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Abstract: Advancements in high–throughput microscopy imaging have transformed cell analytics,
enabling functionally relevant, rapid, and in–depth bioanalytics with Artificial Intelligence (AI) as
a powerful driving force in cell therapy (CT) manufacturing. High–content microscopy screening
often suffers from systematic noise, such as uneven illumination or vignetting artifacts, which can
result in false–negative findings in AI models. Traditionally, AI models have been expected to learn
to deal with these artifacts, but success in an inductive framework depends on sufficient training
examples. To address this challenge, we propose a two–fold approach: (1) reducing noise through an
image decomposition and restoration technique called the Periodic Plus Smooth Wavelet transform
(PPSW) and (2) developing an interpretable machine learning (ML) platform using tree–based Shapley
Additive exPlanations (SHAP) to enhance end–user understanding. By correcting artifacts during
pre–processing, we lower the inductive learning load on the AI and improve end–user acceptance
through a more interpretable heuristic approach to problem solving. Using a dataset of human
Mesenchymal Stem Cells (MSCs) cultured under diverse density and media environment conditions,
we demonstrate supervised clustering with mean SHAP values, derived from the ‘DFT Modulus’
applied to the decomposition of bright–field images, in the trained tree–based ML model. Our
innovative ML framework offers end-to-end interpretability, leading to improved precision in cell
characterization during CT manufacturing.

Keywords: artifact; bright–field images; cell therapy; image decomposition; image restoration;
interpretable machine learning; Shapley additive exPlanations; stem cells

1. Introduction

Cell Therapies (CTs), a cutting–edge treatment modality, have significant clinical po-
tential for treating a variety of disease targets including cancer, degenerative conditions
such as osteoarthritis, and immunological disorders such as Crohn’s disease [1,2]. Mes-
enchymal Stem Cells (also referred to as mesenchymal stromal cells, MSCs) are one of the
most widely investigated clinical CTs, possessing the ability to reduce inflammation and
stimulate tissue repair in various inflammatory disorders, primarily due to their paracrine
activity [3–5]. However, these therapeutics present unique manufacturing challenges that
include donor variability, tissue source, and media environment differences [6–8]. To
improve manufacturing, recent advancements in imaging and Artificial Intelligence (AI)
technology aim to provide quick, relevant insights into CT manufacturing to enhance
bioprocess analytics [9–11].

Numerous researchers have explored various strategies to address the challenges of
CT manufacturing. For instance, Imboden et al. [9] examined the heterogeneities of live
MSCs using AI–driven label–free imaging, while Zhang et al. [10] utilized deep learning
for label–free nuclei detection from implicit phase information of MSCs. Kim et al. [11]
conducted high–throughput screening of MSC lines using deep learning techniques. These
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investigations highlight the increasing interest in harnessing AI and imaging technologies
to enhance CT manufacturing. While there have been research efforts to explore deep
learning and machine learning (ML) models through various visualization techniques
and feature extraction at different network points [12,13], these approaches often focus on
gaining insights into the biology behind the analytics and developing techniques suitable
for smaller sample sizes. For example, Yosinski et al. [14] investigated the transferability
of features in deep neural networks, and Olah et al. [15] presented building blocks for
interpretability in deep learning models. However, the interpretation of AI models applied
in cell analytics has predominantly been confined to assessing the entire model via global
feature analysis, neglecting the relative significance of individual prediction features. This
approach falls short in thoroughly understanding each prediction and the crucial factors
influencing it. Our proposed workflow aims to address these limitations by providing a
more comprehensive understanding of the underlying biology and offering a methodology
that is applicable even to smaller sample sizes.

Additionally, while the progress in high–throughput microscopy screening has con-
tributed to the development of promising automated image analysis tools by enhancing
the accessibility and availability of imaging technologies, background noise in biological
samples remains a significant obstacle to retrieve faint details from the raw data that are
close to the intrinsic noise [16]. Moreover, factors such as camera exposure, axial mis-
alignment and tilt effects on the lens [17], dust, non–uniform light sources [18,19], and
vignetting (or shading) artifacts [20] cause uneven illumination of the scene or specimen
in the microscope. In bright–field (BF) imaging, specific type of artifacts, i.e., vignetting
artifacts, are frequently seen. These are characterized by a decrease in brightness or contrast
from the center of the image towards the outer regions [21]. Kevin et. al. noted that uneven
illumination, often misperceived, leads to biased results in many studies [22]. Accordingly,
illumination correction is a key component for both the setup of image acquisition and
the processing of high–content images for analysis [23–25]. These artifacts degrade image
quality and can lead to false–negative findings in AI models. Traditionally, AI models
have been expected to learn to deal with these artifacts; however, success in an inductive
framework relies heavily on the availability of sufficient training examples. In many cases,
the potential impact of artifact structures, particularly vignetting and non–uniform illumi-
nation, has been ignored, specifically for the performance assessment of a trained AI model.
However, in practice, faster cell assays and label–free interpretable quantitative approaches
to measure the therapeutic quality attributes of CTs are required, which can be utilized to
further refine and enhance cell manufacturing processes toward experimental endpoints.

In this study, we aimed to overcome the limitations mentioned earlier by developing a
label–free analysis workflow that leverages the information from BF images for the func-
tionally relevant manufacturing characterization of human MSC expansion. We propose
a workflow that addresses two major challenges in the field: (1) reducing noise in the
data, which can lead to more accurate predictions, and (2) developing easy-to-interpret
features to aid end–user interpretation. Our workflow integrates advanced noise reduction
techniques with feature engineering, resulting in a supervised learning algorithm for label–
free cell density and media classification in human MSC cultures. This approach not only
improves the quality of the data but also provides interpretable insights for end–users.

This workflow is applied to BF and fluorescent channel images of human MSCs, which
were cultured in various media under different bioprocess conditions (Figure 1 and Sup-
plementary Materials Figure S1 for workflow diagrams and Figure 2 and Supplementary
Materials Figure S2 for representative overlay and BF images). During image acquisition,
we recorded the experimentally determined target density and media conditions as labels.
To minimize the potential impact of artifact structures on classification performance, we
pre–processed BF images using image decomposition and/or restoration techniques. We
then extracted six Haralick texture feature sets from the pre–processed data, including
Gray–level Co–occurrence Matrix (GLCM) attributes: Angular Second Moment (ASM),
Contrast (CON), Correlation (COR), Dissimilarity (DIS), Energy (ENR), and Homogeneity
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(HOM) [26]. These features were chosen due to their proven effectiveness and generaliz-
ability in previous research [27]. They have been found to be generalizable across various
biological datasets [28], and we anticipate that they would translate well to other datasets
with similar characteristics. These image features served as input for supervised ML mod-
els, enabling us to classify cell density and media environment conditions without using
any stains.
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Figure 1. Our label–free cell density and media classification workflow. First, the bright–field
images of Mesenchymal Stem Cells (MSCs) were captured using the Perkin Elmer Operatta system
equipped with 20× magnification lenses. The images were then pre–processed, using an image
decomposition and/or restoration technique to reduce the possible adverse impact of sample vari-
ability on classification accuracy, including artificial structures in label–free images. We extracted
Gray–level Co–occurrence Matrix (GLCM) texture feature parameters from pre–processed data and
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utilized supervised machine learning models for classification. Once the classifier was trained, it was
used to classify the state of unlabeled cells, such as cell density or media environment conditions.
To assess the significance of texture features in machine learning models, we used model–agnostic
permutation importance and feature importance scores for the optimal pipeline scenario. The relative
feature importance was also provided by the Shapley Additive exPlanations (SHAP) TreeExplainer
multi–classification utility. Finally, average SHAP values were used to generate supervised clustering
to identify better–separated clusters utilizing a more structured representation of the Gradient Density
dataset. The graphic component of ‘Data Generation’ was created with BioRender.com (accessed on
26 February 2023). The cluster plot titled ‘Original, u’ represents an unsupervised clustering attempt,
which was not successful in distinguishing between three classes. The supervised plot, on the other
hand, demonstrated improved classification using our proposed workflow. Further details regarding
the ‘Original, u’ plot and the supervised plot can be found in Section 2.
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Figure 2. Representative overlay and bright–field images of Low (left), Medium (center), and
High (right) density spectra in the Gradient Density samples, captured by a Perkin Elmer Operetta
microscope using 20× magnification lenses. Overlay images display high–dimensional cellular
features (green, Cell mask) and nucleus features (red, Hoechst).

For the optimal pipeline scenario, we trained decision–tree classifiers and evaluated
model–agnostic permutation importance and global feature importance scores to assess
texture feature relevance. We also determined the average Shapley Additive exPlanations
(SHAP) values using the SHAP TreeExplainer [13] to identify which features contribute
the most to specific class assignments, thus enhancing ML interpretability. Finally, we con-
ducted dimensionality reduction based on SHAP values to better separate clusters within
the label–free imaging dataset. Our approach demonstrates the potential of label–free
imaging with interpretable ML models to improve MSC classification and characterization
in CT manufacturing. The combination of image pre–processing techniques and feature
extraction from high–throughput BF images allows for the efficient identification of key
factors that influence MSC expansion without relying on staining procedures. By em-
ploying tree–based SHAP values, we were able to determine which features contribute
most significantly to class assignments, improving the interpretability of our ML models.
By addressing the limitations of existing approaches and providing a rapid and simple
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method for identifying MSCs in CT manufacturing, our work advances the state-of-the-art
in this field.

Future work in this area may explore the integration of additional imaging modalities
and machine learning algorithms to further enhance the accuracy and interpretability of
MSC classification in CT manufacturing. Moreover, the scalability of our approach could be
tested on more complex and larger datasets, with the goal of generalizing these techniques
to other types of CTs. Finally, further optimization of pre–processing and feature extraction
methods may lead to even more accurate and efficient identification of MSCs, ultimately
contributing to the development of better CT manufacturing processes.

2. Materials and Methods
2.1. Data Collection

Traditional human MSCs used in basic research, and in most clinical trials, are cul-
tured in basal media supplemented with fetal bovine serum (FBS) and growth factors [29].
The development of serum–free (SF) and chemically used media environments for the
clinical production of human MSCs is a high priority in the CT manufacturing area [30,31].
To evaluate the effectiveness of image decomposition and/or restoration techniques for
high–throughput BF images, we used a non–publicly available Gradient Density dataset of
human MSCs. This dataset was generated and provided by Stem Cell R&D at the Regenera-
tive Medicine Institute (REMEDI NUI, Galway, Ireland). The dataset consists of fluorescent
readouts from Hoechst dye staining and high–throughput BF images derived from human
MSC samples. It is important to note that our study did not directly involve human samples;
rather, we utilized data in the form of cell images from previously characterized human
cell lines. These cell lines were obtained and characterized by Stem Cell R&D during prior
studies, which received full ethical approval from the NUIG Research Ethics Committee. As
our study did not involve the direct sampling of human cells, we did not require additional
ethical approval for this research. We encourage interested researchers to contact the Stem
Cell R&D at REMEDI NUI Galway for potential collaboration or data access opportunities
related to the Gradient Density dataset.

Bone marrow–derived human MSCs were expanded under three different media
conditions: SF medium, serum–containing (SC) medium (a combination of media + 10% FBS
+ 1 ng/mL fibroblast growth factor 2), and low–serum containing (LSC) medium containing
2% FBS. These cells were then seeded at three different densities: low, medium, and
high, ensuring an equal distribution of images for each targeted medium and density
environment to avoid any classification imbalance. Images were captured in confocal mode
at 20× magnification on an Opera Phenix high–content screening system (Perkin Elmer
Operatta, Waltham, MA, USA). During image acquisition, we produced raw images of
1360 × 1024 pixels at 16 bits per channel per pixel and documented the target density and
media conditions determined experimentally for the labels. For our experimental scenario,
six fields per well were captured for each type of cell media condition, resulting in a total
of 1152 images.

2.2. Image Decomposition and/or Restoration Techniques

We investigated the Periodic Plus Smooth Image Decomposition (PPSD); a Discrete
Fourier Transform (DFT) approach that decomposes an image domain u into its periodic
component p and its smooth component s to avoid the cross–structure artifact spectrum
across the original image border (Figure 3). The ‘DFT Modulus’ property of the image
was computed in log scale (Figure 3c; middle row). The cross–structure artifact spectrum
disappeared in the Fourier transform of p while the others remained unchanged. We also
examined the robust principal component analysis (robust PCA) in which the raw data
were decomposed into a low–rank component and a sparse matrix component [32]. This
reduced the dimensionality of the data based on the low–rank structure and the sparsity of
the outliers; however, this method was computationally unfeasible for a high dimensional
imaging dataset.
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Figure 3. An illustration of the periodic plus smooth image decomposition (PPSD) technique applied
to an unevenly illuminated bright–field image captured with 20× magnification lenses on a Perkin
Elmer Operatta microscope. Assuming that the original image (a) was periodic, its quadrant–swapped
version (b) would be identical to the original, as seen in the Discrete Fourier Transform (DFT), enabling
the identification of cross–structure artifacts along the original image borders. The representative
image was decomposed into its periodic and smooth components (c, top row). The DFT modulus (or
magnitude) component (c, middle row, in the log scale) and the phase component (c, bottom row)
illustrated the Fourier spectrum throughout all images.

Here, we proposed the Periodic Plus Smooth Wavelet Transform (PPSW), an image
decomposition and restoration technique that properly enhances the quality of structured
background components on the BF images by minimizing the impact of vignetting (or
shading). We first computed the periodic component p and the smooth component s of
the original image through the PPSD technique and then decomposed each image com-
ponent using a discrete Wavelet transform with the multi–level wavelet filter. Finally, we
reconstructed the fused decomposed images to create an image with uneven illumina-
tion adjusted (Figure 4). For improved image reconstruction, selecting the appropriate
wavelet function was crucial in our image decomposition and restoration technique. De-
termining the wavelet type and the number of decomposition levels was vital to ensure
success. This study utilized discrete Wavelet transform types, including Biorthogonal,
Coiflets, Daubechies, and Symlets mother wavelets, as depicted in Supplementary Materi-
als Figure S3. Initially, we evaluated the classification accuracy of cell density and media
conditions using ten second–level mother wavelet functions in Random forests, the top–
performing classifier in our experimental trials. We realized that the bior1.1 second–level
mother wavelet type performed better than all other wavelet competitors of concern in this
study, regardless of density and media contexts (Supplementary Materials Tables S1 and
S2). Following that, the classification performance of bior1.1 multi–level mother wavelet
types (up to fifth–level decomposition) was evaluated using Random forest classifiers.
The results showed that the classification accuracy for cell density varied from 92.91 to
94.75% and for media environment conditions, from 88.64 to 91.43%. Therefore, we utilized
the bior1.1 mother wavelet type with a fifth–level decomposition in our proposed image
decomposition and restoration technique throughout this work.
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2.3. Feature Engineering

We performed a GLCM–based texture feature analysis to classify sources of variability
from high–throughput BF images, such as cell culture density or media environment
conditions, in the human MSCs. The choice of GLCM–based texture feature analysis was
influenced by its well–established position in the field of image processing and computer
vision, along with its proven effectiveness and robustness in capturing texture information
and distinguishing different types of patterns in images [26,33,34]. The GLCM is a square
matrix whose entries represent the probability of gray–level co–occurrences at a specific
distance and orientation in the region of interest. To compute Haralick features from
the GLCM that counts the co–occurrence of neighboring gray levels in the BF image, we
first dispersed the pixels in an image over a specific distance d and oriented them in a
particular orientation θ, representing a distinct relationship between the neighboring and
reference pixels.

We selected three main orientations (0, 45, and 90 degrees) and five distances, ranging
from 1 to 5 pixels, to compute the following six features: Angular Second Moment (ASM),
Contrast (CON), Correlation (COR), Dissimilarity (DIS), Energy (ENR), and Homogeneity
(HOM). These six features were chosen based on their significant discriminative power
and their ability to effectively represent various aspects of texture information present in
the images, such as homogeneity, linear dependence, spatial variation in pixel intensity
values, and regional similarity in our specific dataset. Haralick et al. described the above-
mentioned parameters of the GLCM [26]. Mainly, ASM and COR measure the texture
homogeneity and linear dependence of neighboring gray levels in the image, while CON
measures spatial variation in pixel intensity values [26,33,34]. ENR is derived from ASM.
High ASM and COR values indicate the likelihood of a linear relationship between the gray
levels of adjacent pixels. Conversely, gray–tone large local variation dependence of the
image has higher values of CON. Additionally, DIS is analogous to CON and is inversely
related to HOM, which is a measure of regional similarity in the image [26,33,34].

2.4. Building and Evaluating Machine Learning Classification Models

The data were partitioned into training and test datasets with the ratio of 7:3 by random
sampling using Phyton 3.91.12 sklearn.model_selection (version 1.1.1 of scikit-learn). We
applied a variety of ML methods during the multi–class classification, including a decision
tree [35,36], random forest [37], adaptive boosting (AdaBoost) [38], gradient–boosting via
XGBoost (version 1.6.1) [39], a gradient–boosting decision tree (GBDT) [40], a histogram–
based gradient–boosting classification tree (HistGBDT) [41], and a light gradient–boosting
machine (version 3.3.3 of LightGBM) [42] with specified hyperparameters. Specifically,
decision trees are flowchart–like structures used for both classification and regression
tasks, where each internal node represents a feature, each branch represents a decision
rule, and each leaf node represents an outcome [35,36]. Random forest is an ensemble
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learning method that constructs a multitude of decision trees during training and outputs
the mode of the classes of the individual trees for classification tasks [37]. XGBoost is an
optimized distributed gradient–boosting library designed to be highly efficient, flexible, and
portable [39]. LightGBM is a gradient–boosting framework that uses tree–based learning
algorithms, which is designed to be distributed and efficient with a focus on training speed
and higher efficiency [42].

These methods aim to assess the ability to classify stem cell–manufacturing charac-
teristics from high–throughput BF images using image decomposition and/or restoration
techniques, along with six Haralick texture feature sets, in order to determine the optimal
pipeline configuration. To guard against overfitting, we retained a test dataset for model
evaluation and ensured that it was not used for algorithm tuning. In our preliminary exper-
iments, we attempted feature standardization using ‘sklearn.preprocessing.StandardScaler’
during the pre–processing stage and explored the use of k–fold cross–validation. However,
we found that neither feature standardization nor k–fold cross–validation provided signifi-
cant improvements in the model’s performance. As a result, we decided not to include these
techniques in our final analysis to save computational effort while maintaining reliable
results. Our methodology, which involved retaining a test dataset and not using it for
algorithm tuning, effectively guards against overfitting and ensures the robustness of our
ML models. Four classification metrics, the accuracy and macro average of precision, recall,
and the F1–score, were used to evaluate the performance of the ML classifiers in our experi-
mental scenario. The model with highest values was then used to determine the optimal
pipeline components of interest for the model–building process overall after evaluation
with the testing dataset. All experiments were conducted on a Graphic Processing Unit
(GPU) Sever (2x NVIDIA Ampere A100 PCle, 250W, 40GB Passive: 2x Intel Xeon Gold
6252 2.1G, 24C/48T, 10.4GT/s, 35.75M Cache, Turbo, HT (150W) DDR4-2933; 12x 32GB
RDIMM, 3200MT/s, Dual Rank) and a Laptop computer (Dell Precision 5550: Intel® Core™
i7-10850H CPU @2.70 GHz 2.71 GHz RAM 32.00GB Windows 10 Pro).

2.5. Feature Importance Measures

We employed model–agnostic permutation importance and feature importance
scores [37,43] for the case of the optimal pipeline scenario to assess the relevance of texture
feature sets in the trained ML model. This approach is widely employed in the field due
to its flexibility, robustness, and capability to provide a consistent evaluation of feature
importance across different types of models irrespective of their internal structure or algo-
rithmic design. The relative feature importance was generated using the Shapley Additive
exPlanations (version 0.41.0 of SHAP) TreeExplainer multi–classification utility, which
computes Shapley values to quantify the contribution of each feature to the prediction for
individual instances. These SHAP values, derived from the test data, can be thought of
as a latent representation of the Gradient Density dataset, emphasizing the most relevant
parameters for the characterization of stem cell manufacturing in the trained ML model.
This approach allows us to maintain a balance between the interpretability of the ML model
and its efficiency.

2.6. Dimensionality Reduction Based on SHAP Analysis

Uniform Manifold Approximation and Projection (UMAP) [44] was utilized to com-
press the raw data or SHAP values with the trained model to a two–dimensional space in
order to improve the classification performance of the stem cell manufacturing characteri-
zation from label–free images. Unlike alternatives, such as t–SNE [45], UMAP maintains
both the local and global structure of the data, which is a significant advantage for reducing
data dimensionality. SHAP values, which provide a measure of feature importance for each
data point, can be used to guide clustering in a supervised manner. By applying clustering
techniques directly to SHAP values, we can reduce the noise from irrelevant features and
weight the data by a measure of relevance that emphasizes the most important aspects. In
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contrast, traditional clustering biases inputs based on the amplitude of their distributions,
making it challenging to cluster meaningful structures for dimensionality reduction.

To demonstrate the benefits of dimensionality reduction based on SHAP values, we
conducted supervised clustering by utilizing average SHAP values from high–throughput
BF images, combined with various Haralick features from image decomposition and/or
restoration techniques, through the use of Random forest classifiers. This advanced application
of SHAP values in our analysis allows for a more effective and interpretable dimensionality
reduction, ultimately enhancing the performance of our classification models.

2.7. Statistics

The Kolmogorov–Smirnov test was used to evaluate the normality of the continuous
variables [46]. Unless otherwise specified, descriptive statistics were provided as the
mean (standard deviation) and median (interquartile range; 25–75%) for descriptions of
normally and non–normally distributed data, respectively. For our dataset, we focused
on the median (interquartile range; 25–75%), peak signal-to-noise ratio (PSNR), and dB
values obtained from image decomposition and/or restoration techniques. We performed
a non–parametric technique with the Kruskal–Wallis test [47] to compare the values of
each GLCM texture feature set across Low, Medium, and High density samples in the
experimentally established target media environment. In order to compare the image
decomposition and/or restoration techniques for each class cell density assignment, we
computed the mean of differences (=bias) between the ‘DFT Modulus’ transform applied
to the decomposition of images and the original BF images using average SHAP values
from random forest classifiers. The significance level was defined as p < 0.05, as indicated
by Asymptotic Sig. (2–tailed). All statistical analyses were performed using IBM SPSS
Statistics 27 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Computing a Hybrid Discrete Fourier–Wavelet Transform Approach and Assessing Anomalies

We examined a discrete Fourier transform approach, named the Periodic Plus Smooth
Image Decomposition (PPSD), to decompose an image domain into the sum of a ‘periodic’
component, which expresses the majority of the image information but has no edge effects,
and a ‘smooth (or harmonic)’ component, which consists of smooth fluctuations at the
borders of the image [48]. Here, we validated its usage to discriminate strong discontinuities
across the image border for label–free stem cell imaging datasets. In practice, since the
contents of microscopy images are not periodic, the discrete Fourier transform approach
allows us to estimate a cross–structure artifact spectrum in our image domain. As shown in
Figure 3, the periodic component of the representative original image (p) closely resembled
the spectrum of the original image (u) but avoided edge effects across the image border,
whereas the smooth component of the image (s) often collected border discontinuities
caused by the periodicity of u. Accordingly, it is possible that the artifact faded away in the
Fourier transform of p (particularly as illustrated in the phase spectrum diagram), but the
other portion of the spectrum remained constant, with slight changes in fluctuations in the
image domain.

We next proposed a novel image decomposition and restoration technique called the
Periodic Plus Smooth Wavelet Transform (PPSW) to reduce the effect of vignetting (or
shading), which accurately improves the quality of structured background components in
the label–free images. To evaluate the performance of our proposed image decomposition
and restoration technique, we used a high–throughput stem cell imaging dataset for human
MSCs and observed main artifact types including camera exposure (background variation
as the numbers of objects in the image domain varies), lens flare, dust, blob–like, and ‘stripy
ghosts’ artifacts on the BF images (Figure 5a). The ‘stripy ghost’ artifact is caused by sample
movement or vibration during image acquisition, resulting in elongated, striped shapes that
appear to follow the movement in the image domain. We first conducted a comprehensive
quantitative evaluation of image decomposition and/or restoration techniques on the BF
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images in different media environments. Our proposed technique significantly mitigated
the above–mentioned undesired light sources, making it easier to clarify the visibility of im-
age features in the shaded regions while preserving the appearance of uneven illumination
effects on the images using other image decomposition techniques (Figure 5a). We thor-
oughly analyzed the whole image dataset in terms of the PSNR, a metric commonly used to
evaluate the quality of image reconstruction or noise–reduction techniques. PSNR measures
the ratio between the maximum possible power of a signal and the power of corrupting
noise that affects the fidelity of its representation. Higher PSNR values indicate better
noise reduction performance. For our dataset, we focused on median (interquartile range;
25–75%) dB values obtained from image decomposition and/or restoration techniques, as
described in Section 2, in comparison to original BF images. We found that the values were
57.108 (55.810–59.763) dB for low–rank matrix decomposition via Robust Principal Compo-
nent Analysis (robust PCA) [32], 49.875 (48.526–53.679) dB for the periodic component of
the original image via PPSD, and 58.589 (57.975–60.532) dB and 58.229 (57.716–59.056) dB
for the bior2.4 mother wavelet type using second– and fifth–level decomposition via PPSW
techniques, respectively (Figure 5b). Taking all results from the fifth–level PPSW technique
into consideration, our image quality evaluation revealed a significant difference in cell
culture density only between the Low and High gradient groups (p < 0.01, Figure 5c), but
failed to consider all media conditions. Therefore, we believe that it is crucial to be able to
employ texture feature patterns obtained from an image decomposition and/or restoration
technique for label–free, high–throughput images in order to establish an ML model with
highly differentiated clusters of MSCs corresponding to different cell culture and media
conditions.

3.2. Achievement of a High Classification Accuracy with ‘DFT Modulus’

In our analysis, the descriptive statistics for the GLCM Homogeneity, Contrast, Cor-
relation, and Dissimilarity features in BF images were found to be higher than those of
the GLCM Energy and ASM features in all examined samples regardless of the media
environment. The Kruskal–Wallis test indicated statistically significant evidence (p < 0.001)
from Low to High density spectra for each target media environment in our original BF
images (Table 1). During the establishment of our ML classification models, our inves-
tigation into the ‘DFT Modulus’ transform applied to BF images revealed substantially
higher descriptive statistics. Therefore, we considered that it was crucial to employ the
‘DFT Modulus’ transform strategy for an ML model with high classification performance
criteria for the label–free imaging dataset. Indeed, we were able to establish highly accurate
tree–based ML models to reduce the possible adverse impact of sample variability on the
classification accuracy of the cell culture and media conditions, including that of artifact
structures on BF images (Supplementary Materials Tables S3 and S4).

Regarding the performance assessment of the multi–class classification in our experi-
ment trials, random forests in our baseline scenario, using original BF images, achieved
an average accuracy (AC) value of 80.129 and 80.146% for cell culture density and media
environment conditions, respectively; false–positive cases would be tolerable but false–
negatives are not acceptable for highly differentiated clusters of MSCs. Therefore, we
examined the ‘DFT Modulus’ transform applied to the decomposition of BF images and
found that there was a significant increase in the random forests with an AC value of
94.51 and 94.75% for the scenarios of the ‘DFT Modulus’ of the periodic component, PPSD,
and the PPSW (the bior1.1 mother wavelet using fifth–level decomposition) techniques,
respectively. In our experiments, the performance of gradient–boosting via XGBoost, light
gradient–boosting machine (LightGBM), and decision tree models was comparable to that
of random forests, with an AC value ranging from 88.15 to 91.49% for cell density and
from 81.41 to 90.60% for the media environments. Furthermore, we discovered that the
periodic component decomposition (PPSD) and our proposed decomposition and restora-
tion technique (PPSW) yielded superior performance compared to the low–rank matrix
and sparse decomposition achieved through robust PCA. Notably, robust PCA’s sparse
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decomposition demonstrated comparable performance to PPSD in the classification of
the cell media environments. Detailed information on all tree–based ML models used in
this study can be found in Tables 2 and 3, as well as Supplementary Materials Tables S3
and S4. The decision–tree ML models enabled us to achieve superior performance for
the classification of stem cell manufacturing characterization using high–throughput BF
images with the periodic component, PPSD, and our proposed image decomposition and
restoration, PPSW technique, utilizing six Haralick texture feature sets.
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Figure 5. Pre–processed bright–field (BF) image examples with decomposition and/or restoration
techniques. (a) Common artifacts in label–free images, with each row showing a specific category:
original image (1st column), robust PCA–based low–rank matrix (2nd column), periodic component
via PPSD (3rd column), and corrected BF image using PPDW (4th column). Image quality metrics,
including peak signal-to-noise ratio (PSNR, dB), were compared. (b) Boxplots of PSNR values for
different techniques, showing median, interquartile range (25% to 75%), and outliers indicated as
individual dots. (c) Violin plots for cell culture density (lower) and media environment (upper) using
PSNR values from the fifth–level PPSW technique. Boxes display the mean (bold black line), median
(white dot), and 75th and 25th percentiles (upper and lower lines), with surrounding kernel density
plots. PSNR values represented by violin plots: LSC (soft red), SC (moderate magenta), SF (dark
cyan); Low (strong red), Medium (vivid yellow), High (dark blue).
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Table 1. Comparative analysis of GLCM texture features in original bright–field samples across
diverse density and media environment conditions (Descriptive statistics: (mean (standard deviation)
or median (interquartile range; 25–75%)), Statistical results: (p value)).

Media Variables
Gradient Density Spectra

p Value+
Low Medium Hight

LSC

Homogeneity 0.741 (0.022) α 0.715
(0.695–0.735)

0.695
(0.674–0.720)

<0.001

Contrast 0.727 (0.617–0.851) β 0.943
(0.755–1.152)

1.119
(0.848–1.322)

Correlation 0.616
(0.456–0.766)

0.580
(0.408–0.738)

0.571
(0.387–0.715)

Dissimilarity 0.549
(0.512–0.592)

0.626
(0.563–0.687)

0.685
(0.604–0.748)

Energy 0.345
(0.308–0.382)

0.326
(0.296–0.362)

0.312
(0.278–0.341)

ASM 0.118
(0.095–0.146)

0.106
(0.087–0.131)

0.098
(0.077–0.116)

SC

Homogeneity 0.748
(0.738–0.759)

0.718
(0.698–0.736)

0.675
(0.648–0.701)

<0.001

Contrast 0.711
(0.615–0.824)

1.007
(0.781–1.248)

1.339
(0.981–1.927)

Correlation 0.622
(0.461–0.803)

0.568
(0.385–0.734)

0.557
(0.342–0.703)

Dissimilarity 0.532
(0.504–0.565)

0.628
(0.565–0.691)

0.748
(0.650–0.836)

Energy 0.339
(0.306–0.393)

0.330
(0.287–0.369)

0.294
(0.258–0.328)

ASM 0.115
(0.093–0.155)

0.109
(0.082–0.136)

0.087
(0.067–0.107)

SF

Homogeneity 0.744
(0.731–0.755)

0.709
(0.684–0.733)

0.671
(0.644–0.701)

<0.001

Contrast 0.718
(0.616–0.859)

0.942
(0.736–1.126)

1.212
(0.882–1.469)

Correlation 0.652
(0.505–0.806)

0.567
(0.392–0.734)

0.582
(0.376–0.721)

Dissimilarity 0.542
(0.509–0.582)

0.636
(0.567–0.705)

0.742
(0.633–0.826)

Energy 0.337
(0.295–0.376)

0.322
(0.278–0.354)

0.293
(0.257–0.326)

ASM 0.114
(0.087–0.141)

0.104
(0.078–0.126)

0.086
(0.066–0.106)

α: mean (standard deviation), β: median (interquartile range). +: p value is considered to be significant if p < 0.05.

3.3. Supervised Clustering Based on SHAP Values Leads to More Accurate Cluster Analysis

We next attempted to identify the critical texture features for the classification of cell
density and media environment conditions in Random forests, which showed the best
classification performance in our experimental trials. Among all features, we discovered
that the GLCM correlation parameters had a significant measure (i.e., mean decrease
in accuracy) in Random forests used to categorize cell density spectra utilizing high–
throughput BF images from the ‘DFT Modulus’ of the PPSW (the bior1.1 mother wavelet
using the fifth–level decomposition) technique (Supplementary Materials Figure S4a).
Note that highly ranked features might be correlated, and therefore not all highly ranked
attributes would improve the prediction performance. Therefore, we analyzed the model–
agnostic permutation feature importance on the testing set and found that permuting the
values of the GLCM correlation feature resulted in the highest decrease in the accuracy
score of the model (Supplementary Materials Figure S4b).
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Table 2. Performance metrics for the top three tree–based machine learning models in cell density
spectra categorization, using high–throughput bright–field images (as our baseline scenario) as well
as images with image decomposition and/or restoration techniques in the Gradient Density dataset.

Variables Model
Percentage Split

Accuracy Precision Recall F1–Score

Original, u
Baseline

LightGBM 73.945 73.155 73.770 73.928
XGBoost 74.796 74.177 74.635 74.314

Random Forest 80.129 79.797 80.100 79.887

DFT modulus, u
XGBoost 87.268 87.404 87.202 87.295

Decision Tree 88.727 88.694 88.702 88.696
Random Forest 92.826 92.875 92.792 92.832

DFT modulus,
ulow–rank

XGBoost 87.216 87.363 87.168 87.247
Decision Tree 90.116 90.099 90.172 90.125

Random Forest 92.322 92.308 92.335 92.321

DFT modulus, usparse

XGBoost 86.625 86.784 86.360 86.526
Decision Tree 88.848 88.786 88.763 88.770

Random Forest 93.556 93.569 93.452 93.505

DFT modulus, p
LightGBM 88.154 88.173 88.078 88.117

Decision Tree 91.489 91.443 91.426 91.432
Random Forest 94.511 94.499 94.442 94.476

DFT modulus,
PPSW

XGBoost 88.917 89.042 88.839 88.932
Decision Tree 90.846 90.775 90.821 90.797

Random Forest 94.754 94.744 94.729 94.734
u: original image, ulow–rank: low–rank matrix decomposition via Robust PCA. usparse: sparse decomposition via
Robust PCA. p: periodic component of the image with periodic plus smooth image decomposition (PPSD). PPSW:
Periodic plus smooth wavelet transform technique.

Table 3. Performance metrics for the top three tree–based machine learning models in cell media
environment spectra categorization within the Gradient Density dataset.

Variables Model
Percentage Split

Accuracy Precision Recall F1–Score

Original, u
Baseline

Decision Tree 71.947 71.777 71.782 71.767
XGBoost 72.295 72.204 72.210 72.217

Random Forest 80.146 80.041 80.085 80.058

DFT modulus, u
XGBoost 80.684 80.727 80.625 80.649

Decision Tree 85.861 85.863 85.874 85.868
Random Forest 90.290 90.318 90.294 90.306

DFT modulus,
ulow–rank

XGBoost 78.426 78.555 78.320 78.402
Decision Tree 83.933 83.926 83.858 83.889

Random Forest 89.196 89.219 89.153 89.182

DFT modulus, usparse

XGBoost 85.948 86.306 85.532 85.721
Decision Tree 89.387 89.344 89.355 89.312

Random Forest 93.677 93.705 93.564 93.625

DFT modulus, p
Decision Tree 90.099 90.386 90.377 90.381

XGBoost 90.603 90.886 90.976 90.898
Random Forest 93.260 93.440 93.518 93.466

DFT modulus,
PPSW

XGBoost 81.414 81.468 81.276 81.351
Decision Tree 86.434 86.394 86.468 86.425

Random Forest 91.437 91.403 91.436 91.419
u: original image, ulow–rank: low–rank matrix decomposition via Robust PCA. usparse: sparse decomposition via
Robust PCA. p: periodic component of the image with periodic plus smooth image decomposition (PPSD). PPSW:
Periodic plus smooth wavelet transform technique.

Aside from the global feature importance, we investigated the classifiers using av-
erage SHAP values to identify which features contributed the most to a particular class
assignment. Figure 6a presents the SHAP bar plot for the explainability analysis of the cell
density spectra classification. It shows the mean of the absolute SHAP values obtained
from high–throughput BF images with the ‘DFT Modulus’ of the PPSW (the bior1.1 mother
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wavelet using fifth–level decomposition) technique (i.e., the average impact of the feature
on the model output magnitude). In addition, the SHAP summary plot, also known as the
beeswarm summary plot, can provide both global and local important scores, allowing for
a more detailed visual summary of each density class assignment in the gradient density
samples, as illustrated in Figure 6a. Each dot in the summary plot indicates a sample
plotted against its impact on the model output, with samples colored blue indicating a low
quantity of texture features and red samples denoting a high abundance. We observed that
high feature values of the GLCM correlation parameters commonly had positive SHAP
values, promoting the model to classify low–density spectra. In contrast, medium–density
spectra had negative SHAP values with higher GLCM correlation features. Furthermore, in
order to compare the classification performance of image decomposition and/or restoration
techniques for each class cell density assignment, we computed the mean of differences
(=bias) between the ‘DFT Modulus’ transform applied to the decomposition of images and
original BF images using average SHAP values from Random forest classifiers (Figure 6b).
The result showed that between the ‘DFT Modulus’ transform of the PPSW (the bior1.1
mother wavelet using fifth–level decomposition) and of the periodic component, the PPSD
technique had a stronger bias for higher average SHAP values, allowing us to make a
significant contribution to classification across all samples.
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Figure 6. The Shapley Additive exPlanations (SHAP) TreeExplainer–enabled interpretability for
key features in the gradient density sample cell density assignments. (a, left) Average SHAP values
from the ‘DFT Modulus’ of the PPSW technique (the bior1.1 mother wavelet using fifth–level de-
composition) applied to BF images. The bar graph shows the correlation between the mean absolute
SHAP values and the magnitude of the output generated by Random forests. (a, right) Beeswarm
plots of texture feature sets for density classes, with dots representing class assignments and colors
indicating feature value variations and class correlations. For example, high GLCM correlation values
often yield positive SHAP values and low–density spectra classification. (b) Mean of differences
(=bias) between the ‘DFT Modulus’ transform applied to the decomposition of images and original
BF images using average SHAP values from Random forest classifiers.



Cells 2023, 12, 1384 15 of 19

Traditional clustering techniques are commonly used for microscopy images to identify
subgroups within a population that cluster together. Unsupervised learning frequently
struggles to establish meaningful structures because such analyses bias samples based
on the magnitude of their distributions, regardless of the information contained in the
raw data [49]. In our experimental trials, we were unable to distinguish cell density and
media environment subgroups from the original BF images, which were projected in a two–
dimensional space using UMAP (Figure 7 and Supplementary Materials Figure S5; top left
panels). On the other hand, we applied a supervised clustering approach to convert the raw
data into SHAP values obtained from Random forests in order to improve the classification
performance of the stem cell manufacturing characterization from label–free images. We
realized that the SHAP embedding plots of the ‘DFT Modulus’ transform applied to BF
images produced highly differentiated clusters, particularly the ‘DFT Modulus’ transform
of the PPSW (the bior1.1 mother wavelet using fifth–level decomposition) for cell density
spectra and the periodic component, PPSD, for cell media environment conditions (Figure 7
and Supplementary Materials Figure S5; right panels).
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4. Discussion

Cell Therapies (CTs) are regenerative medicines administered to patients in the form
of living cells. Stem cells represent a novel therapeutic approach for the treatment of many
chronic diseases, but routine CT manufacturing remains a key barrier to their widespread
clinical usage [6–8]. In particular, the absence of rapid cell analytics to identify and catego-
rize the stem cell behavior lies at the heart of the manufacturing challenge. To assess the
therapeutic quality of stem cells while they are being expanded and before transplantation,
it is required to monitor stem cell identity, health, and robustness (ability to deal with
change or process intervention). Many modern cell assays rely primarily on chemical
staining to identify critical cell components or quantify functional properties. However,
staining is costly, time–consuming, and labor–intensive and tends to damage cells. In this
study, we have presented an analytical machine learning (ML) workflow for the rapid
and efficient classification of high–throughput bright–field (BF) images of stem cells in the
context of CT manufacturing. By comparing our proposed workflow with other existing
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methodology in the field [32,48], we demonstrated its advantages in terms of performance
metrics, interpretability, and potential for wider applications.

Our study offers several significant advancements, which are as follows:

• Introduction of the Periodic Plus Smooth Wavelet Transform (PPSW) technique for im-
age decomposition and restoration, minimizing the potential adverse impact of artifact
structures on the ML classification accuracy. This technique allows for better feature
extraction and representation, leading to higher performance in classification tasks.

• Utilization of a variety of tree–based ML models, specifically Random forest classifiers,
for accurate stem cell classification based on label–free cell images. These models offer
a fast and efficient way to extract rich biological insights from the images without the
need for extensive pre–processing or data augmentation.

• Application of supervised clustering using Shapley Additive exPlanations (SHAP) val-
ues, offering both local and global interpretations, to enhance the understanding of CT
bioprocesses. We demonstrated that supervised clustering using average SHAP values,
obtained from the ‘DFT Modulus’ of the PPSW and of the periodic component, i.e.,
PPSD techniques applied to original BF images, in the tree–based ML model produced
highly distinct clusters of human Mesenchymal Stem Cells (MSCs) corresponding
to diverse cell culture conditions. This approach provides a clear understanding of
the relationships between different features and their importance in the classification
process, making it easier for researchers and practitioners to optimize their workflows.

• Reduction of noise and improved feature properties, allowing models to achieve
encouraging accuracy with a limited dataset of approximately 1000 images. This
advantage suggests that our proposed workflow can be effective even with relatively
small datasets, lowering the barrier to entry for researchers and companies looking to
adopt these techniques.

• Demonstration of reasonable computational burden and time for our PPSW technique
across different hardware configurations, highlighting the efficiency of our approach.
Our PPSW technique showcases reasonable computational burden and time across
different hardware configurations, with the GPU server taking 0.115 s for the original
image and 0.33 s for the bior2.4 mother wavelet type, while the laptop computer we
used took 0.23 s and 0.75 s, respectively, for processing a single image and extracting
the six Haralick texture feature sets with noise reduction. This efficiency enables our
workflow to be applied in various settings, from high–end research facilities to smaller
labs with limited computational resources.

To evaluate the feasibility of our proposed analytical workflow, we used a dataset
of images of human MSCs obtained from multiple donors, cultured in various media
backgrounds, and under a range of bioprocess conditions. We found that the results of the
‘DFT Modulus’ transform applied to the decomposition of BF images revealed significantly
higher descriptive statistics than the original BF images, making it simpler to classify cell
density or media background across gradient density samples. Random forest classifiers
produced the highest accuracy stem cell classification outcomes. In addition, the ‘DFT Mod-
ulus’ transform of the PPSW (the bior1.1 mother wavelet using fifth–level decomposition)
for cell density spectra and the periodic component, PPSD for cell media environment con-
ditions, provided superior performance in comparison to all other competitors of concern
in this paper.

It is worth noting that the proposed workflow was applied to a relatively small dataset.
Challenges related to larger sample sizes may arise, such as increased computational
requirements, but our method shows promising results in terms of computational effi-
ciency on various hardware configurations. Further investigation is needed to validate the
scalability of our workflow to larger datasets and diverse cell types.

For ML interpretability, the use of SHAP values in our study resulted in improved
accuracy, which could be attributed to the advantages provided by the SHAP TreeEx-
plainer method in terms of rescaling the data and enhancing feature relevance. TreeSHAP
computed exact SHAP values using its conditional expectation method for each class as-



Cells 2023, 12, 1384 17 of 19

signment, which is computationally less expensive than KernelSHAP [50]. Our study not
only highlights global feature importance but also showcases the potential of supervised
clustering with SHAP values in Random forests. This approach enables the identification of
distinct subgroups and enhances explainability by evaluating the significance of individual
texture feature sets.

With deeper application–focused examination of the features and interpretation of the
ML model within the context of our dataset, we can effectively demonstrate the strengths
of our approach and highlight the types of insights it can offer. For example, discussing the
best features across various classes and their implications for the classifications present in
the data can provide a better understanding of the biological insights that can be derived
from our workflow. This discussion could also highlight potential directions for future
research, such as investigating the relationships between specific features and stem cell
behavior or exploring new feature extraction methods to further improve classification
performance. We acknowledge that our study has certain limitations, some of which are
specific to the dataset. In addition, our results may be influenced by factors such as data
quality, image resolution, and potential bias during the pre–processing of the dataset,
which highlights the importance of addressing these issues to provide the robustness and
generalizability of our workflow. In the future, we intend to test our proposed analytical
workflow on similar large–scale datasets obtained from different specifications of high–
throughput microscopy imaging systems to evaluate the generalizability of our approach.
This will allow us to refine our methods and address potential limitations, ultimately
leading to more robust and effective tools for stem cell research and CT manufacturing.

In conclusion, we aimed to establish an analytical ML workflow with high performance
metrics to fully characterize stemness and cell quality from high–throughput BF images in
CT manufacturing. Given its local and global interpretations and high fidelity, supervised
clustering approach using SHAP values, obtained from the ‘DFT Modulus’ applied to the
decomposition of BF images in the trained ML model, would improve the interpretation of
CT bioprocesses. Our innovative, label–free approach will enhance stem cell manufacturing
through faster and richer process analytics, thereby making stem cell therapies accessible
to all. As our approach continues to be refined and tested on a wider range of datasets
and applications, we anticipate that it will contribute significantly to the advancement
of regenerative medicine, improving patient outcomes, and driving innovation in the
development of novel therapies and treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12101384/s1, Figure S1: Schematic representation of the
machine learning pipeline employed in this study; Figure S2: Human Mesenchymal Stem Cells
(MSCs) from bone marrow in different media environments—Serum Free (SF, left), Low–Serum
Containing (LSC, middle), and Serum Containing (SC, right). Upper panels display overlay images
with Hoechst stain (red) and Cell mask (green). Lower panels present corresponding bright–field
images for each media environment, showcasing the distinct morphological characteristics of human
MSCs. Abbreviations: FBS—Fetal Bovine Serum; FGF—Fibroblast Growth Factor 2; Figure S3:
Illustrative examples of discrete wavelet families employed in this study; Figure S4: Random Forest
global feature importance (left) and permutation importance (right) scores derived from the ‘DFT
Modulus’ of the Periodic Plus Smooth Wavelet (PPSW) transform (with the bior1.1 mother wavelet
using fifth–level decomposition) applied to bright–field images; Figure S5: Supervised clustering
using SHAP values facilitates precise, label–free classification of cell media environment in human
MSCs. The raw data (top left) and average SHAP values from Random Forests (right panels) projected
in two–dimensional space via UMAP; Table S1: Performance metrics of Random Forest classifiers
for cell density spectra using discrete second–level mother wavelet functions; Table S2: Performance
metrics of Random Forest classifiers for cell media environment spectra using discrete second–level
mother wavelet functions; Table S3: Performance metrics of various state-of-the-art tree–based
machine learning models for classifying cell density spectra, utilizing high–throughput bright–field
images (our baseline scenario) as well as images with image decomposition and/or restoration
techniques in the Gradient Density dataset; Table S4: Performance metrics of various state-of-the-
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art tree–based machine learning models for classifying cell media environment spectra within the
Gradient Density dataset.
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