing
varying forms of exercise, such as swimming, to ameliorate the muscular defects found at
early stages of the disease [114] (Figure 1 and Table 1).

5. Metabolic Malfunction in Other Motor Neuron Diseases

Metabolic malfunction has been directly linked with SMA, PLS, Kennedy’s disease
and HSP. Although less has been found about PLS in comparison to other NMDs, links
to solely upper motor neuron loss have been demonstrated. Currently, diagnostic tests
for PLS are being extensively studied in order to differentiate the disease from ALS, but
preferential atrophy is found in the precentral gyrus of PLS patients, which is absent in
ALS cases [115]. Along with atrophy in the same region, PLS patients have also shown
hypometabolism via fluordeoxyglucose studies; however, this diagnostic marker has yet to
be solidified as a standard in the field [8,103].

Although SMA has been linked to a particular gene, developing therapeutics to hinder
degeneration in susceptible muscles is at the forefront of research. Specifically, studies
are focusing on metabolic defects found in muscles in order to prolong their functionality.
Utilizing a SMA mouse model, motor neurons showed a decrease in mitochondrial respi-
ration, most likely from a change in mitochondrial genes found in the same model [104].
Interestingly, current studies are also focusing on the rare adult SMA, speculating that aging
resulting in mitochondrial deterioration could be one of the causative factors resulting in
adult-onset SMA [116]. Therefore, focusing therapeutic strategies towards malfunctioning
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mitochondria in aging could present one of the forms of SMA and potentially be used at
earlier stages of the disease if expanded further.

Metabolic malfunction in Kennedy’s disease has been a relatively new area of study.
In 2015, one group identified oxidative stress in a patient positive for the disease when
compared to a female carrier and non-carrier control [117]. Knowing this disease is the result
of expanded CAG repeats on the androgen receptor (AR) gene, studies have begun looking
at the interactions between this expansion and mitochondrial related proteins [118]. Other
studies have found that mutant AR has also been implicated in alterations of mitochondrial
protein production [119]. Interestingly, although this disease is linked to a specific genetic
alteration, other genes have been shown to be dysregulated. In a study using embryonic
motor neurons from SBMA mice, the gene Chmp7, which plays a role in autophagy and
endosome formation, was dysregulated before symptom onset in these mice [105]. The
motor neurons derived from these animals showed a decrease in mitochondrial genes and
an increase in mitochondrial malfunction, leading to dysregulated metabolism via ROS
production. Although this could be a result of disease progression as a result of CAG repeat
expansion, attacking other upregulated genes such as Chmp7 could potentially ameliorate
malfunctioning mitochondria and aid in hindering disease progression (Table 1).

Different HSP subtypes have been identified with mitochondrial malfunction in pa-
tient populations and in vitro studies. DDHD1 mutations have been known to increase
oxidative stress by disrupting mitochondrial function in patients [120]. A study from
2016 focused on two siblings, both with the SPG28 subtype resulting from mutations in
DDHD1 [106]. The results showed decreased mitochondrial DNA and changes in mi-
tochondrial morphology via histochemical staining of both patient samples [106]. One
sibling, along with cultured skin fibroblasts, showed decreased mitochondrial ATP and
mitochondrial fragmentation [106]. SPG7 mutations resulting in paraplegin deficiency,
a mitochondrial matrix protease, have been well-characterized and confirm reductions
in mitochondrial activity [121,122]. Previous studies have evaluated SGP7 and increased
paraplegin on mitochondrial morphology in patient populations but lack respiratory chain
function [123]. Comparing two different HSP subtypes, SPG7 and SPAST, mitochondrial
dynamics were assessed in olfactory neurosphere-derived cells from patients harboring the
mutations above [107]. Only SPG7 mutants showed increased paraplegin when compared
to both SPAST and healthy controls. The patient-derived SPG7 cells also demonstrated frag-
mented mitochondria, decreased mitochondrial membrane potential, reduced oxidative
phosphorylation, reduced ATP concentration and increased oxidative stress. Mitochondrial
stress shown only in SPG7 samples shows a subtype-specific disease phenotype, creating
more layers in this family of diseases. SPG11 is an autosomal recessive HSP subtype that is
known to bind to SPG15 and AP5, which encompasses SPG48 [124]. IPSCs from both SPG11
and SPG48 patients were differentiated into cortical projection neurons, and mitochondrial
dynamics were analyzed [108]. Decreased mitochondrial length, density and ATP levels
were found in both SPG11 and SPG48 when compared to healthy controls. Mitochondrial
dynamics were then analyzed after induction of P110, a mitochondrial fission inhibitor, and
results showed rescuing effects on all previously mentioned categories in both models. HSP
is a complex family of diseases which result in numerous alterations in cellular signaling
mechanisms; therefore, although there is some overlap between disease subtypes, it is not
indicative of all genotypes.

6. Strategies to Manipulate Metabolic Dysregulation in Motor Neuron Diseases

Multiple therapeutics have been designed in order to tackle metabolic dysregulation
in MNDs. A current medication on the market, riluzole, with a primary mechanism of
aiding in neurotransmission, has also been shown to increase GLUT transports in vivo
and increase glucose uptake in other neurodegenerative diseases as a secondary mech-
anism [54]. However, some therapeutics are directly targeting metabolic malfunction.
Sodium Phenylbutyrate-Taurursodiol is currently in phase II clinical trials [125]. The treat-
ment targets mitochondrial dysfunction by preventing the recruitment of pro-apoptotic
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protein Bax to the mitochondrial membrane, decreasing apoptosis; however, changes in
mitochondrial dynamics and oxidative potential have yet to be evaluated. As previously
mentioned, increasing glycolytic enzyme PFK-1 and GLUT3 resulted in a rescue of lo-
comotive deficit found in this model, suggesting a potential therapeutic mechanism by
increasing glycolytic output [92]. Similarly, a recent study has shown that increasing the
mitochondrial deacetylase Sirtuin-3 results in rescuing mitochondrial respiration defects
previously reported in ALS cases [94]. P110 decreased mitochondria fission and rescued
mitochondrial length, density and ATP levels in iPSC models of HSP [108]. Further ex-
ploration of P110 on other subtypes of HSP should be considered moving forward. P110
has also been implemented in Parkinson’s disease models, utilizing dopaminergic neurons
in order to alleviate mitochondrial fragmentation and decrease reactive oxygen species
present, verifying P110 function in other diseased states [126].

Although attacking motor neurons directly has been the primary area of focus recently,
targeting skeletal muscle metabolism via genetic intervention, pharmacological therapeu-
tics or exercise modulation has gained significant traction. Currently, genetic manipulation
tactics have only been utilized in SOD1 mutant mice, and although some genes increase
motor function, most had no affect or even decreased survival rate [2]. Importantly, peroxi-
some proliferator-activated receptor-gamma coactivator-a (PGC-1a) has been the only gene
manipulated with a role in aiding metabolic dysfunction and locomotive deficits, although
no change in overall survival was found [127]. Currently, few pharmacological interven-
tions have been reviewed as possible approaches to tackle metabolic changes in skeletal
muscles of ALS. Dichloroacetate (DCA) is a PDK4 inhibitor resulting in increased glycolytic
output and decreased fatty acid utilization, compensating for previous reports of decrease
glycolytic production [52]. Another treatment, Trimetazidine (TMZ), inhibits the last step
of fatty acid oxidation, thereby increasing glycolytic production [128]. Although these
therapies have been tested in animal models, their use in patients for correcting metabolic
dysfunction in motor neuron diseases has yet to be explored. Exercise intervention has
been a heavily debated topic in the context of motor neuron diseases. Although consistent
exercise has shown to aid in skeletal muscle metabolism, in the context of ALS, varying
physical interventions have shown to have both positive and negative effects [2], opening
the door for further investigations.

7. Conclusions

Motor neuron diseases show varying phenotypes at varying stages, whether genetic
or sporadic in nature. Importantly, all show similar trends, with metabolic dysfunction
at constant states of disease progression. This review summaries the uses of patient data
and in vivo and in vitro techniques in order to better understand the metabolic changes
occurring at each stage of MNDs. Currently, the field of MND therapeutics is in search
of biomarkers in order to readily diagnose the disease properly, and effectively diagnose
and treat before symptoms progress to late/end-stage. Targeting muscles affected by these
diseases poses an opportunity to identify the disease before it has progressed to motor
neurons. Combining what is known about metabolic deficits in NMDs at early, middle, and
late stages, and understanding the communication between motor neurons and skeletal
muscles via the NMJ, we can continue progressing the field of therapeutic intervention to
target these deadly diseases.
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