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This editorial discusses the current standstill in research in Parkinson’s disease from a
clinician’s point of view. Possible causes for the failed translation of promising experimental
results into clinical practice may at least partially be due to weak interaction between
experimental and clinical research. Better relations between both research paradigms reflect
the motivation behind this Special Issue on the molecular and cellular basis for Parkinson’s
disease 2019. Its included publications predominantly result from a closer cooperation
between clinical and basic researchers. This will contribute to a better understanding of
Parkinson’s disease in future, which is a fascinating but still not well understood disease
entity.

On the one hand, basic research on Parkinson’s disease (PD) contributed to enormous
progress in the understanding of dysfunction in neuronal dopamine-synthesizing neurons
and their supporting glial cells. On the other hand, the performance and publication of
clinical research has become increasingly complex due an increase in bureaucratic hurdles
and ethical concerns by considered carriers [1]. The translation of promising experimental
outcomes with high expectations into the clinic failed with corresponding huge financial
disappointments [2,3]. Moreover, clinical testing with a demand for “healthy” study
participants without severe co-morbidities in pivotal trials, i.e., of a new PD drug, reflects
the clinical practice only to a very limited extent [4]. In real life, PD patients always ask for
a cure and/or beneficial disease modification. They are often prepared to accept the risk
of side effects with new therapies if they provide hope for amelioration of PD severity or
modification of progression [4]. In contrast, health authorities in cooperation with the media
have become more concerned with potential side effects. They do not consider patients’ and
their caregivers wishes, based on an increasing knowledge of therapy, which results from
the free availability of information on the internet. Nowadays, the PD patient community
is able to differentiate between promising experimental research outcomes, resulting from
neuronal cell death—or fruit fly experiments, from real life outcomes in patients in relation
to the financial preconditions provided by the various healthcare systems worldwide [5,6].
Moreover, PD research should focus on the real, heterogeneous nature of PD again [5]. It
may be misleading to ask for the identification and description of genetically determined,
underlying disease mechanisms, which may even be aggravated by PD drugs [7]. Clinicians
point out that PD is not a disease. It is a disease entity [8]. The heterogeneous forms of PD,
observed in the clinic, also reflect the probably multi factorial disease origins. It was and
is a wrong claim that the development of PD in the whole body and not only in the brain
follows a certain pattern from the clinical point of view [9,10]. Moreover it is far from clear
whether neuropathological findings in PD are a consequence of the disease process only or
represent the etiology of the disease [11].

A further typical example is the concept of cell- and animal models of PD, both of
which predominantly focus on the central, particularly nigrostriatal cell death of dopamine
synthesizing neurons associated with a deterioration of motor behaviour. However, clin-
icians emphasize the importance of non-motor symptoms in PD [10]. Their onset also
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reflects an impairment of a neurotransmission system, such as norepinephrine, in PD [10].
In the future, the idea that neuropathological abnormalities may result from the physiologic
defence mechanisms against the disease process should be considered, i.e., Lewy body
accumulation with misfolded α-synuclein (SNAP) enrichment [11].

Another example is the focus on genetics in PD with the claim to identify PD-
generating mechanisms as an initial step for disease modification or even cures [12]. As a
result, antibody trials against proteins, i.e., on SNAP enrichment, were initiated. However,
they largely failed and therefore did not provide any substantial therapeutic breakthroughs
in terms of beneficial disease modification. Therefore, antibody SNAP therapies for PD
with cinpanemab and prasinezumab, respectively, and with nilotinib as a compound for
autophagic α-synclein degradation, have generated further doubts about pathologic pro-
tein enrichment as a cause for the onset and progression of PD [11,13,14]. Similar results
will probably be found with therapeutic approaches in LRRK2 or GBA mutation carriers,
i.e., with ambroxol [15]. As examples, the design of the performed trials suffers from short
study intervals, missing considerations of co-morbid disorders and varying responses to
dopamine-substituting drugs with their impact on applied rating scales for the assessment
of disease progression [11,16]. Thus, the future stratification of therapies according to
genetic disease mechanisms will probably fail again in PD simply due to the fact that genet-
ically determined mitochondrial or lysosomal dysfunction is also influenced by epigenetic
or environmental effects.

A way out of this dilemma is a better association between basic and clinical research in
PD. The diversity between PD concepts of experimental and clinical insights has increased
in recent years. Therefore, this Special Issue focusses on papers that provide a closer
relationship between basic and clinical research in PD.

The proof-of-concept study by Hegelmaier and co-workers on a dietary intervention
alone or with the additional of physical colon cleaning demonstrated that gut microbiome
changes may result from vegetarian diet and fecal enema and persist during a one-year
follow-up investigation. Interestingly, the motor behaviour in PD patients also improved.
Therefore, the authors suggest dietary intervention and bowel cleansing as an additional
non-pharmacologic therapeutic option for PD patients [17]. This paper is an essential
contribution to the emerging discussion on the impact of the microbiome on the pathogen-
esis of Parkinson’s disease. It remains to be determined whether these various gut flora
changes are additionally influenced by chronic PD drug treatment, i.e., with levodopa,
as an epigenetic drug effect, or whether they result from weight reduction, which may
contribute to a better response to levodopa [18–22].

There is an ongoing discussion about the value of SNAP determinations as a labo-
ratory diagnostic tool for the diagnosis and the further progression of PD. The paper by
Barkovits et al. pointed out that blood contamination in cerebrospinal fluid may increase
the sensibility for detection of SNAP. Thus, this paper highlights the difficulty of an exact
and authentic quantification of the SNAP protein in cerebrospinal fluid. With circumstantial
evidence, these results are in line with the classification of SNAP as a more unspecific,
less reliable biomarker for PD and emphasize the importance of clean cerebrospinal fluid
collection in clinical practice [23].

Another diagnostic tool for PD and related disorders is transcranial sonography, which
is an easy to perform procedure in clinical practice for the evaluation of echogenic basal
ganglia alterations in patients with extrapyramidal movement disorders. Trials with small
sample sizes reported a more frequent hyperechogenic nucleus lentiformis in atypical PD-
like syndromes such as multiple system atrophy with predominant Parkinsonian features
or the progressive supranuclear palsy. The meta-analysis performed by Richter et al.
confirmed the higher prevalence of nucleus lentiformis hyperechogenicity. They suggest a
histopathological work up for possible causes of this phenomenon, which may also result
from the metal ion accumulation in PD and related disorders [24]. However, the value of
transcranial sonography for the visualization of this metal ion enrichment as a result of
dopamine oxidation is under debate [25,26].
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Therapeutic oxidative stress decline is in the focus of the experimental work by Zhou
et al., who convincingly demonstrate the beneficial protective effects of tea phenols in
various cell death models, all of which are discussed in the context with PD [27]. This
ground-breaking experimental paper provides a further milestone in the ongoing discussion
of nutritional supplementation of green tea for neuroprotection in PD, which still lacks a
convincing confirmative long-term clinical trial in PD patients to date [28–31].

The work by Leupold et al. investigated PD patients and controls within a melanin and
neuromelanin fluorescence trial. It discussed the association between the onset of PD and
of melanoma as a mirror of configuring change in neuromelanin or skin melanin [32]. This
study found no further specific indications for an association between PD and melanoma
pathogenesis onset, despite an ongoing discussion, in terms of exposure to certain PD
drugs [33,34].

Fibroblasts from a young female PD patient and her relatives were investigated to
demonstrate that dysfunction of the endocytic or autophagic lysosomal pathway is associ-
ated with mitochondrial impairment. Synergistic alterations in lysosomal functions and
mitochondrial biogenesis were shown. Therefore, it appears more likely that they derive
from a mitochondrial genetic defect, which blocks mitochondrial turnover and leads to
premature cellular senescence in PARK2-PD fibroblasts. It still remains to be elucidated
whether these changes represent potential mechanisms that may contribute to the loss of
dopaminergic neurons [35].

Gait disturbances are the focus of the investigation performed by Janeh et al. [36].
They show that support by virtual manipulation techniques may help to ameliorate the
still largely unexplained gait disturbances, such as the freezing of gait phenomenon, in
PD patients. These short-term, positive outcomes are at least partially in line with further
therapeutic approaches in PD patient rehabilitation facilitated by visual, acoustic stimuli
or augmented attention by physiotherapists with the osteopathy technique [37–41]. Gait
problems in PD probably also mirror the dysfunction of crosstalk within the basal ganglia
network.

The in-depth review by Mallet et al. summarizes the current knowledge on basal
ganglia function in relation to motor programming and execution, procedural learning,
and cognitive and emotional behaviour. In PD, the basal ganglia interplay is primarily
affected by the degeneration of midbrain dopaminergic neurons localized in the substantia
nigra pars compacta. In this review, the authors also extensively discuss the impact of the
functional relevance of dopamine modulation outside the striatum in both normal and
pathological conditions, such as PD [38].

In summary, this Special Issue reflects the close relationship between experimental
and clinical research in PD and underlines the necessity for further cooperation between
experimental and clinical research in PD.

Conflicts of Interest: The author declares no conflict of interest.
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