
 

Supplementary Table S1: Summary of gut microbial alteration during spaceflight 

Microbiome species Associated conditions Changes 
Gut Akkermansia1, 2 Increase in the inflammatory immune response ↓ 
Gut Fusicatenibacter1 Increase in the inflammatory immune response ↓ 
Gut Pseudobutyvibrio1 Increase in the inflammatory immune response ↓ 
Gut Parasutterella2 Chronic intestinal inflammation in patients with 

inflammatory bowel disease (IBD) 
↑ 

Gut Bifidobacteria 3-5 Immune system injury ↓ 
Gut Lactobacilli3 Immune system injury ↓ 
Gut Bacteroides3 Opportunistic pathogen ↑ 
Gut Salmonella6 Increased virulence and antibiotic resistance (in-vitro)  
Gut Escherichia coli6 Increased virulence and antibiotic resistance (in-vitro)  
Gut Clostridiaceae7 Increase in the inflammatory immune response ↓ 
Gut Firmicutes to Bacteroidetes 

(F/B) ratio8 
Ratio changes noted in response to spaceflight, 
however ratio returned to preflight levels within 
weeks of landing 

↑ 

Gut Faecalibacterium prausnitzii,2 Decreased production of some short-chain fatty acids 
(SCFA)  

↓ 

Gut Parasutterella1 Chronic intestinal inflammation in patients with 
inflammatory bowel disease (IBD) 

↑ 

Skin Proteobacteria (mostly 
Gamma and 
Betaproteobacteria)1 

Inversely associated with inflammation and allergy 
sensitization 

↓ 

Skin Firmicutes1  ↑ 
Skin Staphylococcus aureus1, 9-11 Spaceflight-isolated staphylococcus species were 

resistant to at least 1 antibiotic 
↑ 

Skin Streptococcal  ↑ 
Skin Pseudomonas9, 10    ↑ 
Skin Enterobacteriaceae9  ↑ 
Nasopharynx Staphylococcus1, 12 Prevalence of staphylococcus aureus may be 

associated with chronic rhinosinusitis, allergic rhinitis, 
nasal polyps, and asthma 

↑ 

Nasopharynx Corynebacterium  ↑ 
Nasopharynx Bifidobacterium1, 13 May have a protective effect on allergic rhinitis 

 
↑ 

 

 

 

Supplementary Table S2: Summary of immune/cytokine changes during spaceflight 



Immune/cytokines Inflight (long duration) (at least 6 
months) 

Post spaceflight (after 
returning to Earth) 

CXCL81 ↑  

IL-81, 14 ↑  

IL-1b1 ↑  
IL-1ra1, 14 ↑  

TNFa1, 15 ↑  
IL-615, 16  ↑ 

IL-317 ↑  
IL-717 ↑  

IL-1517 ↑  

IL-12p4017 ↑  
TGF-ß1 and TGF-ß217 ↑   

IL-1015, 16  ↑ 
IL-1ra15, 16  ↑ 

CCL215, 16  ↑ 
CRP15, 16  ↑ 

Saliva GM-CSF17  ↓ 

Saliva IL-12p7017  ↓ 
Saliva IL-10 17  ↓ 
Saliva IL-1317  ↓ 

 

 

 

Supplementary Table S3: Summary of diet recommendation during spaceflight 

Diet and Supplements 
Protein intake, % of kcal 12–15% of total daily energy intake 

Carbohydrate intake, % of kcal 50% to 55% of total daily energy intake  
Fat intake, % of kcal 30–35% of total daily energy intake 
Water > 2 liters per day 
Total dietary fiber, g/d 10–25 grams per day  
Fruits and vegetables Recommended 



Vitamin D supplements Recommended 
Supplements of A, B6, B12, C, E, K, Biotin, Folic acid are not recommended at this time due to 
insufficient evidence18, 19 

 

 

Supplementary Table S4: Summary of AI technology and potential applications in space 

Problem Technology Potential applications 
Imaging  The Space-Feasibility Body Composition and 

Body Shape Analysis for Long Duration 
Missions (ASTRO3DO) project20 

3D optical scanners using AI to monitor an 
astronaut’s total body compositions (lean, fat, 
percent fat, BMD), regional compositions 
(visceral fat, subcutaneous fat, lumbar spine 
BMD) 

Imaging AMO project20, 21 
 
AMO MDSS computer system 

Virtual medical officer (Tietronix Intelligent 
Medical Crew Assistant), Augmented Reality 
enhanced ultrasound improves the reliability of 
ultrasound image interpretations 

Imaging AI-enhanced ultrasound22 AI-enhanced clinical-grade images for inflight 
echocardiography (UltraSight with GE 
Healthcare) and point of care ultrasound (GE 
Healthcare Vsan Air wireless transducer)  

Imaging Deep learning enhanced microtomography23 CMCT system has great promise for temporal 
bone imaging 

Monitoring  Random forest  
Bayes network algorithm24 

AI could monitor or predict colorectal cancer 
based on analysis of fecal and gut microbiota 

Monitoring  MitoMo (Proprietary algorithm)25 AI could monitor microscopic changes in 
mitochondria 

Monitoring  DeepMAge (Deep learning)26 AI could monitor  microscopic changes in 
epigenetics 

Monitoring XGBoost27-29 AI could monitor small changes in telomere-
length dynamics 

Monitoring 
and 
prediction 

Pro-inflammatory cell phenotypes and plasma 
cytokines30, 31 
 

AI could monitor microscopic changes in levels 
of inflammatory cytokines 

Monitoring 
and 
prediction 

Proprietary ML algorithm32, 33 AI could monitor intracranial pressure levels 
using ultrasonography of the optic nerve sheath 
diameter in order to predict SANS development 

Biosensors Generative AI34  
 
Wearable technology35 

Synthetic Astroskin Data (detect 
electrocardiographic changes) 

Prediction CRISP 2.0 model  
 
Intel’s Open Federated Learning (OpenFL) 
framework36, 37 

AI could predict the genes or novel biomarkers 
for the development of cancer secondary to 
radiation exposure based on data from a 



combination of mouse, human, and genetic 
studies 

Unknown or 
novel risk 
factors 
prediction 

CRISP37, 38 
 
Gradient boosting decision trees39 
 
Logistic regression40 

AI could identify ‘hidden’ risk factors from 
simulated microgravity and radiation exposure 

Prediction Proprietary ML algorithm41 AI could detect the risk of cerebrovascular 
disease using estimates of carotid-femoral pulse 
wave velocity values obtained from doppler 
ultrasound  

Prediction Hybrid method (deep learning and empirical 
mode decomposition)42 

AI could potentially predict radiation dose 
estimations 

Prediction Support Vector Machines43 AI potentially predict genomic signatures of 
human radiation response 

Device, 
organ 

AI-enhanced 3D printing44, 45  In a microgravity environment, 
3D-printed soft tissues will maintain their shape.  

Medical 
Decision 
Support 
System 

Autonomous Medical Operations (AMO)20 AI-assistance to aid astronauts in the timely 
diagnosis (e.g., ultrasound) and treatment of 
emergent conditions (e.g., advisory software, 
virtual assistance)  

Triage  Operations (AMO)20 AI assistant that assigns degrees of urgency to a 
medical scenario 

Biosensors Wearable devices, motion sensors35 A combination of AI and wearable technology 
could monitor vital signs, sleep cycle 

Interpretation K-Means clusters and Support Vector 
Machine46 

AI could potentially provide a complementary 
approach to classic statistical analysis and enable 
a more robust assessment of microstructures 
(e.g., bone microarchitecture) using microCT  
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