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Abstract: Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder
among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evi-
dence suggesting the potential contribution of genetic interactions or predispositions combined with
environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to
potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to
maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This
article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa
and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive
disorders such as PCOS.

Keywords: polycystic ovary syndrome; granulosa cells; theca cells; endocrine disrupting chemicals

1. Introduction

Polycystic ovary syndrome (PCOS), also known as Stein-Leventhal syndrome, is the
most commonly occurring chronic endocrine disorder among women of reproductive
age [1]. This condition, with a broad spectrum of heterogeneous syndromes, affects the
health of a significant portion of the female population worldwide. PCOS is a complex
endocrinopathy encompassing a constellation of various symptoms, such as menstrual
abnormalities, infertility, acne, hirsutism, and several metabolic disorders. Considering
the varied clinical manifestations, unknown etiology, and complicated pathophysiology,
the diagnosis of PCOS still remains a matter of controversy. The prevalence of PCOS is
frequently estimated to be 2 to 26% [2,3]. The mentioned divergence in the prevalence rate
might result from differences in diagnostic criteria, sample heterogeneity, socioeconomic
status, access to medical care, and general health awareness [3]. Furthermore, considering
the multiple PCOS phenotypes and the fact that PCOS is being diagnosed mainly by
gynecologists and endocrinologists, while it is poorly understood in other specialties and
primary care, these estimations may sometimes be understated. It is also known that
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racial and ethnic differences might be involved in the clinical manifestation of PCOS, due
to genetic and environmental susceptibility to endocrinopathies and metabolic diseases.
Engmann et al. have revealed that Hispanic women presented a severe PCOS phenotype
with more pronounced hyperandrogenism and metabolic abnormalities [4].

Up to now, three sets of standardized diagnostic criteria have been established. In
1990, the National Institutes of Health (NIH) criteria were proposed, defining PCOS as the
presence of clinical and/or biochemical hyperandrogenism, oligo/amenorrhea, and anovu-
lation, after the exclusion of related disorders [5]. The most relevant and widely used are
the Rotterdam criteria, formulated in 2003. According to them, a clinical diagnosis of PCOS
requires the presence of two of the following conditions: (i) oligoovulation or anovulation,
(ii) clinical or biochemical hyperandrogenism, (iii) polycystic ovary morphology (PCOM),
defined as 12 or more follicles in each ovary measuring 2–9 mm visible on ultrasound [6].
Moreover, two new phenotypes of PCOS were created: (i) ovulatory women with PCOM
and clinical and/or biochemical hyperandrogenism, (ii) oligo- and anovulatory women
with PCOM without androgen excess and/or hirsutism [6]. According to Zhang et al.,
based on the new set of criteria, the prevalence of PCOS could increase in the population of
women of reproductive age, possibly by as much as 50% [7]. In 2006, the Androgen Excess
Society (AES) revised the recent diagnostic criteria and expressed a preference that PCOS
should initially be considered as an endocrinopathy with androgen excess or hyperandro-
genism [6]. The Rotterdam PCOS diagnostic criteria were supported by the “International
evidence-based guideline for the assessment and management of polycystic ovary syn-
drome” [8]. Based on the revised recommendations, while both oligo- or anovulation and
hyperandrogenism are present and related disorders are excluded, an ultrasound is not
necessary for diagnosis in adults [8]. The evidence-based recommendations regarding hy-
perandrogenism have also been highlighted. It is strongly recommended to use calculated
free testosterone, free androgen index, or calculated bioavailable testosterone to determine
biochemical hyperandrogenism. Furthermore, a comprehensive physical examination
should be performed to assess the manifestations of clinical hyperandrogenism, including
hirsutism, acne, and alopecia [8]. Hirsutism should be diagnosed using standardized visual
scales, such as the modified Ferriman Gallwey (mFG) score [9]. However, ethnicity must
be considered to avoid inaccurate clinical assessment, as higher cut-off values have been
described in Chinese women, compared to White and Black women [10,11].

The diagnostic assessment of PCOS in adolescents may also need a careful approach.
The adolescent consensuses support the use of NIH criteria, which include hyperandro-
genism and menstrual irregularities/ovulatory dysfunction after exclusion of related con-
ditions [12]. The Rotterdam criteria should not be used, as pelvic ultrasound is not rec-
ommended for the diagnosis of PCOS in adolescents. Several studies showed that PCOM
commonly occurs in the early years post-menarche in healthy adolescents [8,13–15]. Fur-
thermore, international evidence-based guidelines do not recommend using ultrasound for
the diagnosis of PCOS in patients with a gynecological age of <8 years [13].

Additionally, the criterion of menstrual irregularity in adolescents was also rede-
fined [13]. Irregular menstrual cycles were defined as normal in the first year after menar-
che [8]. Furthermore, based on criteria published by the American Academy of Pediatrics
and the American College of Obstetrics and Gynecology, the presence of persistent men-
strual cycles >45 days during the six years after menarche should be defined as oligomen-
orrhea [16]. Moreover, primary amenorrhea by the age of 15 or after the three years post
thelarche should be considered as a feature of adolescent PCOS within the criterion of
irregular menstrual cycles [8].

Recently, an important insight into the Rotterdam criteria has been provided. Carmina
and Lobo have indicated the importance of obesity as a characteristic frequently associated
with PCOS patients, which currently remains out of the diagnostic criteria for PCOS [17].
The authors have suggested the differentiation of the patients of each Rotterdam PCOS
phenotype into two subtypes: obese and lean patients. The modified classification, consid-
ering body weight, associated with metabolic alternation or a normal metabolic pattern,
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may facilitate the process of clinical diagnosis and, in consequence, improve treatment
outcomes [17,18].

However, PCOS remains a diagnosis of exclusion. There are several disorders with
manifestations similar to PCOS, causing oligoovulation/anovulation and hyperandro-
genism that should be excluded. It is essential to rule out disorders such as hyperpro-
lactinemia, nonclassical congenital adrenal hyperplasia, Cushing’s disease, and androgen-
secreting tumors [19].

Although the diagnostic criteria of PCOS are widely described, its etiology remains
unclear. However, this endocrinopathy can be considered to encompass numerous genetic
interactions or predispositions, as well as environmental factors, all contributing to the
eventual PCOS phenotype [20,21]. The androgen excess in prenatal/prepubertal life has
been suggested to be a reason for the manifestation of PCOS in adulthood [22,23]. Envi-
ronmental factors play an important role in the development of the epidemic of PCOS
in contemporary society, and interest in the possible health concerns posed by EDCs is
increasing. According to the Scientific Statement of the Endocrine Society, EDCs play a
cardinal role in the etiology of complex metabolic syndromes, such as obesity, diabetes
mellitus, and cardiovascular disease [24]. The EDCs were defined by the U.S. Environmen-
tal Protection Agency (EPA) as “exogenous agents that interfere with synthesis, secretion,
transport, metabolism, binding action, or elimination of natural blood-borne hormones
that are present in the body and are responsible for homeostasis, reproduction, and de-
velopmental process” [24]. There is accumulative evidence that EDCs are associated with
many reproductive disorders among women. To date, these substances have been revealed
to impact female and male reproduction, the development of breast and prostate cancers,
and play a role in the etiology of complex disorders, such as diabetes, obesity, and car-
diovascular disease [24]. Therefore, exposure to environmental EDCs can also contribute
to the pathogenesis of PCOS. Due to the extensive occurrence of these compounds in the
environment, it is an area of intensive investigation.

This article provides a review of the recent knowledge on PCOS pathophysiology, the
role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure
to EDCs with reproductive disorders such as PCOS.

2. Pathophysiology of Polycystic Ovary Syndrome

Genome-wide association studies (GWAS) were an important milestone in PCOS
genetics. The role of GWAS is to look for associations between common genetic polymor-
phisms and diseases, providing information about gene loci linked to the trait. GWAS have
provided the entire genome search for susceptibility loci for PCOS and its quantitative
features [25]. To date, genome-wide association studies have been conducted in Chinese,
Korean, and European cohorts and have pointed out the following genetic loci in genes as-
sociated with PCOS, e.g., DENND1A, insulin receptor (INSR), YAP1, C9orf3, RAB5B, HMGA2,
TOX3, SUMO1P1/ZNF217, THADA, FSHR, and LHCGR [26,27]. Moreover, mentioned
genome research has provided insights into several biological pathways essential for PCOS
pathogenesis, which can be disrupted, involved in androgen and gonadotropin secretion,
and cell survival [28–30].

Furthermore, based on biochemical and genotype data from a previously performed
GWAS [30], Dapas et al. have investigated the phenotypic subtypes of PCOS using an
unsupervised hierarchical cluster analysis in a genotyped cohort of 893 PCOS women and
then replicated the clusters in a cohort of 263 independent, ungenotyped PCOS cases [31].
Interestingly, the research has indicated two PCOS subtypes: (i) a reproductive group
(21–23%), characterized by higher levels of LH and SHBG as well as relatively low BMI
and insulin levels; (ii) a metabolic group (37–39%), described by higher BMI, glucose, and
insulin levels, accompanied by lower LH and SHBG levels [31]. Moreover, a significantly
higher number of PCOS patients from the reproductive subtype were found to carry at least
one of the previously described deleterious DENND1A variants, as compared to women
with other PCOS subtypes [31].
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Overall, these results demonstrate that the reproductive and metabolic subtypes ap-
pear to have a distinct genetic architecture and are associated with different underlying
biological mechanisms. It might be of high significance since the patients from the men-
tioned subtypes may respond differently to therapy.

2.1. Neuroendocrine Dysfunctions and Reproductive Abnormalities in PCOS

Physiological ovarian follicular development consists of various subtle mechanisms
as well as metabolic and intraovarian interactions, which all contribute to the ovulation of
one dominant antral follicle during the menstrual cycle. Hence, in PCOS, follicle growth is
frequently disrupted by hyperandrogenism, insulin resistance, leading to hyperinsulinemia,
and dysfunction of intraovarian paracrine signaling [32]. The accumulation of prematurely
arrested small antral follicles within the ovarian cortex and subsequent failure of dominant
follicle development result in PCOM. The mentioned follicular arrest in PCOS is clinically
manifested by menstrual irregularity and anovulation [32].

Gonadotropin abnormalities are one of the major issues in PCOS pathophysiology.
Overall, 70% of women with PCOS are estimated to manifest increased serum immune and
bioactive LH levels [23].

Moreover, the hyperresponsiveness of the theca cells to LH stimulation leads to
enhanced ovarian androgen production and, consequently, hypothalamic–pituitary axis
dysfunction. In addition, the compensatory aromatization to estrogens in granulosa cells
(GCs) is diminished due to the reduced FSH levels. Higher LH pulse amplitude and
frequency contribute to the significantly elevated LH:FSH ratio. It is the result of increased
hypothalamic gonadotropin-releasing hormone (GnRH) pulsatile release, associated with
a reduced steroid hormone negative feedback loop of LH secretion due to androgen ex-
cess [33–35]. Furthermore, hyperandrogenism has been reported to reduce the sensitivity
of gonadotropic hypothalamic cells to estradiol and progesterone, enhancing GnRH and
LH secretion [36]. Thus, treatment with an androgen receptor blocker, such as flutamide,
has been shown to improve the sensitivity of the GnRH pulse generator among women
suffering from PCOS within four weeks [37]. Subsequent studies have revealed that an-
drogen excess elevates initial recruitment of the primordial follicles, initiates premature
luteinization, and inhibits selection of the dominant follicle [38–41]. Hence, hyperandro-
genism is suggested to be the underlying cause of PCOM. Moreover, genetic factors have
also been proposed to potentially contribute to PCOM due to ovarian tissue predisposition
for hypersecretion of androgens, as a result of mutations in the androgen receiver, sex
hormone-binding globulin (SHBG), and steroidogenic enzyme genes [42].

According to the available literature and in vivo studies, it has been suggested that
functional ovarian hyperandrogenism (FOH) is the crucial derangement in PCOS. Mostly
otherwise unexplained steroidogenic hyperactivity appears to be a fundamental disruption
of intraovarian processes and, subsequently, ovarian androgen and estrogen secretion [43].
Androgen excess is frequently considered to be essential in PCOS, since circulating total and
free testosterone and dehydroepiandrosterone sulfate (DHEAS) levels are significantly ele-
vated in the majority of PCOS cases [44]. The clinical manifestations of hyperandrogenism
are hirsutism, acne, and alopecia. However, 15–20% of women with clinical hyperan-
drogenism were not diagnosed with this endocrinopathy [45,46]. Over 60% of women
suffering from PCOS have functionally typical FOH, described by 17-hydroxyprogesterone
hyperresponsiveness to stimulation with gonadotropin. The remaining PCOS cases are
characterized by FOH, which presents with an elevated testosterone level after suppression
of adrenal androgen production or isolated functional adrenal hyperandrogenism [47].

2.2. Metabolic Disorders in PCOS

It is well known that PCOS is a multifactorial metabolic syndrome. The most critical
metabolic feature in the clinical manifestation of PCOS is peripheral insulin resistance,
resulting in compensatory hyperinsulinemia. Insulin resistance is estimated to affect
60–80% of women diagnosed with PCOS, and occurs independently of obesity [48]. In-
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sulin resistance could be described as the failure response to regular circulating levels of
insulin, which contributes to the pathogenesis of T2DM, hypertension, atherosclerosis,
hyperlipidemia, and other metabolic syndromes. It has been suggested that compensatory
hyperinsulinemia, as a response to insulin resistance, leads to hyperandrogenism through
stimulation of ovarian androgen secretion and an inhibitory effect on liver SHBG pro-
duction [32,49,50]. Although multiple molecular explanations for the underlying insulin
resistance in PCOS have been proposed, the main mechanism remains elusive. There is a
large body of evidence suggesting primary derangements in the insulin-mediated glucose
transport, abnormal GLUT4 expression, and insulin or adrenergic-regulated lipolysis in
adipose tissue, regardless of normal insulin binding [49,51–54]. Therefore, insulin resistance
is known to be associated with adiposity, as evidenced by the higher prevalence of obesity
among women suffering from PCOS than healthy women of the same age group [55]. The
mechanism of PCOS-related insulin resistance contributes to fundamental, tissue-specific
derangements in intracellular signaling by paracrine, autocrine, and endocrine factors,
affecting particular metabolic pathways [47]. At the molecular level, abnormalities in the
phosphorylation of the insulin receptor, or insulin-receptor substrate, have been suggested
to be the most prominent among the mechanisms of insulin resistance in PCOS. Intracel-
lular serine kinases phosphorylate the insulin receptor and insulin receptor substrate-1,
leading to reduced activation of the phosphatidylinositol-3-kinase signaling pathway, and
therefore inhibiting glucose transport. Moreover, serine phosphorylation is also known to
activate mitogenic pathways mediated by ERK/MAPK [56]. Interestingly, there are several
similarities in the PCOS-related insulin signaling pathway in the ovaries and the other
tissues. It has been revealed that phosphorylation of microsomal cytochrome P450c17 by
serine kinases leads to increased 17,20-lyase activity. Cytochrome P450c17 is known to
catalyze steroid 17-α-hydroxylase activity and scission of the C17-C20 steroid bond (17,20-
lyase) at the same active site. Hormonally regulated serine phosphorylation of cytochrome
P450c17 has been proposed to be an etiologic connection between hyperandrogenism and
insulin resistance in PCOS [57]. In addition, recent studies have indicated irregular phos-
phorylation of glycogen synthase kinase 3 and serine/threonine-protein kinase AKT in
fibroblasts, adipocytes, and myocytes in women suffering from PCOS [49,52,58,59]. The
derangements in insulin secretion and activity significantly increase the risk for the de-
velopment of various metabolic disorders. Consequently, 30–40% of women with PCOS
struggle with impaired glucose tolerance, 30–70% suffer from obesity, and 10% have type 2
diabetes by the fourth decade of life [56].

Metabolic derangements might also notably increase the risk of cardiovascular dys-
function in PCOS patients. Several studies have revealed that a higher risk of cardiovascular
disease is correlated with the severity of PCOS phenotypes in obese and non-obese pa-
tients [60,61].

2.3. Environmental Factors and PCOS Development

Environmental factors are known to have an important role in PCOS pathogenesis.
The accumulating data indicate that socioeconomic status (SES), as well as unhealthy be-
haviors, such as bad eating habits, smoking, and insufficient physical activity, impact the
development of PCOS [62,63]. Studies have indicated the relationship between low SES in
childhood and PCOS development in later years [64]. Low SES has also been linked to the
prevalence of obesity, one of the major PCOS-associated metabolic comorbidities [65,66].
Therefore, lifestyle can affect PCOS phenotypic expression. In fact, the risk of PCOS de-
velopment seems to be greater in obese women. It has been revealed that weight gain
exacerbates the metabolic and reproductive dysfunctions of PCOS, which are manifested
by worsened insulin resistance, abdominal obesity, irregular menstrual cycles, and hyper-
androgenism in the most severe PCOS phenotype [67–71]. For instance, Carmina et al.
suggested that the widely described, more pronounced metabolic dysfunctions in PCOS
women in the USA, compared to PCOS women in other countries, might be relatively
connected with higher body weight and dietary saturated fat intake [72]. On the other
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hand, reducing body weight contributes to lower circulating androgen and insulin lev-
els, ameliorates ovulatory and menstrual aberrations, and improves dyslipidemia [73–77].
Similarly, regular moderate-intensity exercise training decreases body adipose tissue and
improves insulin sensitivity even without calorie restriction and weight loss [78].

Exposure to EDCs is certainly an important predisposing environmental factor con-
tributing to PCOS development [79]. Therefore, EDCs have been reported to target
metabolic and reproductive function, leading to abnormalities that resemble those of
PCOS. Bisphenol A (BPA) is one of these compounds primarily used in the production
of polycarbonate plastics. BPA is found in numerous products, including water bottles,
medical devices, and dental sealants [80,81]. Animal studies have suggested that BPA
disrupts the hormonal balance due to enhancing androgen production in vitro [82], and
inducing insulin resistance in vivo [83]. Several studies have reported that BPA accumu-
lates in women with PCOS at elevated levels, leading to androgen excess, which in turn
decreases its hepatic clearance [84,85].

Growing interest has been devoted to the impact of EDCs on the altered composition
of gut microbiota (GM), known as dysbiosis. GM is a complex population of microor-
ganisms (bacteria, archaea, and eukarya) that colonize the human gastrointestinal tract,
fulfill many critical roles in essential host functions, and therefore influence human health
and diseases [86]. The main taxonomic phyla residing in the intestine include Firmicutes,
Bacteroides, Proteobacteria, Fusobacteria, and Verrucomicrobia [87]. Many recent articles
and reviews have highlighted the various physiological functions of GM, including mainte-
nance of intestinal mucosal barrier integrity, regulation of host immunity, modulation of
immune development, protection against pathogens, and synthesis of essential vitamins
that the host is incapable of producing [86]. Due to its large genomic content (microbiome),
GM offers many benefits to the host, and the diversity of the microbial population is of
great importance since it might be considered a functional expansion of host genomes [88].

Recently, several clinical and experimental studies showed that exposure to EDCs signifi-
cantly altered the composition of gastrointestinal bacteria [86]. It has therefore been revealed
that GM is involved in xenobiotic biotransformation and has the capacity to extensively
metabolize EDCs, which might change or modulate their toxicity for the host [89,90]. Current
research suggests a significant correlation between GM composition and female reproductive
health [86]. GM has been suggested to influence female fertility by altering the level of sex
hormones [91]. Furthermore, reduced GM biodiversity in both the gut and reproductive tract
may lead to immune abnormalities, impaired immunosurveillance, and affected immune
cell profiles. Dysbiotic GM has been observed in various infertility-related disorders such
as endometriosis, PCOS, insulin resistance, and obesity [92–97]. For instance, an abnormal
Escherichia:Shigella ratio and an excess of Bacteroides have been revealed in PCOS patients
compared to healthy women [95].

There are numerous sources of daily human exposure to EDCs, including food and
beverages, air, dust, and water [98]. Therefore, there is growing concern about the negative
impact, possibly caused by these compounds, on women’s reproductive health, since
exposure to these chemicals might exaggerate the severity of the PCOS phenotype.

3. The Role of Granulosa and Theca Cells in PCOS
3.1. Granulosa and Theca Cells—Two Cell, Two Gonadotropin Theory

GCs are widely considered a critical somatic part of the ovary. GCs surround the
oocyte, promote oocyte development, produce sex steroids and growth factors, and overall
contribute to normal folliculogenesis and menstrual cycle [99]. GCs can be divided into
two types, mural GCs and cumulus cells, which transform from each other at pre-antral
to antral follicle transition. Mural GCs consist of the external layer of lining the follicle,
whereas cumulus cells adhere to the developing oocyte. Further, GCs aromatize androgens,
produced by neighboring theca cells, during folliculogenesis [100]. Theca cells are endocrine
cells that differentiate from the interfollicular stroma in response to factors secreted by the
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growing follicles. Any disturbance in the complex processes in GCs and theca cells may
lead to endocrine disorders, such as PCOS, or even cause infertility.

Granulosa and theca cells are known to cooperate in the biosynthesis of ovarian
hormones (Figure 1). This cooperation is described by the two-cell, two-gonadotropin
theory, which claims that ovarian steroids are synthesized from cholesterol through complex
interactions between the granulosa and theca cells [101].
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Figure 1. Ovarian steroidogenesis: two cell, two-gonadotropin theory. Ovarian steroids are syn-
thesized from cholesterol, which diffuses from the circulation into theca cells and is mobilized into
mitochondria by steroidogenic acute regulatory protein (STAR) activity [102]. LH binds to LHCGR
on the cell surface, which results in the increased expression of steroidogenic enzymes involved in
androgen production. Cholesterol is then converted into pregnenolone by the cholesterol sidechain
cleavage enzyme (CYP11A1). In the smooth endoplasmic reticulum, pregnenolone is transformed
into progesterone due to the activity of 3β-hydroxysteroid dehydrogenase (3β-HSD). Then, due
to the activity of CYP17A1 progesterone is converted to androstenedione, which in turn might be
transformed into testosterone by 17β-hydroxysteroid dehydrogenase (17β-HSD) or translocated
into the GCs, where aromatase (CYP450arom; CYP19A1) converts androstenedione to estrone and
testosterone to estradiol. 17β-HSD might also produce estradiol using estrone as a substrate [103–106].
Created with BioRender.com.

There is an ongoing discussion on how various EDCs can alter the complexity of
the synthesis and metabolism of ovarian steroid hormones [107]. Thus, disruption of the
endocrine system occurs when the hormones do not bind to the receptors, and the way
hormones elicit their function is changed.

3.2. The Role of AMH-Mediated SMAD Signaling Pathway in PCOS

Anti-Müllerian hormone (AMH), a glycoprotein hormone from the TGF-β superfamily,
is produced by GCs with the highest expression in the preantral and small antral follicles,
and has an important role in folliculogenesis. During the ovary cycle in physiological
ovaries, AMH continues to be expressed in growing follicles, playing a crucial role in the
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arrest of antral follicle development, reducing follicle sensitivity to FSH, and inhibiting
recruitment of follicles from the resting pool. When the follicles reach the size at which they
are dominant, the production of AMH is timely reduced. AMH is known to be used as a
molecular biomarker for the determination of ovarian reserve, but also ovarian dysfunction,
such as PCOS [108].

Elevated levels of AMH blood concentration in women with PCOS were recently
confirmed by several studies [109–111]. Anomalies in follicle growth, resulting in an
increased number of small antral follicles, contribute to anovulatory infertility in PCOS
women. It has been revealed that serum AMH levels are two to five times higher in PCOS
women, and relatively elevated in women presenting anovulatory cycles compared to the
ovulatory PCOS phenotype [112–114]. Therefore, there is increasing evidence that this
derangement in ovarian physiology is associated with unsatisfactory pregnancy outcomes.

Multiple molecular mechanisms have been proposed to explain the impact of AMH
on human ovarian GCs. AMH has been shown to reduce follicle responsiveness to FSH
due to the downregulation of FSH receptor expression in vitro in human GCs [115] and
the expression of aromatase [116]. Interestingly, gonadotropins are also involved in the
regulation of AMH expression; FSH has been indicated as a suppressor, and LH has been
shown to stimulate AMH expression in the GCs of PCOS women [117,118]. Furthermore,
Pierre et al. have revealed that the mRNA expression of AMH receptor II (AMHRII) is
downregulated by LH in GCs from women with regular ovaries, but not those suffering
from PCOS [119].

In GCs derived from polycystic ovaries, hyperandrogenism inhibits AMH down-
expression through elevated 5α-dihydrotestosterone (5α-DHT) levels, or indirectly through
the conversion of testosterone to estradiol and increased expression of ERα [120]. The
studies of Dilaver et al. have pointed out for the first time differences in the AMH/AMHRII
signaling, associated with the intracellular SMAD signaling pathway, in regular and poly-
cystic ovaries. Prolonged exposure of GCs derived from polycystic ovaries to high levels
of AMH has been revealed to affect the expression patterns of aromatase and FSHR and
disrupt SMAD signaling by increasing the level of I-SMAD-6, -7, and diminishing activation
of SMAD-1/5/8 and co-SMAD-4 [120].

AMH-mediated SMAD signaling is a complex downstream of events, beginning
with AMH binding to the AMHRII transmembrane serine/threonine kinase receptor and
activating the Type 1 receptor, which contributes to the phosphorylation of SMAD-1/5/8
proteins. Then, a tetrameric complex of two AMHRII and two Type I receptors (probably
ALK 2,3 or 6) is formed, and SMADs-1/5/8 are joined to the common SMAD-4 (co-SMAD-
4). The mentioned complexes are translocated to the nucleus, where they alter various genes’
expression due to transcriptional factors, coactivators, and corepressors [121]. In PCOS, the
cascade contributing to SMAD signaling is disrupted by high AMH concentration, leading
to increased protein levels of the inhibitory SMADs (I-SMAD), associated with negative
regulation of intracellular SMAD signaling (Figure 2). SMAD-6 has been revealed to inhibit
activation of bone morphogenetic protein (BMP) pathways, altering pSMAD-1/5/8 binding
to co-SMAD-4 in the mechanism of competitive inhibition. Furthermore, SMAD-7 is known
to inhibit BMP signaling by binding to the type I receptor [122]. Moreover, follicle growth
may also be disrupted by reduced expression of AMHRII [120].
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3.3. The Role of the PI3K/AKT/FOXO Signaling Pathway in PCOS

Subsequent studies have confirmed that insulin resistance and impaired glucose
metabolism in PCOS are related to the promotion of ovarian GCs apoptosis and follicular
development dysfunctions [123,124]. The mechanism of this pro-apoptotic activity is not
yet fully understood; however, the role of SH2B adaptor protein 3 (LNK), an important
regulator of the insulin signaling pathway, has been suggested.

LNK is a member of the Src homology 2B (SH2B) family of intracellular adaptor
proteins and is known to play an important role in the insulin signaling pathway in the
ovary, glucose homeostasis, and reproduction [125]. Furthermore, several studies have
also indicated the participation of LNK in the pathogenesis of type 1 diabetes, hyper-
tension, and cardiovascular disease, but also in malignant tumors [126–129]. In patients
with insulin resistance, LNK levels have been revealed to be significantly increased as
compared to the control group [130]. The authors suggested that LNK negatively regulates
the insulin-activated PI3K/AKT/FOXO3 signaling pathway in GCs and, consequently,
promotes GCs derangements and apoptosis, leading to ovulation disorders in PCOS [131].
Phosphatidylinositol 3-kinase (PI3K) signaling is one of the main pathways involved in
the regulation of cell proliferation, survival, migration, and metabolism in physiological
and pathological processes. Subsequent studies in humans and mice have confirmed that
PI3K/AKT signaling and the downstream pro-apoptotic genes (e.g., FOXO1, Bax, caspase-
9, caspase-3) participate in the regulation of GC growth and apoptosis during follicular
development [132,133]. FOXO transcription factors are members of the Fork-head family
of proteins and the main direct substrates of the protein kinase AKT following insulin or
growth factors stimulation [134]. Among the FOXO subgroup, four members (FOXO1,
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FOXO3, FOXO4, FOXO6) have been identified in humans [134]. The FOXO family is known
to be a key downstream target of PI3K/AKT.

Normally, insulin binds to the receptor, leading to activation of the PI3K/AKT/FOXO3
signaling pathway, promotes FOXO3 export from the nucleus to the cytoplasm, contributes
to inhibition of the expression of pro-apoptotic genes, increasing cell survival, growth, and
proliferation [131,135]. Increased LNK levels alter insulin-mediated phosphorylation of
AKT and FOXO3, promoting nuclear localization of FOXO3, and consequently leading to
enhanced apoptosis in GCs [131]. In vitro studies have also revealed that LNK knockout
moderately restores the estrous cycle and improves glucose metabolism in the PCOS mouse
model, compared to wild-type PCOS mice [131].

To date, several studies have confirmed derangements in the PI3K/AKT signaling
pathway in PCOS patients and animal models of PCOS [136,137]. Gong et al. have sug-
gested that derangements in PI3K/AKT signaling alter the balance between pro- and
anti-apoptotic events in GCs. The increased expression of pro-apoptotic FOXO1, Bax,
caspase-9, caspase-3, and decreased levels of PI3K, AKT, and Bcl-2 have been observed [138].
Moreover, the intracellular ROS level in PCOS GCs was three times higher compared to
the control. Interestingly, the study has revealed that growth hormone (GH) significantly
decreased ROS production by more than 50%, and decreased the apoptotic rate in PCOS
GCs, probably through the activation of PI3K/AKT signaling [138]. In contrast to these
findings, several studies have shown enhanced activity of the PI3K/AKT signaling path-
way in some PCOS patients [139,140], which might be associated with ethnic differences.
Therefore, considering the conflicting results, further research is needed.

3.4. The Role of the HMGA2/ IGF2BP2 Signaling Pathway in PCOS

The HMGA2/IGF2BP2 signaling pathway has been indicated to play a critical role in
cell proliferation and differentiation [141,142]. HMGA2 belongs to a family of HMGA genes
that consist of three DNA-binding domains and an acidic C-terminal tail [143]. An increase
in HMGA2 expression has been observed not only during embryonic development but also
in various cancers, suggesting its role in controlling cell proliferation [144]. Insulin-like
Growth Factor 2 mRNA Binding Protein (IGF2BP2) plays a vital role in metabolism, and
the variants in this gene have been associated with susceptibility to T2DM [145].

Recent studies have revealed that mRNA levels of HMGA2, a proposed GWAS sus-
ceptibility locus, and IGF2BP2 expression were significantly increased in GCs derived
from women with PCOS compared with controls [146]. In KGN and SVOG cell lines, the
HMGA2/IGF2BP2 signaling pathway has been shown to regulate the expression of the
CCND2 and SERBP1 genes, which are involved in promoting cell proliferation. Interest-
ingly, the mRNA, as well as protein levels of CCND2 and SERBP1 were also elevated
in the GCs of PCOS women, leading to enhanced proliferation and decreased apoptosis.
Taken together, the studies suggest that overexpression of HMGA2 and increased activity
of the HMGA2/IGF2BP2 signaling pathway in ovarian GCs promote cell proliferation and,
consequently, the PCOM [146].

3.5. The Role of Theca Cells in PCOS Development

Studies conducted in the past decade have built a convincing argument that ovarian
theca cells are the main source of excess androgen secretion in women suffering from
PCOS [147–149]. Therefore, it has been revealed that thecal tissue or theca cell cultures de-
rived from women with PCOS secrete significantly higher amounts of androgens compared
to cultures derived from healthy women [148,150,151].

In vitro studies have revealed that derangements in theca cell functions are associ-
ated with androgen excess and abnormal steroid secretion in response to gonadotropin
stimulation [152]. It has been shown that progesterone, 17-hydroxyprogesterone, and
testosterone secretion were significantly increased in theca cell cultures derived from PCOS
patients [151,152]. Furthermore, studies have revealed a remarkably enhanced metabolism
of precursors (basal and cyclic AMP-stimulated pregnenolone, progesterone, and dehy-
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droepiandrosterone) into testosterone, associated with increased androgenic 17β-HSD
activity. Moreover, increased mRNA expression of CYP11A, CYP17A1, P450c17, 3β-HSD,
and 17β-HSD enzyme activities were noted in PCOS theca cells compared to normal
cells [152]. CYP17A1 and CYP11A1 genes encode the pivotal enzymes associated with
androgen biosynthesis in theca cells: steroid-17-α-hydroxylase/17,20 lyase and cholesterol
side-chain cleavage enzyme, respectively [151,153–155]. Thus, increased expression of the
mentioned enzymes in women with PCOS enhances androgen biosynthesis by theca cells.
Recently, increased activity of P450c17 and 3β-HSD has also been revealed to play a crucial
role in the increased synthesis of testosterone precursors, and consequently increased
androgen secretion in PCOS by theca cells [153].

DENND1A is a member of the family of 18 human genes called “connecdenns” and
encodes a protein that has been identified as a guanine nucleotide exchange factor con-
verting inactive GDP-bound Rab35 into its active GTP-bound form. Genetic alterations
within the DENND1A gene have been noted in PCOS. Furthermore, the DENND1A locus
at 9q22.32 has been identified in both Asian and European populations [156–159]. Thus,
DENND1A might be considered a strong PCOS susceptibility gene [160]. McAlisster et al.
have revealed that DENND1A.V2, a splice variant derived from the DENND1A gene, plays
a pivotal role in theca cell steroidogenesis. Overexpression of DENND1A.V2 results in the
expression of the CYP17A1 and CYP11A1 genes and, consequently, increased androgen
secretion. Moreover, recent studies have indicated that knock-down of the DENND1A.V2
gene in PCOS theca cells diminished androgen secretion due to decreased CYP17A1 and
CYP11A1 genes transcription, restoring the normal phenotype of theca cells, which con-
firmed the role of DENND1A in hyperandrogenism associated with PCOS [152].

However, the mechanism of DENND1A.V2 steroidogenic activity is not fully under-
stood. Since DENND1A is one of the proteins involved in protein trafficking, clathrin-
mediated endocytosis, and receptor recycling, it might be suggested that DENND1A alters
LH action due to LH receptor signaling upregulation [28,47].

Moreover, according to the genotype-phenotype assessment performed by Tian et al.,
PCOS susceptibility variants in the THADA and INSR genes are associated with a higher
risk of metabolic syndrome in women suffering from PCOS, while variants in DENND1A
and TOX3 increase the risk of insulin resistance [161].

3.6. The Role of Circadian Rhythm in PCOS Development

In recent years, several studies have confirmed that light exposure and sleep distur-
bance are associated with acute circadian misalignment, which consequently contributes
to the development of metabolic diseases and fertility impairment [162,163]. Interestingly,
it has been suggested that circadian rhythm, which orchestrates the physiological func-
tions of the body, could be one of the contributing factors to androgen excess in patients
with PCOS [163]. Therefore, Wang et al. have observed a significant association between
long-term night shift work and PCOS [163].

Recently, Johnson et al. have suggested that circadian rhythm is one of the factors
contributing to androgen excess in PCOS due to its role in altering peripheral androgen
metabolism [164]. In fact, the study demonstrated increased mRNA levels of steroido-
genic enzymes: STAR, CYP17A1, and aldo-keto reductase family 1 member C3 (AKR1C3).
The AKR1C3 is known to encode 17β-hydroxysteroid dehydrogenase type 5 that converts
androstenedione to testosterone. Furthermore, different expression patterns of steroid 5-
alpha-reductase 1 and 2 (SRD5A1 and SRD5A2) were observed in patients with PCOS [164].
The androgen receptor (AR) transcript level was also elevated in the peripheral blood mononu-
clear cells (PBMCs) of women with PCOS. In contrast, the authors found a decrease in
CYP19A1, a key factor responsible for estrogen synthesis, in women with PCOS compared
to healthy women [164].

Interestingly, the expression of the steroidogenesis genes was shown to vary between
PCOS phenotypes. The most significant differences in transcript levels were observed
in phenotype A (hyperandrogenism, ovulatory dysfunction, polycystic ovaries), while in
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phenotype D (ovulatory dysfunction, polycystic ovaries), the changes were less pronounced.
It might be a result of heterogeneity as well as a different presentation of the clinical and
biochemical characteristics of PCOS cases [164].

Circadian rhythm is known to be modulated through several transcriptional and
post-translational autoregulatory feedback loops. The study has shown downregulation of
transcript levels of circadian locomotor output cycles kaput (CLOCK), brain and muscle
aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1), and neuronal PAS domain
protein 2 (NPAS2) in PBMCs, as well as significantly decreased CLOCK protein expression
in women with PCOS [164]. The mRNA expression profiles of the circadian genes BMAL1
and PER1 were also altered after darkness treatment in rats [165].

Heterodimers of CLOCK, BMAL1, and NPAS2 act as transcriptional factors that
activate the promoter sequences of the repressor genes-cryptochrome circadian regulators
(CRY1 and CRY2) and period circadian regulators (PER1, PER2, and PER3). Once the
PER/CRY heterodimer reaches a critical level, the proteins are translocated to the nucleus
where CRYs repress CLOCK-BMAL1-induced transcription. CRYs and PER are therefore
negative regulators, while CLOCK-BMAL1 is the positive arm of the feedback loop [164]. In
the GCs of PCOS patients, it has been shown that there is decreased expression of BMAL1,
which contributes to aromatase expression, and consequently there is reduced estrogen
synthesis [166]. The study of Johnson et al. has revealed increased expression of mRNA
levels of negative regulators of circadian pathway genes (PER1, PER2, CRY1, CRY2, as well
as DEC1 and DEC2) in the PCOS group compared to controls [164].

Retinoic acid receptor-related orphan receptor α (RORα) and the nuclear orphan
receptor α (REV-ERBα) are other key regulators of BMAL1, the secondary feedback loop in
the circadian cycle [167]. On the one hand, the transcription of REV-ERBα is activated by
the BMAL1/CLOCK heterodimer; on the other hand, it is repressed by CRY/PER which
results in circadian oscillations of REV-ERBα. Moreover, REV-ERBα and REV-ERBβ are
known to repress the transcription of BMAL1/CLOCK and BMAL1, respectively [168].

The study of Sun et al. has shown that the expression of REV-ERBα and REV-ERBβ is
significantly downregulated in the GCs derived from PCOS patients compared to healthy
women [169]. REV-ERBs have been revealed to play an important role in various metabolic,
neuronal, and inflammatory processes, as well as in lipid homeostasis [169]. Genetic knock-
out experiments have, in turn, explained the meaning of these proteins in the circadian
cycle; the expression of BMAL1 and CLOCK in Rev-erbα-deficient mice was significantly
increased when compared with wild-type mice [170], and Rorα– and Rorβ-deficient mice
were found to display an abnormal circadian rhythm [167].

Until now, some studies have suggested that long-term environmental exposure to
darkness might induce hyperandrogenism via melatonin receptor 1 and reduced expres-
sion of aromatase [165]. Melatonin receptors belong to transmembrane G-protein-coupled
receptors, and two subtypes in humans and other mammals can be distinguished: mela-
tonin receptor 1 (MT1; MTNR1A) and melatonin receptor 2 (MT2; MTNR1B) [171]. In vitro
experiments on the KGN cell line have demonstrated that long-term darkness leads to
estrous cycle disorder, PCOM, increased LH levels as well as the LH:FSH ratio, hyperan-
drogenism, and glucose intolerance [165]. Furthermore, decreased expression of MTNR1A
in rat ovarian GCs was also noted in darkness-treated cells [165]. The decrease in MTNR1A
inhibited the androgen receptor (AR) and the expression of CYP19A1 (aromatase). The
authors suggested that altered expressions of MTNR1A and AR play a crucial role in the
pathological development of hyperandrogenisms [165]. These findings were in accordance
with changes in hGCs collected during the oocyte retrieval process from women with
PCOS, who underwent in vitro fertilization and embryo transfer [165]. On the other hand,
rescue treatment with a melatonin receptor agonist and restoration of the normal light/dark
circadian rhythm has partially alleviated reproductive abnormalities, such as estrous cycle
disturbance and PCOM, and endocrinal hormone balance in rats treated with long-term
darkness [165].
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Furthermore, recent studies have revealed the association between common genetic
variations of the melatonin receptor, such as single nucleotide polymorphisms (SNPs)
rs2119882 as well as rs10830963, and the prevalence of PCOS [172,173]. In addition,
Wang et al. have described a significant association between the rs10830963 SNP and
concentrations of testosterone in women with PCOS [174].

The master pacemaker of the circadian clock in hypothalamic suprachiasmatic nucleus
(SCN), modulates the circadian cycle through a rhythmic secretion of regulatory hormones
such as melatonin and corticotropin-releasing hormone (CRH)/adrenocorticotropic hor-
mone (ACTH) [175,176]. In fact, the central circadian clock regulates pineal melatonin
secretion. The levels of melatonin are modulated by photoperiod; the secretion is enhanced
at night in response to darkness, while bright light directly inhibits its production [177].

Nevertheless, melatonin is also produced in other tissues and organs such as the skin,
gastrointestinal tract, retina, bone marrow, and lymphocytes [178,179]. Interestingly, there
is emerging evidence that melatonin synthetic enzymes such as arylalkylamine N-acetyl-
transferase and hydroxyindole-O-methyltransferase are present in most tissues, including
ovaries and follicular cells, oocytes, and cytotrophoblasts [178,180].

Until now, several studies have noted an altered melatonin rhythm in women with
PCOS [181,182]. It has been revealed that levels of melatonin and its metabolites, such
as 6-sulphatoxymelatonin (aMT6s), are significantly elevated in the serum and urine of
PCOS patients, particularly at night [183–185]. aMT6s is one of the major metabolites of
melatonin, which can serve as an accurate marker for melatonin production [186]. On
the contrary, a reduction in melatonin levels was reported in follicular fluid from women
with PCOS [187,188]. Due to its antioxidant properties, melatonin is known to protect the
follicles against oxidative stress and atresia; thus, melatonin plays an important role during
ovulation [184]. It has been revealed that deficiency of melatonin leads to disturbance
of gonadotropin secretion and alteration of the LH:FSH ratio, the remarkable features in
women with PCOS [189].

Another study has revealed that increased serum concentrations of melatonin in PCOS
patients were associated with testosterone levels [184]. Furthermore, it has also been
highlighted that the night-time urine levels of aMT6s and 8-hydroxy-2′-deoxyguanosine (8-
OHdG) were significantly elevated in women with PCOS compared to those in the control
group. In contrast, the day-time urine levels of aMT6s and 8-OHdG were comparable to
healthy women [185]. 8-OHdG is a product of free radical-induced oxidative damage to
2′-deoxyguanosine. It has been widely used as a marker for assessing oxidative stress and
carcinogenesis, since it can be detected in urine [185]. Higher levels of aMT6s at night are
suggested to be a result of increased melatonin secretion in response to increased oxidative
stress in women with PCOS [190]. Furthermore, melatonin levels have also been shown
to be inversely correlated with the serum LH:FSH ratio in PCOS patients [184]. There
is emerging evidence that supplementation with melatonin can improve the oocyte and
embryo quality in PCOS women, and could be a good strategy in the management of
hormonal aberrations as well as insulin resistance associated with PCOS.

4. Endocrine Disrupting Chemicals (EDCs)

Among EDCs, ovarian disruptors can be distinguished. Studies have pointed out the
negative effects on ovarian function of plasticizers (e.g., bisphenol A and phthalates), pesti-
cides (e.g., dichlorodiphenyltrichloroethane and methoxychlor), dioxins, polychlorinated
biphenyls, pharmaceutical agents (diethylstilbestrol), and phytoestrogens such as genis-
tein [191]. The evidence for the relationship between numerous disorders and exposure
to EDCs is further supported by several studies. These compounds, such as bisphenol
A or organochlorine pesticides, have been reported to act like xenohormones in women
due to estrogen-like activity and/or anti-testosterone action, but also by altering FSH and
LH secretion [24]. Although previously it was suggested that EDCs might interact only
via nuclear receptors, e.g., sex steroid receptors, several studies have indicated that EDCs
might also act through membrane receptors, neurotransmitter receptors, orphan receptors,
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and pathways associated with hormone synthesis [192]. Accumulating data indicate the
potential role of EDCs in several aspects of female reproductive disorders; thus, it might be
assumed that these substances have also targeted the metabolic and reproductive features
of PCOS.

In the following section, we have presented experimental evidence connecting EDCs
with metabolic and reproductive derangements resembling the clinical manifestations
of PCOS.

4.1. Reproductive and Neuroendocrine Dysfunctions Associated with Exposure to EDCs

Exposure to EDCs has been associated with various reproductive dysfunctions (Figure 3).
A growing number of studies have shown that these compounds can affect hormone receptors
by agonist or antagonist activity, lead to anovulation, anatomical aberrations of the reproduc-
tive tract, or other disorders such as endometriosis and subfertility [24,193]. Therefore, the
female reproductive system is exceptionally susceptible to chemical compounds, and the time
of exposure to EDCs determines the effect of their activity, particularly during fetal develop-
ment [79]. EDCs have been suggested to target ovarian functions directly and indirectly by
targeting pivotal neuroendocrine functions at the hypothalamus–pituitary level. Thus, both
follicular growth and steroid hormone secretion might be interrupted [192,194]. Several EDCs
have been reported to alter the ovary response to gonadotropin stimulation due to affecting
the gonadotropin receptor function, which binds pituitary hormones LH and FSH [192,195].
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EDCs are known to act through numerous mechanisms, altering the pathways associated
with GnRH signaling. EDCs, such as BPA, methoxychlor, or polychlorinated bisphenyls
have been revealed to alter the expression of the estrogen-sensitive neuropeptide—kisspeptin,
involved in the regulation of GnRH, but also via the direct influence on GnRH neuron
expression in the hypothalamus and the impaired steroid feedback on GnRH neurons [195].

Overall, the complexity of the multiple mentioned mechanisms contributes to the
disturbance of sensitive endocrine balance.

4.2. Bisphenol A

Bisphenol A (BPA) is an organic synthetic chemical that belongs to the group of
diphenylmethane derivatives and bisphenols (4,40-dihydroxy-2,2-diphenylpropane) abun-

BioRender.com


Cells 2023, 12, 174 15 of 36

dantly present in the environment [80]. BPA is used as a co-monomer mainly in producing
polycarbonate plastic. It has many applications, including use in plastic containers, baby
bottles, medical devices, or food and beverage can inner liners [81]. BPA has been suggested
to have estrogenic properties, as its chemical structure (two phenyl rings connected to the
methyl groups) resembles the estrogen scaffold [196]. Accumulating evidence suggests
that BPA has weak estrogen activity since it can bind to both ERα and ERβ nuclear re-
ceptors, however, to a much lesser extent than 17β-estradiol [196,197]. Interestingly, BPA
has been revealed to act as an estrogen agonist or antagonist, depending on molecular
environments [198]. Exposure to BPA is a growing and important health concern since BPA
can seep into food and beverages from plastic containers made with BPA. Moreover, it can
also be inhaled or pass through the epidermis [199].

According to this assumption, significant levels of BPA have been revealed in the
blood and biological fluids, including ovarian follicular fluid [81,200,201], supporting the
hypothesis that BPA might affect ovarian follicles and reduce ovarian reserve [82,200].

In rats, neonatal exposure to BPA has been associated with a higher risk of develop-
ment of the PCOS reproductive phenotype in adulthood [202]. In addition, BPA has been
revealed to disrupt neuroendocrine and ovarian function, alter metabolism, and affect
fertility in an animal model [203]. The studies suggest that developmental exposure to
BPA in a dose-dependent manner might impair ovarian follicular development in rodents,
resulting in a higher number of antral follicles, however, with decreased corpora lutea
formation [204,205]. Furthermore, a reduced number of ovulated oocytes was noted after
exposure to low doses of BPA, similar to those in the environment [205]. In another study,
prepubertal exposure to BPA in rats decreased the expression of genes that promote follicle
development and, conversely, increased the expression of the AMH gene, which is involved
in inhibiting follicular development [206].

Furthermore, a significant cytotoxic effect on human GCs after exposure to BPA
in concentration of 25 µM was found in our preliminary studies—the cell survival was
decreased to 86% [unpublished data].

Studies conducted in the culture of antral follicles isolated from 32-day-old mice have
reported that BPA inhibits ovarian steroidogenesis and decreases antral follicle develop-
ment in vitro, as evidenced by reduced levels of progesterone, DHEA, androstenedione,
estrone, testosterone, and estradiol, but also decreased expression of STAR, HSD3B1, and
CYP17A1 [207]. However, accumulating data suggest that BPA contributes to increased
androgen levels directly by stimulating the ovarian theca cells, and indirectly through inter-
actions with GCs [208]. The results reported by Zhou et al. have described dose-dependent
changes in sex steroid levels and mRNA steroidogenic enzymes in theca interstitial and GC
cultures treated with BPA [82]. This study has indicated increased testosterone synthesis
and mRNA expression of 17α-hydroxylase (P450c17) and cholesterol side-chain cleavage
enzyme (P450scc) in theca-interstitial cells, which are suggested to be key features asso-
ciated with PCOS pathogenesis. Furthermore, another study has revealed that BPA, in a
dose-dependent manner, enhanced basal (1mM) and FSH-induced (10 mM) progesterone
synthesis in GCs, simultaneously suppressing FSH-stimulated estradiol production [209].

Déchaud et al. have also revealed that BPA is capable of binding to human sex
hormone binding globulin (SHBG), which then transports BPA through the plasma. Thus,
as a result, BPA might target tissues that express estrogen receptors. Moreover, the study
has indicated that BPA can remove sex hormones from SHBG, and consequently increase
the level of circulating free androgens [210].

Subsequent studies in humans have shown that exposure to BPA in adults could
be related to various reproductive dysfunctions and metabolic diseases in women and
men. Accordingly, BPA exposure was associated with reduced male sexual function as
well as sperm quality and reduced ovarian response, decreased fertilization rate and
embryo quality, implantation failure, miscarriage, premature delivery or endometrial
disorders [211].
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Several studies have proven that BPA levels in blood or urine are significantly higher
in PCOS women compared to controls, and are also positively correlated with androgen
levels [212–215]. These results indicate that BPA can potentially contribute to ovarian
hyperandrogenism via androgen metabolism disruption or their displacement from SHBG,
which suggests the potential role of BPA in PCOS pathogenesis.

Interestingly, in contrast to previous findings, some studies have proposed the hypoth-
esis that PCOS leads to higher BPA levels. This is due to the fact that an elevated amount
of circulating testosterone and androgen levels in PCOS women might decrease the BPA
clearance [202,216], since high androgen levels are known to reduce the activity of uridine
diphosphate-glucuronosyl transferase, involved in the degradation and clearance of BPA
from the circulation [217,218].

The collected data are consistent; there is a significant positive correlation between
PCOS and high BPA levels in patients. However, it remains a matter of controversy whether
this interplay is caused by BPA, or is a result of PCOS per se [80].

4.3. Phthalates

Phthalates belong to the group of industrial chemicals, frequently used as plasticizers—
functional substances that increase the flexibility and durability of plastic. They are used in
the production of a wide range of everyday products, such as plastic toys, food packaging,
paints, plastic bags, and cosmetics [219]. The most commonly used are di-2-ethylhexyl
phthalate (DEHP) and its metabolite, mono (2-ethylhexyl) phthalate (MEHP), which have
been identified as EDCs. They have been associated with the pathogenesis of several health
disorders, including obesity, abnormalities in genital development, low quality of semen,
precocious puberty, and gynecomastia [220–223]. To date, research on the possible role of
phthalates in PCOS development has mostly been limited to in vitro and animal model studies.
DEHP has been shown to alter the estrous cycle and decrease the ovulation rate due to the
decrease in estrogen and progesterone levels, leading to anovulatory cycles in rats and, in
turn, to PCOM [224–226]. Decreased estradiol levels in GCs lead to a lack of LH surge, which
is essential for ovulation [225].

In the other study, MEHP has been shown to stimulate steroidogenesis, decrease
progesterone production, and aromatase levels in rat GCs, leading to hyperandrogenism, a
cardinal feature of PCOS [227]. Similarly, Reinsberg et al. have shown that MEHP inhibited
estradiol production and altered steroidogenesis in luteinized GCs derived from women
who underwent the in vitro fertilization procedure [228].

To date, a few studies in humans have been conducted; however, these findings are
not consistent. Akın et al. have revealed that DEHP levels, after the BMI adjustments, are
associated with insulin resistance and dyslipidemia in adolescent girls with PCOS [213].
However, this study did not observe any relationship between DEHP/MEHP and go-
nadotropins or sex hormones [213]. These findings may not be representative due to the
limitations of the study: serum FSH, LH, progesterone, and phthalate levels were not mea-
sured at the same time of the menstrual cycle in patients. However, the authors suggest that
DEPH can play a role in PCOS development due to insulin resistance at the follicle level.

A recent study by Jin et al. has revealed significantly increased levels of DEHP in the
follicular fluid of women with PCOS who underwent in vitro fertilization compared to the
control, associated with lower pregnancy outcomes. Furthermore, DEHP treatment caused
a significantly elevated androgen level in human GCs [229]. Additionally, exposure to
DEHP resulted in notably lower viability of GCs and the KGN cell line, promoted apoptosis,
altered expression of apoptosis-related genes, and caused cell cycle arrest [229]. On the
other hand, our studies have indicated that exposure to both DEHP and MEHP in the
concentration range of 12.5–400.0 µM increased cell proliferation and did not exert any
cytotoxic effect on human ovarian GCs [unpublished data].

Contrary to what has been reported by Jin et al., Vagi et al. found the anti-androgenic
effects of certain phthalates in PCOS patients [230]. Furthermore, DEHP and MEHP have
previously been indicated to have an antiandrogenic effect in animals [231], and MEHP, as
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well as diisononyl phthalate (DiNP), have been reported to decrease testosterone production
in men [232].

Environmental exposure to DEHP through oral ingestion, inhalation, or skin is signif-
icant. Moreover, DEHP has been shown to cross the placenta, since its metabolites have
been found in amniotic fluid [233]. Based on these findings, DEHP might be suggested
to exert potential reproductive and developmental toxicity. It has been shown that DEHP
exerts adverse effects on puberty, fertility, pregnancy, and the overall female reproductive
tract [234].

4.4. 2,3,7,8-Tetrachlorodibenzo-p-dioxin

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is considered the most toxic member
among the dioxin group of chemicals. TCDD is a persistent environmental pollutant
produced as an unwanted by-product of herbicide and pesticide manufacturing. In addition,
it is also a side product in paper, fungicides, and color metal production [235]. Considering
its high lipid solubility, chemical stability, and resistance to elimination processes, TCDD
can quickly accumulate in human and animal tissues [235]. To date, the studies have
confirmed the presence of TCDD in blood serum, breast milk, and ovarian follicular
fluid [236]. Furthermore, its half-life, defined as the time it takes for a quantity to reduce
to half its initial value, is estimated to be relatively long in humans (7–11 years) and
even up to 100 years in the environment [235,237,238]. TCDD has been associated with
various negative health disorders, for instance, in occupationally exposed humans, such
as pesticide producers, or after environmental disasters, such as the Vietnam War and
industrial accidents [239].

There is a constantly growing body of evidence that exposure to TCDD can target
ovarian function and alter folliculogenesis [240]. Several studies have revealed that ex-
posure to TCDD exerts an antiproliferative effect on follicles in pigs [241] and decreases
the number of antral follicles in rats [242]; however, it does not affect the growth of antral
follicles nor the proliferation of GCs in mice [243]. Some studies suggest that the differences
in response to TCDD among various species might be related to abilities to metabolize
TCDD and different expressions of the AhR, the TCDD receptor [244].

Furthermore, TCDD has been revealed to disrupt/arrest ovulation in rodents
in vivo [245,246], possibly by reducing the number of S-phase GCs and decreasing the
levels of cyclin-dependent kinase 2 and cyclin D2 during the pregnant mare’s serum
gonadotropin (PMSG) treatment. Based on these findings, the authors suggest that the
inhibitory activity of TCDD might be exerted due to the attenuation of the cell cycle via the
AhR-mediated cascade [246].

TCDD has also been revealed to alter ovarian steroidogenesis. The studies have shown
that exposure to TCDD decreased levels of progesterone, androstenedione, testosterone,
and estradiol in isolated mouse antral follicles. Interestingly, the addition of pregnenolone
re-established the normal hormone levels, which suggests that pregnenolone production
might be the target point of TCDD activity [243,247]. Thus, the TCDD activity seems to
be associated with the inhibition of the critical steroidogenic enzymes: 17β-HSD-1 and
CYP19A1 [247]. These results are in line with those obtained in the animal in vivo studies,
which also described TCDD inhibitory effect on ovarian steroidogenesis [240]. In their
systematic literature review, Gaspari et al. provide an insight into the transgenerational
effects of TCDD on reproductive health in rodents [239]. Several studies have confirmed
the transgenerational consequences of exposure to TCDD, similar to human reproductive
derangements, such as pubertal abnormalities and menstrual disorders, endometriosis,
premature ovarian insufficiency, PCOS, subfertility, or adverse pregnancy outcomes [239].
Since PCOS is one of the major disorders affecting women’s reproductive health, it has
been widely analyzed in mammalian models [248,249]. Exposure of Sprague Dawley
rats to TCDD by intraperitoneal injection (IP) resulted in a significantly decreased num-
ber of primordial follicles, as well as the PCOM (cardinal PCOS feature), in subsequent
generations [250]. Moreover, the increased number of ovarian cysts was observed in the
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transgenerational F3 animals to a much greater extent than the indirectly exposed F1 gen-
eration, which suggests that PCOM might be explained by epigenetic transgenerational
mechanisms more than direct exposure to TCDD [250].

Indeed, studies that present ovarian abnormalities in rodents are not directly correlated
with the clinical aspects of human ovarian disorders. However, they could provide valuable
information on the possible impact of TCDD on human reproductive health.

4.5. Tributyltin

Growing evidence suggests an association between exposure to tributyltin (TBT) and
reproductive and metabolic features resembling those in animal models of PCOS and PCOS
patients [251]. TBT is a persistent organometallic compound with many applications in agri-
culture and industry, such as broad-spectrum biocides, wood preservatives, and antifungal
agents in textiles [252]. However, TBT was initially developed and used as an antifouling
coating on boats and ships from the 1960s to the 1990s, when it became apparent that
tributyltin compounds were highly toxic to various species of aquatic organisms [253]. Due
to its long environmental half-life and presence in the human food chain, there is a high risk
of TBT exposure, primarily due to contaminated seafood, water, and sediments [254]. Sev-
eral studies have reported significantly increased TBT levels in coastal areas [255,256]. For
instance, the levels of butyltin compounds in fish muscles and livers from the Polish coast
of the Baltic Sea were 715 and 1132 ng Sn/g dry weight, respectively [257]. Furthermore,
significant levels of TBT (50–400 nM) were also detected in human blood [258].

Several epidemiological and animal studies have demonstrated that TBT exposure is
linked to reproductive and metabolic features that resemble those found in PCOS [251].

The study on adult female rats has revealed that oral administration of TBT (100 ng/kg/day)
for 15 days caused irregular estrous cycles, reduced estrogen levels, low ovary weight, pyknotic
nuclei of ovarian GCs, and a greater number of atretic and cystic ovarian follicles [259]. Cor-
respondingly, the 15-day administration of the same dose of TBT was found to decrease the
LH surge, GnRH expression, and susceptibility to kisspeptin in female rats. It also altered
the corpora lutea (CL) formation and estrogen negative feedback, and increased testosterone
levels [260,261].

Previous investigators have revealed that TBT caused pregnancy complications and
failure due to the high incidence of embryo pre-implantation and post-implantation loss
during the first seven days of gestation in female rats [262,263]. Furthermore, exposure to
TBT was also associated with uterine irregularities. TBT caused uterine atrophy, inflam-
mation, and a reduction in the endometrium layer, which resulted in lowering the fertility
rates in female rats [260,264].

Metabolic disorders such as obesity, hyperlipidemia, insulin resistance, and compen-
satory or hyperinsulinemia are common features in PCOS. Several studies have suggested
the obesogenic activity of TBT [251]. Obesogens induce obesity by increasing lipid storage
in existing adipocytes and promoting development of new fat cells, and altering energy
balance and regulation of appetite and satiety [265,266]. TBT is known to disrupt mul-
tiple signaling pathways; however, its activity is mediated mainly through peroxisome
proliferator-activated receptor γ (PPAR-γ), a key regulator of adipocyte differentiation
and a transcriptional regulator and/or effector of target genes CCAAT Enhancer Binding
Protein Beta (C/EBP), adipocyte-specific fatty acid-binding protein (AFABP), and fatty acid
transport protein (FATP) [266,267]. PPAR-γ belongs to the PPAR subfamily of nuclear hor-
mone receptors, which are mainly present in adipose and hepatic tissue and are involved in
adipocyte formation [268]. PPAR-γ seems to be a pivotal gene involved in the development
of obesity in humans and rodents [251,266], and it was suggested that a polymorphism in
exon 6 of the PPAR-γ gene is associated with obesity in women with PCOS [269].

Indeed, TBT was found to promote obesity, increase insulin and androgen levels, as well
as alter hypothalamic–pituitary–gonadal axis function via disruption in kisspeptin/leptin
signaling in female rats [260]. Interestingly, several studies have noted that in utero exposure
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of pregnant animals to TBT was linked to metabolic abnormalities that resemble those in
PCOS [260,266,270].

The adverse effects of TBT at different levels of the reproductive system, including
altered steroid profiles, dysfunctional steroidogenesis, and derangements in GCs function,
are consistent with changes observed in PCOS patients, but also in DHT-induced and
JCR:LA-cp rodent models of PCOS [251]. Therefore, the absence of CL formation and
polycystic ovaries were noted in mice treated with dihydrotestosterone (10 mg, s.c.) for
90 days [271].

Although knowledge about the effects of TBT in animals is extensive, there is little
information about its activity in humans [251]. Rantakokko et al. have revealed that placen-
tal TBT levels were related to increased weight gain of the newborn during the first three
months of life [272]. Moreover, an environmentally relevant dose of TBT (1 or 10 ng/mL)
was found to stimulate theca cell cholesterol extracellular efflux through the retinoid X
receptor (RXR) pathway, which in consequence, induced a compensatory upregulation of
STAR and SREBF1. The latter ones are responsible for the transfer of cholesterol into the
mitochondria and the novo cholesterol synthesis, respectively [273].

4.6. Glyphosate

Glyphosate [N-(phosphonomethyl) glycine] is an active compound of glyphosate-
based herbicides (GBHs), which are the most widely used pesticides in conventional
agriculture worldwide. Glyphosate targets 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS), the enzyme that catalyzes the penultimate step of the shikimate pathway, responsi-
ble for the biosynthesis of aromatic compounds in plants and microorganisms [274]. Based
on the toxicity data and the mechanism of its activity, glyphosate is considered the “least
toxic” substrate for mammals [275]. However, there is growing evidence suggesting that
glyphosate and GBHs may alter endocrine balance, resulting in reproductive dysfunc-
tion [275]. On the contrary, the Endocrine Disruptor Screening Program and the European
Food Safety Authority (EFSA) did not find sufficient evidence to consider glyphosate an
endocrine disrupting chemical [276,277], so this issue remains contentious.

Elevated levels of glyphosate have been detected in the environment (surface waters,
groundwaters, open-reservoir tank waters, soil, dust, and air), and various food products,
such as soy-based infant formula and soy sauce [275]. Therefore, concern about the effects
on human health is constantly growing.

Glyphosate was revealed to exhibit estrogen-like characteristics by either direct activa-
tion or inhibition of estrogen activity, and by acting indirectly by modulating its action [278].
However, its estrogenic activity seems to be weaker in comparison to E2 [275]. Several
studies have demonstrated that glyphosate and GBHs decreased aromatase expression
and, consequently, its activity in human embryonic kidney 293 (HEK-293) cells and human
placental JEG3 cells [279,280]. Furthermore, it has been revealed that glyphosate and GBHs
decrease E2 secretin from bovine and swine GCs [281–283]. Their estrogenic activity was
also assessed in human breast cancer cells. Glyphosate was found to induce the prolifera-
tion of hormone-dependent human breast cancer cell lines T47D and MCF-7. However, it
did not enhance the proliferation of the hormone-independent human breast cancer cell
line MDA-MB231 [284,285]. Moreover, this compound was revealed to enhance estrogen
response element (ERE)-mediated transcription of a luciferase reporter gene by a ligand-
independent mechanism. The antiestrogen Fulvestran, in turn, was able to mitigate the
proliferative and stimulatory effects of glyphosate [284,285]. Based on these results, estro-
gen receptor (ER) signaling might be suggested to be involved in the proliferative activity of
glyphosate. Therefore, several in vivo studies have demonstrated the estrogenic properties
of glyphosate. The neonatal exposure to GBH (2 mg glyphosate/kg body weight/day)
was found to alter the uterus response to E2 in the later lives of rats [286]. Subsequently,
studies in animal models have shown that exposure to glyphosate or GBHs altered E2
levels, ERα protein and gene expression, as well as E2-dependent gene expression [28–291].
There is little information on the effects of glyphosate exposure on ovaries, as well as
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granulosa and theca cell function. However, Ren et al. have revealed that mice exposed in
utero to glyphosate presented a decreased ovarian weight and increased atretic follicles, to-
gether with altered estrogen and progesterone levels [289]. The authors have also observed
changes in the expression profiles of several genes at the hypothalamic–pituitary–ovarian
axis, such as: GnRH, LHR, FSHR, 3β-HSD, and CYP19A1 [289]. Similarly, another study
has shown impaired folliculogenesis, decreased estrogen secretion, and abnormal ovarian
morphology [292]. Furthermore, the study conducted in lambs exposed to GBH from birth
to postnatal day 15 has revealed an increase in the number of atretic follicles, decreased
mRNA levels of FSHR and growth/differentiation factor 9, and induced growth arrest in
developing follicles [293].

All these features suggest that there might be a link between the endocrine disrupting
activities of glyphosate as well as GBHs, and the adverse effects on female reproductive
health. In addition, some of these characteristics resemble those in PCOS. Interestingly,
a new possible role of glyphosate in the pathogenesis of PCOS has been discussed [294].
Recently, several studies have associated the gut microbiota disturbance with the observed
clinical and pathophysiological features of PCOS [86]. Parker has suggested that glyphosate
may induce intestinal permeability as a result of disturbance of the gut microbiota, which
might contribute to the pathogenesis of PCOS [294].

Furthermore, glyphosate has been revealed to induce multigenerational health effects,
transmitted to future generations [295,296]. Several in vitro and ex vivo studies have
demonstrated the ability of glyphosate to cross the human placenta [297,298]. Therefore,
glyphosate was detected in considerable concentrations in the serum of pregnant women
at childbirth (0.2–189.1 µg/L), as well as in umbilical cord samples (0.2–94.9 µg/L) [299].
Epidemiological data have shown that preconception exposure to glyphosate was correlated
with an increased risk of late abortions in a rural population in Canada [300]. Furthermore,
elevated glyphosate urine levels were associated with a decreased gestation period in an
Indiana (USA) cohort from rural as well as non-rural areas [301]. Similarly, animal studies
have shown harmful effects of exposure to glyphosate and GBH on reproductive health,
including pre- and post-implantation embryo loss, delayed fetal growth, and structural
congenital abnormalities [275].

4.7. Other EDCs That Affect the Female Reproductive System

The female reproductive system is an important target for EDCs. In our review, we
have presented some of the most studied EDCs (BPA, phthalates, 2,3,7,8-tetrachlorodibenzo-
p-dioxin, tributyltin, and glyphosate), which are directly and/or indirectly associated with
the pathogenesis of PCOS. The EDCs summarized in this paragraph are those that have
been linked to reproductive or developmental disorders; however, there is little or no
evidence on their connection with PCOS characteristics.

Triclocarban (TCC) is a broad-spectrum antimicrobial compound widely used in per-
sonal care products, such as dermal cleaning products, body lotions, deodorants, and
wipes [302]. TCC is considered as an EDC; however, the mechanisms of its activity, espe-
cially estrogenic, are still unclear [303]. Due to concerns about human health after exposure
to TCC, human studies have been performed. Geer et al. have revealed that the concen-
tration of TCC in cord blood plasma was correlated with a decrease in gestational age at
birth after prenatal exposure. Furthermore, the TCC metabolite (3′-Cl-TC), assessed in
third-trimester maternal urine, was associated with fewer low birth weights [304]. On the
other hand, the study by Wei et al. did not show an association between TCC levels in
maternal serum or cord blood and fetal anomalies, in a cohort population from Beijing,
China [305].

TCC is often discussed and studied together with triclosan (TCS), 5-chloro-2-(2,4-
dichlorophenoxy)phenol; however, the biological activities of these two compounds are
not the same [302]. TCS is a lipid-soluble antimicrobial compound, commonly used in
various personal care, household, veterinary, and pharmaceutical products [306]. Due
to its widespread use, people are exposed to TCS through dermal mucosal absorption
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and ingestion [307,308]. Therefore, TCS has been detected in human urine, plasma, breast
milk, brain, liver, and adipose tissue [309–314]. Furthermore, several studies have noted
higher concentrations of TCS in females than males [315]. Due to the structural similarities
between TCS and estrogens, it can affect hormone balance through interactions with
hormone receptors [315]. Thus, TCS is suggested to alter female reproductive health.
Recently, several studies have revealed that TCS disturbs thyroid homeostasis, the gut
microbiome, and promotes carcinogenesis in the breast, ovaries, and prostate [316–318].
TCS was also shown to affect luteal cell progesterone production and disrupt ovarian
function [315]. According to data from the National Health and Nutrition Examination
Survey, there is an association between TCS exposure and the inability to conceive over
a period of one year [319]. The cross-sectional study, in which 674 infertile women were
recruited, has revealed that women with PCOS had significantly higher levels of urinary
TCS compared to the group without PCOS [320]. Interestingly, the authors have observed
increased levels of LH and the LH/FSH ratio in healthy women, as a result of environmental
exposure to TCS [320]. Furthermore, a prospective cohort study, which included 698 women,
found the association between high urine triclosan levels and increased risks of abnormal
menstruation, as well as a prolonged menstrual cycle. Furthermore, TCS in concentration
greater than 4.5 ng/mL was correlated with a 23% reduction in fecundability compared
to the lowest level of TCS [321]. On the contrary, the study by Gu et al. did not show
any association between TCS in urine samples collected from 40 women with PCOS, and
PCOS either in an unadjusted binary logistic regression model, or in a model adjusted for
potential confounders [322].

Selected studies that have assessed the developmental and endocrine/reproductive
effects of TCC and TCS in animal models are summarized in Table 1.

Table 1. The selected developmental and endocrine/reproductive effects of TCC and TCS in ani-
mal models.

EDC Model Strain Exposure
Duration

Age at
Exposure

Route of
Exposure Dosage End Points Source

TCC

Rat Sprague
Dawley 35 d Embryonic,

adult Oral (food) 0.2% w/w,
0.5% w/w

↓ body weight and survival
in pups [323]

Rat Wistar 21 d Embryonic,
adult Gavage

0.3 mg/kg,
1.5 mg/kg,
3 mg/kg

↓ estradiol levels in the TCC
0.3 and TCC 3.0 groups of

female pups
↓ progesterone levels

↑preimplantation loss in the
TCC 3.0 in adulthood

[324]

Mouse hUGT1*28 and
CAR-null 2 d Adult Intra-

peritoneal
16 mg/kg,
20 mg/kg

↑ hUGT and CYP gene
expression via the CAR [325]

Mouse CD-1 GD1-18;
PND0-10

Embryonic,
neonate,

adult
Oral (water) 100 nM

↑ body weight of pups
↓ uterine weight in female

offspring
↓ leptin, adiponectin and

PPARα gene expression in
adipose and liver tissues

[326]

Fish Zebrafish
(Danio rerio) 24 h Embryonic Submersion 0.25 µM

↑ E2-induced AroB
expression

↓ BPA-induced AroB
expression

[327]

Fish

Fathead
minnow

(Pimephales
promelas)

22 d Adult Submersion 1.5 µg/L No changes in adult body
weight. [328]

Rat Sprague
Dawley GD5-PND21 Embryonic,

lactational Oral (water) 0.5 mg/L

↓follicle count, proliferation
and gonadosomatic index of

GCs.
Delayed puberty onset.

↓ transition of the primordial
follicles to more developed
↑ atresia, apoptosis, AR

expression in GCs

[329]
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Table 1. Cont.

EDC Model Strain Exposure
Duration

Age at
Exposure

Route of
Exposure Dosage End Points Source

TCS

Fish Zebrafish
(Danio rerio) 42 d Adult

TCS solution
in exposure

tank

0, 17, 34, or
68 µg/L

↓ expression of SOD, GPx1a,
CAT, sMT-B in the ovary of

68 µg/L group
↑ oxidative damage in

ovaries
↑ ROS-dependent ovary

apoptosis

[330]

Rat Holtzman GD6-PD21 Gestational,
lactational

subcutaneous
injection

0.1, 4, 40 and
150 mg/kg b.

wt./day

↓ reproductive functions and
fertility of F1 male rats

↓ testosterone, sperm count
and motility

↓ AR, ERα and ERβ, SAR,
aromatase expression

↑ pre- and post-implantation
loss

[331]

Mouse ICR mice 50 d Adult Oral 1, 10 or
100 mg/kg/day

↓ LH, FSH, progesterone
serum levels

↓ GnRH mRNA expression
↑ PRL

↓ kisspeptin
immunoreactivity

[332]

Abbreviations: “↓” stands for “decreased”; “↑” stands for “increased”; TCC—Triclocarban; TCS—Triclosan;
GD—gestation day; PND—postnatal day; PPARα—Peroxisome proliferator-activated receptor α; E2—estradiol;
AroB—CYP19a1; BPA—bisphenol A; GCs—granulosa cells; AR—androgen receptor; SOD—superoxide dismutase;
GPx1a—glutathione peroxidase 1a; CAT—catalase; ROS—reactive oxygen species; ERα—estrogen receptor α;
ERβ—estrogen receptor β; LH—luteinizing hormone; FSH—follicle stimulating hormone; GnRH—gonadotropin-
releasing hormone; PRL—prolactin; hUGT: humanized uridine 5′-diphosphoglucuronosyltransferase; CAR:
constitutive active/androstane receptor.

4.8. Endocrine Disrupting Chemicals and Pregnancy

It is well known that pregnancy is a period of increased susceptibility to toxicant
exposure. Pregnant women are ubiquitously exposed to EDCs. Due to their ability to
cross the placenta barrier, EDCs are environmental factors that could significantly affect
fetal development and induce long-term consequences for infant and child health [333].
Several studies have revealed that prenatal exposure to EDCs might be related to asthma
and allergies, low birth weight, prematurity, pubertal development abnormalities, neurobe-
havioral disorders, or breast cancer [333–335]. One of the recently conducted studies has
revealed that more than 50% of the interviewed pregnant women had never heard of EDCs
before [333].

In this context, the education of pregnant women about EDCs should be essential; thus,
the health benefits gained from a reduction in pregnant women’s exposure to endocrine
disruptors seem to be particularly significant.

Recently, the Royal College of Obstetricians and Gynecologists, Endocrine Society, and
the International Federation of Gynecology and Obstetrics (FIGO) have recommended that
all pregnant women should be informed of the possible risks of EDCs. Moreover, education
programs should be developed to inform health professionals [336–338].

5. Conclusions

During the last decades, numerous scientific groups have made outstanding efforts
to understand the pathogenesis of PCOS. Multiple, not mutually exclusive, mechanisms
have been proposed, including the contribution of environmental factors, especially EDCs,
such as bisphenol A, phthalates, dioxin, tributyltin, and glyphosate. In this article, we
have provided an overview of the literature connecting exposure to selected EDCs with
neuroendocrine and reproductive disorders resembling PCOS. Moreover, we have pre-
sented aberrations in theca and granulosa cell function in the development of PCOS, and
discussed the possible role of EDCs in this process.
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