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Simple Summary: Breast cancer is a highly malignant tumor that threatens the health of women
worldwide, with extremely high morbidity and mortality. The study of the related genes that affect
the occurrence and development of breast cancer can provide more clinical evidence for its prevention
and treatment. Peroxisome proliferators-activated receptors are a class of ligand-dependent nuclear
receptor transcription factors discovered in 1990 that can regulate the transcription of many genes
involved in various cellular physiological processes. The dysregulation of these physiological
processes is highly correlated with the occurrence of various diseases, including malignant tumors.
Additionally, a large number of reports have indicated that the transcriptional regulation function of
peroxisome proliferator-activated receptors and its abnormal expression are related to breast cancer.
This article summarizes the role of peroxisome proliferator-activated receptors and their different
ligands in the progression of breast cancer since their discovery by searching relevant literature. The
purpose of this review is to regard peroxisome proliferators-activated receptors as the new targets for
the prevention of breast cancer and to incorporate their ligands into the new evidence for clinical
drug combination therapy, especially for high-recurrence triple-negative breast cancer.

Abstract: Breast cancer is a malignant tumor with high morbidity and lethality. Its pathogenesis is
related to the abnormal expression of many genes. The peroxisome proliferator-activated receptors
(PPARs) are a class of ligand-dependent transcription factors in the nuclear receptor superfamily. They
can regulate the transcription of a large number of target genes, which are involved in life activities
such as cell proliferation, differentiation, metabolism, and apoptosis, and regulate physiological
processes such as glucose metabolism, lipid metabolism, inflammation, and wound healing. Further,
the changes in its expression are associated with various diseases, including breast cancer. The
experimental reports related to “PPAR” and “breast cancer” were retrieved from PubMed since the
discovery of PPARs and summarized in this paper. This review (1) analyzed the roles and potential
molecular mechanisms of non-coordinated and ligand-activated subtypes of PPARs in breast cancer
progression; (2) discussed the correlations between PPARs and estrogen receptors (ERs) as the nuclear
receptor superfamily; and (3) investigated the interaction between PPARs and key regulators in
several signaling pathways. As a result, this paper identifies PPARs as targets for breast cancer
prevention and treatment in order to provide more evidence for the synthesis of new drugs targeting
PPARs or the search for new drug combination treatments.

Keywords: breast cancer; PPARs; ligands; ERs

1. Introduction

Breast cancer is a highly heterogeneous tumor transformed from mammary epithelial
cells. For example, it is the most common malignant tumor among female cancer patients
worldwide in 2022, with the highest morbidity rate among all cancers (accounting for 31%),
second only to lung cancer (15% of all cancer deaths), and the morbidity age tends to be
increasingly younger [1]. On the basis of cellular gene expression profiles, 5 subtypes of
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breast cancer have been defined: luminal type A (ER+/progesterone receptor (PR)+/human
epidermal growth factor receptor 2(HER2)-), luminal type B (ER+/PR+/HER2+), HER2-
overexpression type (ER-/PR-/HER2+), basal-like type (ER-/PR-/HER2-), and normal-like
type (the gene expression profile of cells is similar to that of normal breast epithelial cells,
showing features of a low treatable rate via chemotherapy, a high quality prognosis, and
a lower mortality rate if detected and treated early) [2,3]. In addition, the pathogenesis
and progression of breast cancer are accompanied by the differential expression of many
genes. Therefore, investigating the molecular mechanism of breast cancer occurrence and
development and identifying valuable clinical markers and new therapeutic targets will
contribute to the clinical diagnosis and drug treatment of breast cancer. It is also crucial to
reducing the lethality of malignant breast cancer.

PPARs are a class of ligand-dependent nuclear transcription factors in members of
the steroid hormone receptor superfamily, discovered in 1990 [4]. It is a biosensor of lipid
metabolism changes in organisms, especially intracellular fatty acid levels. In addition,
such lipid sensors are also involved in the regulation of cell differentiation, growth, and
apoptosis in various cells of the organism. The PPARs are expressed in many species,
including all mammals [5]. Moreover, the peroxisome proliferator response element (PPRE)
sequences on these gene promoters were bound by the heterodimers of PPARs and retinoid
X receptors (RXRs) to regulate downstream genes. In the non-ligand-bound state, the
PPAR/RXR heterodimer binds to co-repressors and inhibits target gene transcription.
The conformation of PPARs changes once the specific ligands are bound, which allows
multicomponent complexes to release co-repressors and recruit co-activators: peroxisome
proliferator-activated receptor gamma coactivators (PGCs), steroid receptor coactivators
(SRCs), CREB-binding protein/p300 (CBP/p300), etc., and regulate the transcription of
genes that participate in various physiological processes [6], such as lipid and glucose
metabolism, inflammation, and wound healing. Additionally, the expression changes of
these genes are found in many diseases, such as dyslipidemia, obesity, type 2 diabetes,
metabolic syndrome, etc. [7,8]. To date, many researchers have reported that PPARs function
as key players in various malignancies, including breast cancer. In this paper, we analyzed
the role of PPARs in breast cancer progression by retrieving the related experimental
articles from PubMed in order to provide more evidence for the prevention and treatment
of breast cancer.

2. Structure of PPARs

PPARs comprise three subtypes that have a high degree of homology: PPARα, PPARβ/δ
and PPARγ. The PPARs contain a modular structure consisting of an amino-terminal
ligand-independent transcriptional activation A/B domain, a 70 amino acid-long DNA-
binding C domain, a hinge D domain, and a carboxyl-terminal ligand-binding E/F domain
composition (Figure 1) [9,10].The sequence structure of the C and E/F domains of PPARs
subtypes has high homology [5].

Furthermore, the transcriptional activation of the A/B domain has phosphorylation-
binding sites [11]. The phosphorylation state of this region regulates the affinity of PPARs for
receptors (PPRE), ligands, and coactivators and is also a regulatory region used by PPARs to
restrict the transcription of most genes [12–14]. The A/B domain is a highly variable region
containing an activation function-1 (AF-1) domain, which has not been fully characterized.
Additionally, the central DNA-binding C domain has two highly conserved C4 zinc finger
motifs: distal (D-box) and proximal (P-box) boxes, which confer heterodimerization and
PPARs DNA binding, respectively. The C domain recognizes and binds to the PPRE motif
(AGGTCANAGGTCA) on the promoter sequences of target genes. The hinge D domain
supports the conformational change of PPARs upon ligand binding. The ligand-specific
E/F domain is a spherical structure composed of 13 α-helices (H1–H12, H2’) and 4 short
β-strands (S1–S4) [15]. On the other hand, the anti-parallel α-helical forms a sandwich
structure: H3, H7, and H10/H11 form the two outer layers of the sandwich; H4, H5, H8,
and H9 form the central layer of the sandwich. The central layer is mostly located in the
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upper half of the sphere. The lower half of the sphere consists of H3, H5, and H10, forming
a very large Y-shaped cavity (~1400◦ A3). The three-directional arms of the Y-shaped cavity
allow PPARs to be ligand-bound with various single-chain or branched structures [16]. The
RXR interacts with several α-helices, including H7–H10, to form PPAR/RXR heterodimers.
Further, Sheu et al. identified 10 binding “hot spots” for RXRs in PPARγ using solvent
mapping techniques. Four of these spots are located within the Y-shaped cavity: two
around the entry site of the Y-shaped cavity, two in the coactivator binding region, one
in the dimerization domain, and one in the secondary locus [17]. The E/F domain is also
a binding site for coactivators and co-repressors. The end of the E/F domain contains a
domain called AF-2, which is highly conserved in all subtypes of PPARs and is closely
related to the events of ligand-induced transcription. Ligand binding to the E/F domain
induces a conformational change in the AF-2 domain, resulting in a suitable binding surface
to recruit coactivators and promoting target gene transcription [18]. In addition, studies on
the phosphorylation of PPARs have shown that phosphorylation of AF-1 could affect the
activity of AF-2, revealing that the activity of PPARs is affected by intramolecular kinase
cascade signaling. All domains participate in the physiological activities of PPARs as a
unified whole. For example, changes in the A/B domain could affect ligand binding in the
E/F domain [19] or DNA binding in the C domain [20].

The heterodimer of PPAR and RXR is considered a permissive dimer because activation
of either component can activate the entire complex. The PPAR/RXR heterodimer binds to
the target gene promoter, PPRE. In the non-liganded state, PPAR/RXR interacts with co-
repressors such as SMRT and NCoR to recruit repressors that contain histone deacetylase
(HDAC) activity, thereby inhibiting gene transcription [21]. Upon ligand stimulation,
PPAR/RXR dissociates from multicomponent co-repressors, recruits RNA polymerase II
and activators with histone acetyltransferase (HAT) activity, remodels chromatin structure,
and promotes target gene transcription (Figure 2) [22].
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with co-repressors such as SMRT and NCoR to recruit repressors that contain histone 

Figure 1. Schematic representation of the principal domains of PPARs. PPARα, PPARβ, and PPARγ
all have a modular structure that contains four domains: A/B domain, C domain, D domain,
and E/F domain. The A/B domain contains an AF-1 region involved in the regulation of PPARs
phosphorylation. The C domain is the DNA binding domain. The D domain is a hinge domain. The
E/F domain contains an AF-2 region and is the RXR, ligand, and cofactor binding site.
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Figure 2. PPARs-mediated gene regulation. PPAR forms a heterodimer with RXR and binds to the
PPRE element of the target gene promoter. In the absence of ligand binding, the heterodimer recruits
transcriptional corepressors such as NCoR and SMRT, as well as HDACs, to repress target gene tran-
scription (A). Upon ligand binding, PPAR changes conformation, releases transcriptional repressor
complexes, and recruits transcriptional coactivators such as RNAPII and HATs to promote target gene
transcription (B). A/B, C, D, E/F: PPAR domains; PPRE: peroxisome proliferator response element;
RXR: retinoid X receptor; NCoR: nuclear receptor corepressor 1; SMRT: nuclear receptor corepressor
2; HDACs: histone deacetylases; HATs: histone acetyltransferases; RNAPII: RNA polymerase II.
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3. Ligands for PPARs

The PPARs require ligand activation, such as natural and synthetic ligands, which
is a characteristic of many other steroid hormone receptors [4,23,24]. The natural ligands
consist of a group of endogenously secreted molecules, including various unsaturated
fatty acids and their metabolic products. The specificity and activity of these molecules are
not high in most circumstances. Additionally, the incubation of triglyceride-rich lipopro-
teins with lipoprotein lipase (LPL) produces many ligands for PPARs [25,26]. Certain
prostaglandins and their metabolic derivatives are also natural ligands [27]. The struc-
ture and geometry of PPARβ/δ and PPARα are similar, while PPARγ more likely to bind
long-chain polyunsaturated fatty acids [28]. At present, a variety of synthetic ligands are
active on the market. These synthetic ligands often have higher PPAR subtype specificity
and stronger metabolic activity than natural ligands. The synthetic ligands include ago-
nists and antagonists (Table 1). The antagonists are also referred to as “inverse agonists”
because, although they bind to the agonist binding sites of PPARs, they cause opposite
pharmacological responses by stabilizing the binding state of uncoordinated PPARs and
multicomponent co-repressors in order to inhibit transcriptions of downstream target
genes [29,30]. Physical changes caused by ligand binding include changes in the three-
dimensional structure [31,32], dissociation of heat shock proteins and chaperones [33,34],
and nuclear entry [35,36] of PPARs.

The ligands of one subtype of PPARs could also act on other subtypes. For example,
the natural exogenous fatty acid ombuin-3-O-β-D-glucopyranoside was shown to simulta-
neously activate PPARα and PPARβ/δ to reduce the expression of the lipogenic genes in
hepatocytes and promote the genes’ expression, which are related to reversed cholesterol
transportation in macrophages so as to reduce intracellular lipid concentration [37]. This
could provide dual agonists or even pan-agonists of PPARs for the clinic. The dual-agonist
glitazars targeting PPARα and PPARγ, such as muraglitazar and tesaglitazar, are being
tested in clinical trials and are expected to reduce cardiovascular risk. In addition, the
lipid-lowering fibrate acid derivative, bezafibrate, is the first pan-agonist of PPARs that
has been clinically tested with satisfactory safety levels and has become the reference for
pan-agonists of PPARs [38]. Conversely, 13-HODE, an oxidized low-density lipoprotein,
acts as a ligand to activate PPARγ [39]. However, it has the opposite results when it acts on
PPARβ/δ. For example, when it acts on colorectal cancer cells, it is considered an antagonist
that down-regulates the expression of PPARβ/δ and induces tumor cell apoptosis [40]. In
preadipocytes, it is considered an agonist, activating PPARβ/δ to protect the liver from
chemically induced liver injury [41]. The ligands were shown to be tissue-specific for
the biological activity of PPARs, which may be due to the presence or absence of other
regulatory factors in addition to known ligands. In fact, long-term bioassay studies have
shown that high-affinity dual PPARα/PPARγ agonists could raise clinical safety concerns,
including potential carcinogenicity, weight increase, peripheral dropsy, and a potential
increased risk of heart failure in rodents [42]. Therefore, the development of dual agonists
and pan-agonists of PPARs with relatively low affinity (i.e., µM or nM) is more suitable for
cancer chemoprevention [43]. In addition, the use of PPARγ single agonists, thiazolidine-
diones (TZDs), induces bone loss in postmenopausal females and diabetic patients [44–47].
In contrast, administration of PPARα and PPARβ/δ dual agonists, linoleic acid (LA), or
PPARs pan-agonist bezafibrate could upregulate bone mineral density and result in the
formation of periosteal bone in male rats [48]. This suggests that dual and pan-agonists
of PPARs have the potential to counteract the adverse effects elicited by the use of highly
specific single agonists.

3.1. Agonists and Antagonists of PPARα

The most classic agonists of PPARα are fibrates, including bezafibrate, fenofibrate,
clofibrate, gemfibrozil, and Wy-14,643 [49]. Wy-14,643, a pirinixic acid first discovered to
play an effective role in anti-hypercholesterolemia [50], induces marked hepatomegaly and
peroxisome proliferation in hepatocytes and reduces serum cholesterol and triglyceride
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levels in male mice [51]. Subsequent reports confirmed that Wy-14,643 is a specific activator
of PPARα [52]. The Wy-14,643-activated PPARα regulates yes-associated protein (YAP)
expression and nuclear translocation, and blockade of YAP signaling abolishes PPARα-
induced hepatocyte hypertrophy and hepatocyte proliferation in mice [53]. GW9578, a
urea-substituted thioisobutyric acid (TiBA), is a potent murine PPARα-selective agonist,
but it has only a 20-fold selectivity for human PPARα [54]. Furthermore, GW9578 exists
in the form of a viscous oil or foam, which provides a hindrance to the quantitative
treatment of experiments in vitro and in vivo. Brown et al. identified GW7647 through
solid-phase array synthesis to aid in identifying PPARα agonists with high selectivity and
good physical properties [55]. As a thioisobutyric acid derivative, GW7647 is the first
identified PPARα-specific agonist. It has a 200-fold higher specificity than PPARβ/δ and
PPARγ and has lipid-lowering activity in vivo. The GW7647 is an excellent PPARα-specific
agonist that could be used in experimental research since it is a powder with a melting
point of 153–154 ◦C [28].

GW6471 is a specific antagonist of PPARα. GW6471 and PPARα could form a ternary
complex with the transcriptional co-repressor SMRT, and GW6471 further strengthens the
binding of the PPARα E/F domain to the SMRT co-repression motif. The co-repression
motif in the ternary complex adopts a three-turn α-helix, preventing the PPARα AF-
2 domain from assuming the active conformation [56]. Additionally, L-663,536 (MK-
886), a leukotriene biosynthesis inhibitor, was originally identified to prevent endogenous
leukotriene production during allergic reactions in guinea pigs and protect them from
lethal anaphylactic shock [57]. However, it was subsequently identified as an inhibitor of
the fatty acid binding protein 5-lipoxygenase-activating protein (FLAP), but the ability of
L-663,536 to induce apoptosis was not mediated by FLAP [58]. The drug L-663,536 was not
identified as a non-competitive antagonist of PPARα until 2001. It was then discovered to
prevent the conformational change necessary for the PPARα activity formation and inhibit
the PPARα target gene transcriptional activity (Figure 3) [59].

3.2. Agonists and Antagonists of PPARβ/δ

The first synthetic agonist was L-165,041 [60]. It is a leukotriene antagonist that can
activate both the human PPARβ/δ gene and PPARγ [61]. GW501,516 is a more potent and
specific PPARβ/δ agonist [62]. It has been used in a large number of experiments so far
and has become the reference for PPARβ/δ agonists [63]. However, it was subsequently
reported that GW501,516 had no hepatoprotective and anti-fibrotic effects in patients with
chronic liver disease [64]. Further, the GW501,516 has been limited for use in clinical trials
due to its potential metabolic derangement and stimulant effects and the high risk of a
halt in the evolution of molecules after uncontrolled application [65]. The agonist GW0742,
which was developed at the same time as GW501,516, has become a highly selective
agonist of PPARβ/δ in commercial non-human experiments [66]. The most clinically used
PPARβ/δ agonists are MBX-8025/RWJ80,025 and KD-3010 (Phase II trial) [67,68].

The earliest PPARβ/δ antagonist used is an irreversible PPARγ antagonist, GW9662 [69].
In 2008, GSK0660 was confirmed as the first PPARβ/δ selective antagonist [29]. However,
due to its low bioavailability, the in vivo experimental effects were affected. On the other
hand, SR13,904 is also a PPARβ/δ antagonist, although it also has a weak inhibiting
effect on PPARγ [70]. The latest PPARβ/δ antagonist used is GSK3787 which has fair
pharmacokinetics. It has been used in a large number of animal experiments due to
its fine bioavailability [30,71]. The above compounds are all irreversible antagonists of
PPARβ/δ, and covalently bind to the latter. DG172 and PT-S58 are currently two novel
PPARβ/δ antagonists. The DG172 has high affinity and strong inhibitory ability. It recruits
co-repressors, down-regulates the transcription of PPARβ/δ target genes, and still keeps
mice biologically active after oral treatment [72]. In addition, PT-S58 is a cell-permeable
diarylcarbonamide drug that acts directly on the PPARβ/δ ligand binding sites. It is a pure
competitive specific inhibitor of PPARβ/δ (Figure 4) [73,74].
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3.3. Agonists and Antagonists of PPARγ

The most typical agonists of PPARγ are TZDs, which were the first high-affinity selective
PPARγ agonists identified. The TZD family includes rosiglitazone (RGZ/BRL49,653) [75],
pioglitazone (PGZ), ciglitazone (CGZ), troglitazone (TGZ), englitazone (EGZ), and balagli-
tazone (BGZ). They are all able to specifically activate PPARγ [76]. In addition to their
ability to target PPARγ for type 2 diabetes therapy, different TZD compounds are also
in clinical trials for their tumor-suppressing effects. They may become anticancer drugs
in the near future. The non-TZD ligand of PPARγ, L-764,406, is the first known partial
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agonist of PPARγ. Covalent binding of L-764,406 to Cys313 of H3 in the E/F domain
of PPARγ induces a conformational change in the receptor and specifically activates the
transcriptional activity in the receptor [77]. GW0072 is the ligand of PPARγ with high
affinity but is a weak partial agonist. It locates in the ligand-binding pocket, which is
uncovered by X-ray crystallography, by binding to an epitope distinct from known PPARγ
agonists and does not interact with AF-2 [78]. In 1999, it was first discovered that GW7845
(an L-tyrosine derivative) could be used as PPARγ activator to prevent the progression of
experimental breast cancer in rats [79].
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GW9662 is an irreversible PPARγ full antagonist [80]. The GW9662 covalently binds
to Cys285 of PPARγ, a residue that is highly conserved in all three PPARs. Addition-
ally, GW9662 is 10 to 600 fold more selective for PPARγ than PPARα and PPARβ/δ in
cells [81].T0,070,907, which is similar in structure to GW9662, is also a synthetic PPARγ-
selective antagonist with more than 800-fold selectivity over PPARα and PPARβ/δ [82].
Bisphenol, a diglycidyl ether (BADGE), also specifically inhibits PPARγ and is a low-affinity
PPARγ ligand [83]. The BADGE has been reported to antagonize PPARγ and block adipo-
genesis induced by BRL49,653 and insulin, under the condition that the concentration level
reaches its solubility limit (100 µM) (Figure 5) [84].
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Table 1. Agonists and antagonists of PPARs.

PPARs Agonists Antagonists

PPARα
fibrates

Bezafibrate [49] GW6471 [56]
Fenofibrate [49] L-663,536 [59]
Clofibrate [49]

Gemfibrozil [49]
Wy-14,643 [52]

GW9578 [54]
GW7647 [55]

PPARβ/δ

L-165,041 [60] GW9662 [69]
GW501,516 [62] GSK0660 [29]

GW0742 [66] SR13,904 [70]
MBX-8025/RWJ80,025 [67] GSK3787 [71]

KD-3010 [68] DG172 [72]
PT-S58 [73,74]

PPARγ

TZDs

rosiglitazone (RGZ) [75] GW9662 [80,81]
pioglitazone(PGZ) [76] T0,070,907 [82]
ciglitazone(CGZ) [76] BADGE [83]
troglitazone(TGZ) [76]
englitazone(EGZ) [76]

balaglitazone(BGZ) [76]
L-764,406 [77]
GW0072 [78]
GW7845 [79]

3.4. Structure of PPARs Ligands

The secondary structure of PPARs ligands generally contains fluorine, chlorine, hy-
droxyl, aliphatic, carboxyl, and carbonyl groups. These groups can form electrophilic
groups and interact with relevant sites, such as carboxyl on the E/F domain of PPARs,
to form hydrogen bonds and improve the stability of the combination. For example, the
carboxyl of the agonist GW409,544 forms a direct hydrogen bond with Try464 on the AF-2
domain of PPARα. GW6471, an antagonist of PPARα, replaces the carboxyl of GW409,544
with an acetamide, destroying the formation of the hydrogen bond on Try464. The GW6471
induces PPARα to recruit SMRT and enhances the binding of PPARα E/F domain to the
SMRT co-repression motif, which adopts a three-turn α-helix and prevents the PPARα AF-2
domain from adopting an active conformation [56]. Several ligands contain amino, imino,
or quaternary amino groups, which lead to the shift of electrons and form charge attraction
with the relevant sites on the Y-shaped cavity of PPARs. The agonist bezafibrate forms a
significant positive and negative charge center, which can form a strong salt bond with
Lys183 on PPARα [38]. In addition to the above-mentioned intermolecular forces, some
ligands can also form covalent bonds with PPARs. Covalent binding of L-764,406 to Cys313
of H3 in the PPARγ E/F domain induces a conformational change in the receptor and
specifically activates its transcriptional activity [77]. GW9662, an irreversible full antagonist
of PPARγ, covalently binds to Cys285 of PPARγ [81]. In addition, the molecular chains
of PPARs agonists are basically long, and most of their electrophilic groups are linked to
carbon atoms or small groups. On the contrary, the molecular chains of PPARs antagonists
are shorter than those of agonists, and their electrophilic groups are linked to larger carbon
rings, aromatic rings, or heterocyclic rings. The antagonists with relatively large molecular
structures bind to the ligand-binding cavity of PPARs, resulting in steric hindrance and
preventing agonists from entering, thereby inhibiting the active conformational change
of PPARs [29,30]. The entrance to the Y-shaped cavity in the PPARs E/F domain includes
several polar residues, and the two branches of the cavity, Arm I and Arm II, are mainly
composed of hydrophobic residues, except for some moderately polar residues in Arm
I. These residues play key roles in determining the interaction of agonists or antagonists
with PPARs.
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4. Subtypes of PPARs and Breast Cancer

The PPARα, PPARβ/δ and PPARγ express differently in different tissues, with differ-
ences in target genes, biological activities, and ligand affinities [85]. Among 225 studies
of experimentally validated PPAR target genes, 83 genes were PPARα target genes, 83
were PPARβ/δ target genes, and 104 were PPARγ target genes [86]. In fact, the target
genes of the three subtypes of PPARs partially overlap. For example, all three PPARs could
transcriptionally activate the angiogenesis pathway-related protein Angptl4 and the lipid
droplet-associated protein Plin2 after ligand activation [87]. The PPARs participate in the
regulation of carbohydrate and lipid metabolism and homeostasis, as well as various phys-
iological processes such as cell differentiation, proliferation, inflammation, and vascular
biology [88]. In addition, the three subtypes of PPARs also regulate the occurrence and
development of many malignant tumors via different mechanisms; breast cancer is one
of them.

4.1. PPARα and Breast Cancer

PPARα, the first PPAR identified, is recognized as an orphan receptor activated by a
variety of peroxisome proliferators. The PPARα was originally discovered in rodents and
was named for its role in peroxisome proliferation [4]. On the other hand, PPARβ/δ and
PPARγ were subsequently discovered and identified as cognate receptors that are activated
by distinct peroxisome proliferators [24,52]. However, subsequent research proved that all
PPARs fail to play a role in human peroxisome proliferation. PPARα is mainly expressed
in metabolically vigorous cells with active fatty acid oxidation capacity, for example in
skeletal muscle, brown fat, the liver, heart, and intestinal mucosal tissues [89]. PPARα is of
considerable importance to glucose and lipid metabolism and the balance of transport in
mammals. Its main function of maintaining lipid homeostasis is realized by increasing cell
mobilization, promoting cell uptake, activation, oxidation, and decomposition of fatty acids,
and generating ketone bodies for energy production [90]. The ligand-activated PPARα
could also catalyze the hydroxylation of fatty acids. Hence, PPARα is the target of fibrates
and hypolipidemic drugs for the treatment of abnormal lipid metabolism. The transcription
of PPARα is up-regulated by fibrates, which enhance the lipolysis mediated by lipoprotein
lipase, promote the oxidative decomposition of fatty acids, and achieve the curative effect
of reducing total cholesterol and total triglycerides [91]. Fibrates are effective in increasing
insulin sensitivity and protecting the cardiovascular system, so they are also widely used
in the clinical treatment of diabetes and cardiovascular diseases [92].

In addition to regulating glucose and lipid metabolism, PPARα plays a role in various
cancers. Long-term administration of PPARα agonists was reported as early as 1980 to cause
liver cancer in rodents [93]. This effect of agonists was dependent on the receptor PPARα,
as they (Wy-14,643 or bezafibrate) did not induce liver cancer in PPARα-null mice [94,95].
The pro-hepatocarcinogenesis effect of PPARα agonists was not evident in humans [96].
The species-specific mechanism of promoting hepatocarcinogenesis is that mouse-derived
PPARα rather than human-derived PPARα down-regulated let-7C miRNA to increase
the stability of its target gene MYC, an oncogenic factor. The increased expression of
MYC promoted hepatocyte mitosis until carcinogenesis [97–99]. Some studies have shown
increased expression of PPARα in endometrial cancer. Fenofibrate treatment significantly
prevented the proliferation of endometrial cancer cells and promoted cell apoptosis [100].
However, other studies have also shown that PPARα knockdown inhibited the proliferation
of endometrial cancer cells, promoted cell apoptosis, and reduced the secretion of the
angiogenesis-related factor VEGF, while fenofibrate treatment also reduced the secretion
of VEGF [101]. Since this contradictory phenomenon is not caused by nonspecificity to
PPARα and cytotoxicity at the dose of fenofibrate [102], a possible explanation might be
the biphasic response of PPARα activity, i.e., PPARα with very low activity and expression
and PPARα with very high activity and expression producing the same effect, known as
a U-shaped dose-response curve. PPARα was also aberrantly expressed in melanoma.
Fenofibrate treatment inhibited the clone formation and migration abilities of melanoma
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cells and rendered them highly sensitive to staurosporine (a protein kinase C inhibitor with
strong pro-apoptotic activity) [103].

Chang et al. found that, compared to adjacent normal tissues, PPARα and its natural
ligand, arachidonic acid (AA), were significantly overexpressed in the tissues of breast
cancer. The growth of three breast cancer cells, MDA-MB-231 (ER-), MCF7 (ER++++),
and BT-474 (ER++), were stimulated by AA, with the most pronounced pro-proliferative
effect on MCF7 cells, revealing a positive correlation between PPARα and the prolifera-
tion of ER+ breast cancer cells [104]. Human cytochrome P450 1B1 (CYP1B1)-mediated
biotransformation of endogenous estrogens and environmental carcinogens promotes
the progression of multiple hormone-dependent tumors, including breast cancer [105].
Hwang et al. found that Wy-14,643 increased CYP1B1 mRNA and protein levels in MCF7
cells and activated PPARα enhanced CYP1B1 promoter activity through directly binding to
its PPRE elements [106]. In addition, Castelli et al. found that treatment of breast cancer
stem cells with the specific PPARα antagonist GW6471 reduced cell proliferation, viability,
and spheroid formation, resulting in metabolic dysfunction and apoptosis [107]. The above
experiments in vitro all suggest that PPARα functions in promoting the development of
breast cancer. However, Pighetti et al. found that treatment with Wy-14,643 inhibited the
ability of DMBA to induce breast tumor formation in rats and induced tumor volume
regression [108]. Chandran et al. showed that clofibrate treatment activated the PPARα
transcriptional activity and exerted an anti-proliferative effect on breast cancer cells by
regulating the levels of tumor suppressors, cell cycle inhibitors, and cell to cycle checkpoint
kinases, causing cells to arrest in the G0/G1 phase and significantly inhibiting cell growth.
In addition, activated PPARα reduced the expression of inflammatory pathway-related
enzymes and their receptors, reduced the protein levels of lipogenic enzymes, regulated
the fatty acid oxidation associated gene expression, and affected various lipid metabolism
pathways [109]. Yin et al. found that Runt-related transcription factor 2 (RUNX2), with high
expression in breast cancer, recruited metastasis-associated 1 (MTA1)/NuRD and the Cullin
4B (CUL4B)-Ring E3 ligase (CRL4B) complex to form a ternary complex. This complex
catalyzed histone deacetylation and ubiquitination, inhibited the transcriptional activity
of target genes, including PPARα, and promoted the proliferation and invasion of breast
cancer cells in vitro. These physiological processes finally led to breast cancer occurrence,
bone metastasis, and tumor stemness in vivo (Table 2) [110]. The above findings indicate
that PPARα plays a role as a tumor suppressor in breast cancer.

Table 2. The effects of PPARα on breast cancer.

The Role in Breast Cancer Binding Ligand The Effect on Breast Cancer

PPARα

cancer-promoting
arachidonic acid Promoted cell growth and proliferation, especially MCF7 in

cells (ER++++) [104]

Wy-14,643 Increased target gene CYP1B1 mRNA and protein levels in
MCF7 cells promoted cancer progression [106]

GW6471 Reduced cell viability, cell proliferation, and spheroid formation
lead to apoptosis and metabolic dysfunction of stem cells [107]

cancer-suppressing
Wy-14,643 Inhibited the ability of DMBA to induce tumor formation in rats

and induced tumor volume regression [108]

clofibrate Inhibited cell proliferation and growth, affecting various lipid
metabolism pathways [109]

–
Inhibited the proliferation and invasion of cells in vitro,
inhibited cancer occurrence, bone metastasis, and tumor
stemness in vivo [110]

PPARα was generally highly expressed in human primary inflammatory breast cancer
cells SUM149PT (3.9-fold higher than primary human breast epithelial cells HMEC) and
highly invasive breast cancer cells SUM1315MO2 (3.7-fold higher than HMEC cells) and
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in human breast tumor tissue (2–6-fold higher than adjacent normal tissues) [109]. The
correlation between PPARα and breast cancer is worth further investigation.

4.2. PPARβ/δ and Breast Cancer

Among the three subtypes of PPARs, PPARβ/δ exhibits higher evolutionary effi-
ciency [4]. In addition, uncoordinated PPARβ/δ also showed more potent transcriptional
repression activity. Compared with uncoordinated PPARβ/δ, unligated PPARα and PPARγ
do not inhibit PPRE-mediated transcription, which is possibly due to their inability to bind
to the nuclear receptor corepressors such as SMRT and NCoR [111]. This relatively rapid
rate of evolution and more potent transcriptional repression activity underscore the im-
portance of investigating PPARβ/δ function. The PPARβ/δ are referred to as HUC-1 in
humans [112], fatty acid-activated receptors (FAAR) in mice [113], and PPARδ in rats [114].
The PPARβ/δ are widely expressed in most tissues, and their expression level is often
higher than that of PPARα and PPARγ. This widespread expression proves its importance
in systemic activities and basic cell functions [52,115]. The high baseline expression of
PPARγ, especially in the gastrointestinal tract and skeletal muscle, reveals the critical role
of PPARβ/δ in fatty acid oxidation and obesity prevention [116]. PPARβ/δ is specific and
diversified in cell fate. It can activate housekeeping genes and regulate energy metabolism.
In addition, the endogenous natural ligands of PPARβ/δ are very broad and non-specific.
The ability of these ligands to activate PPARβ/δ is relatively weak. Therefore, the physi-
ological function of PPARβ/δ is difficult to simplify. Without ligand binding, PPARβ/δ
degrades fast, while ligand binding inhibits ubiquitin-proteasome activity, thereby ex-
tending its half-life [117,118]. This phenomenon may also be attributed to ligand-induced
PPARβ/δ expression [119]. Ligand-activated PPARβ/δ could increase the levels of serum
high-density lipoprotein cholesterol, decrease the levels of serum triglycerides in mice [60],
non-human primates [62], and humans [120], and improve the metabolic syndrome such as
obesity and insulin resistance induced by a high-fat diet or genetic predisposition [116,121].
Inhibition of insulin resistance by activated PPARβ/δ might also improve progressive neu-
rodegeneration and its associated learning and memory deficits and prevent Alzheimer’s
disease [122,123]. In addition, PPARβ/δ also have considerable preventive or therapeutic
capacity against genetic [124], diet [125], or chemically induced [126] liver inflammation.

The above evidence supports the development of PPARβ/δ specific agonists acting as
clinical drugs for the treatment of diseases such as obesity, diabetes, metabolic syndrome,
and liver inflammation. However, the synthesis of PPARβ/δ-targeted drugs has encoun-
tered significant obstacles related to clinical safety due to substantial controversy regarding
the reports on the role of PPARβ/δ in cancer [127,128]. Ligand-activated PPARβ/δ could
promote terminal differentiation of keratinocytes [129], enhance lipid deposition [130],
inhibit cell proliferation [131], and inhibit the progression of skin cancers such as psoriasis.
However, it has also been shown that transgenic mice that induced activation of PPARβ/δ
in the epidermis developed an inflammatory skin disease strikingly similar to psoriasis.
These mice were characterized by hyperproliferation of keratinocytes, aggregation of den-
dritic cells, and endothelial cell activation. The gene dysregulation and activation of key
transcriptional programs and Th17 subsets of T cells in transgenic mice were also highly
similar to psoriasis [132]. In addition, PPARβ/δ activated by UV stimulation directly
promoted the expression of oncogene Src and upregulated its kinase activity, enhanced
the EGFR/ERK1/2 signaling pathway, and promoted epithelial-mesenchymal transition
(EMT), which promotes keratinocyte differentiation and proliferation [133]. This result also
reveals the cancer-promoting effect of PPARβ/δ on skin cancer. A possible and one-sided
explanation for this contradiction was that activation of PPARβ/δ existed both in ker-
atinocytes and adjacent fibroblasts. The PPARβ/δ in fibroblasts inhibited IL-1 signaling by
directly upregulating the expression of secreted interleukin-1 receptor antagonist (sIL-1ra),
thereby regulating keratinocyte proliferation [134]. In addition to skin cancer, the PPARβ/δ
also have a controversial role in colorectal cancer [40,135,136].
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Human genome PPARβ/δ is located at 6p21.2, an increased site for ER- and high-risk
breast cancer [137], which reveals the correlation between PPARβ/δ and breast cancer.
PPARβ/δ was highly expressed in the nucleus in human normal breast epithelial cells
and weakly expressed or even absent in 92% of human breast lobular and ductal cancer
cells [138–140]. The expression of PPARβ/δ in mouse malignant breast cancer cells C20
was also significantly lower than that in mouse keratinocytes (nearly 4-fold) and human
normal mammary epithelial cells MCF10A (more than 2-fold) [141]. The patients’ survival
rate with breast cancer and the expression of PPARβ/δ have a negative correlation [142].
In 2004, Stephen et al. reported for the first time that PPARβ/δ activated by specific ligand
compound F or GW501,516 could promote the proliferation of ER+ breast cancer cells MCF7
and T47D. It could also promote in T47D cells vascular endothelial growth factor α (VEGFα)
and its receptor FLT-1 and encourage the proliferation of human umbilical vein endothelial
cells (HUVEG) in vitro. However, activated PPARβ/δ did not exert similar effects on
ER- breast cancer cells MDA-MB-231 and BT-20, revealing that the pro-proliferative and
pro-angiogenic effects of PPARβ/δ on breast cancer are dependent on ER [143]. Conversely,
in 2008, Girroir et al. reported that PPARβ/δ was activated by specific ligands (GW0742
or GW501,516) and inhibited the growth of MCF7 cells [144]. In 2010, Foreman et al.
reported that PPARβ/δ activated by the above two ligands also inhibited proliferation
and clone formation and promoted apoptosis in mouse C20 cells [141]. Additionally, in
2014, Yao et al. reported that the overexpression of PPARβ/δ prevented the proliferation of
breast cancer cells, MDA-MB-231 and MCF7, while the treatment of the agonist GW0742
further inhibited the proliferation of MCF7 cells without any effect on the MDA-MB-231
cells. The overexpression of PPARβ/δ inhibited the clone formation of these two cell lines,
while further treatment with GW0742 inhibited the clone formation of MDA-MB-231 cells
significantly more than that of MCF7 cells. However, the overexpression or ligand-activated
of PPARβ/δ did not affect apoptosis in either of the two breast cancer cell lines. Further,
the overexpression of PPARβ/δ could inhibit the growth of xenograft tumor in MDA-
MB-231 cells better than in MCF7 cells, and treatment with GW0742 further inhibited the
volume of mouse xenografts [145]. These findings, although inconsistent with Stephen’s
report [143], also confirm that the effects of PPARβ/δ on ER+ and ER- breast cancer cells
were different. However, by real-time analysis of cell doubling time, Palkar et al. found that
neither GW0742-activated nor highly specific irreversible antagonist GSK3787 inhibited
PPARβ/δ had effects on the proliferation of MCF7 cells, despite the fact that both of
them had the converse effect on the mRNA level of PPARβ/δ target gene Angptl4 in vitro
and in vivo [30]. Additionally, although these disparate results may be attributed to the
concentration of ligands used, cell treatment time, cell proliferation assessment methods,
etc., the exact function of PPARβ/δ on breast cancer cell apoptosis and proliferation remains
unclarified so far. Several experiments are required to reach consensus.

Ghosh et al. obtained PPARβ/δ−/−COX-2-TG transgenic mice by crossbreeding
and found that PPARβ/δ silencing antagonized cyclooxygenase-2 (COX-2)-induced mam-
mary gland hyperplasia and tumorigenesis in mice and significantly inhibited the ex-
pression of breast epithelial cell proliferation-related genes (e.g., Ki-67, Cyclin D1, etc.),
revealing that PPARβ/δ plays the role of tumor suppressor in the development of breast
cancer [146]. However, Glazer’s team found that treatment with GW501,516 accelerated
adenosquamous carcinoma and mammary squamous cell tumor formation in mice in-
duced with medroxyprogesterone acetate (MPA) and 7,12 dimethylbenzene(a)anthracene
(DMBA). The elevated levels of PPARβ/δ were accompanied by increased activation of 3-
phosphoinositide-dependent protein kinase 1 (PDK1), revealing that PPARβ/δ plays a role
in promoting breast cancer development through the PDK1 signaling pathway [147]. PDK1
is a vital governor of the AGC protein kinase family, including all isoforms of the AKT/PKB,
S6K, and PCK families [148]. Therefore, Glazer’s team constructed MMTV-PDK1 trans-
genic mice and found that overexpression of PDK1 in mouse mammary epithelial cells
up-regulated the levels of pT308AKT and pS9GSK3β, as well as PPARβ/δ. After induction
with MPA and DMBA, GW501,516 treated wild-type and transgenic mice showed an in-



Cells 2023, 12, 130 15 of 33

creased formation rate of mammary tumors compared with untreated normal wild-type
mice. Further, between the two types of mice, the transgenic mice showed more pro-
nounced tumors. The GW501,516 treatment did not alter PDK1 protein levels. In addition,
PDK1 overexpression also enhanced PPARβ/δ-induced energy metabolism. These results
reveal that PPARβ/δ promotes breast cancer by enhancing energy metabolism, which is
dependent on PDK1/AKT signaling [149]. In 2013, Glazer’s team directly constructed
MMTV-PPARβ/δ transgenic mice by embryo prokaryotic injection and found that over-
expression of PPARβ/δ induced breast tumorigenesis and activation of the AKT/mTOR
signaling pathway. The total number of mice developed invasive breast cancer within
12 months, and GW501,516 treatment strongly accelerated the oncogenic process and in-
creased breast tumor diversity. A hallmark characteristic of MMTV-PPARβ/δ mice is the
development of ER+/PR+/HER2- mammary tumors, further revealing the correlation
between PPARβ/δ and ER+ ductal breast cancer [150]. The above experiments in vivo
also reflect the conflicting roles of PPARβ/δ in breast cancer development, which may be
attributed to the singleness of the GW501,516 therapeutic dose (0.005% (w/w)). In addition,
as a specific agonist of PPARβ/δ, GW501,516 preferentially activates PPARβ/δ in human
PPARs with a 667–833-fold higher affinity than the other two subtypes. However, the
affinity of GW501,516 in mice is only 33–62-fold higher than that of other subtypes [151].
Therefore, this increased mammary tumorigenesis in mice treated with a single dose of
GW501,516 may not be simply attributable to the activation of PPARβ/δ. However, it is
undeniable that the successful construction of many transgenic mouse models is of great
significance in studying the correlation between PPARβ/δ and breast cancer.

Retinoic acid (RA) as a tumor suppressor exhibits potent anticancer activity mediated
by the nuclear retinoic acid receptor (RAR). The intracellular lipid-binding protein cellular
retinoic acid-binding protein II (CRABP-II) targets RA to the RAR, while another lipid-
binding protein, fatty acid binding protein 5 (FABP5), could deliver it to the non-canonical
RA receptor PPARβ /δ. The FABP5/CRABP-II ratio determines the partition of RA between
the two receptors. Noy’s team constructed two breast cancer MMTV-neu transgenic mouse
models expressing different FABP5/CRABP-II ratios in breast tissue. It was observed that
transgenic mice with a high FABP5/CRABP-II ratio produced larger breast tumors. On
the contrary, the reduction of this ratio resulted in the suppression of breast tumor growth
and gene expression, including PDK1 and cell proliferation-related genes, through the
transfer of RA signaling from PPARβ/δ to RAR. This study proposes a new mechanism by
which PPARβ/δ promote breast cancer [152]. Additionally, the epidermal growth factor
receptor (EGFR) as a tumor-promoting factor can promote breast cancer cell proliferation
and induce breast tumorigenesis. Noy’s team also found that treatment of MCF7 cells
with the EGFR ligand heregulin-β1 could directly upregulate the expression of FABP5
and PDK1. The results indicated that FABP5 and PPARβ/δ were the key mediators of
EGFR’s ability to enhance cell proliferation, further confirming that PPARβ/δ acted as
a tumor-promoting factor playing a role in breast cancer [153]. However, studies on
human keratinocyte HaCaT found that FABP5 neither delivered RA to PPARβ/δ nor
promoted anti-apoptotic activity by upregulating PDK1 levels. This phenomenon was
also identified in HaCaT cells that stably overexpress PPARβ/δ [154]. The above results
suggest that the cancer-promoting effect of RA-mediated PPARβ/δ may be specific to breast
cancer [155]. Wang et al. found that PPARβ/δ could promote the survival of MCF7 cells
under rough microenvironmental conditions by reducing oxidative stress and promoting
AKT-mediated survival signaling [156]. The correlation between PPARβ/δ and PDK1 is
currently controversial. Although the above studies have found that the expression levels
of the two are correlated, there are also studies showing that PDK1 is not a target gene of
PPARβ/δ [136,155,157]. In addition to the research around the effect of PPARβ/δ on the
proliferation and apoptosis of breast cancer cells, scholars have found that PPARβ/δ also
has an effect on the invasion and metastasis of breast cancer cells. Adhikary found that
PPARβ/δ, specifically antagonized by ST247 and DG172, inhibited serum and transforming
growth factor β (TGFβ)-induced invasion of MDA-MB-231 cells [158]. However, Wang
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uncovered that the PPARβ/δ expression levels in more metastatic breast cancer basal cell
lines were significantly higher than those in luminal cells. Additionally, after the inoculation
with MCF7 cells overexpressing PPARβ/δ, the breast tumor volume and lung metastasis of
mice increased significantly (Table 3) [156]. In conclusion, the exact role of PPARβ/δ on
breast cancer still requires more experimental studies.

Table 3. The effects of PPARβ/δ on breast cancer.

The Role in
Breast Cancer Binding Ligand The Effect on Breast Cancer

PPARβ/δ

cancer-promoting

GW501,516
Promoted the proliferation of MCF7 and T47D cells (ER+) instead of
MAD-MB-231 and BT-20 cells (ER-), promoted VEGFα and FLT-1
expression [143]

GW501,516 Accelerated adenosquamous carcinoma and mammary squamous
cell tumor formation in mice, increased activation of PDK1 [147]

GW501,516 Accelerated tumor formation, did not alter PDK1 protein levels [149]

GW501,516 Accelerated the oncogenic process and increased tumor diversity,
especially ER+/PR+/HER2- tumors [150]

– Promoted tumor growth and the expression of genes, including
PDK1 and cell proliferation-related genes [152]

– Promoted the expression of FABP5 and PDK1 in MCF7 cells,
promoted cell proliferation, and induced tumorigenesis [153]

– Promoted the survival of MCF7 cells under harsh
microenvironmental conditions [156]

ST247 or DG172 Inhibited serum and TGFβ-induced invasion of MDA-MB-231
cells [158]

– Increased tumor volume and lung metastasis in mice [156]

cancer-suppressing

GW0742 or
GW501,516 Inhibited the growth of MCF7 cells [144]

GW0742 or
GW501,516

Inhibited the proliferation and clone formation, and promoted
apoptosis in mouse C20 cells [141]

GW0742

Inhibited the proliferation of MCF7 cells instead of MDA-MB-231
cells, inhibited the clone formation of MDA-MB-231 cells significantly
more than that of MCF7 cells, and inhibited the volume of mouse
xenografts [145]

–
Inhibited hyperplasia and tumorigenesis in mice and inhibited the
expression of epithelial cell proliferation-related genes (e.g., Ki-67,
Cyclin D1, etc.) [146]

no effect GW0742 or GSK3787
Had no effect on the proliferation of MCF7 cells, despite both of them
influencing the mRNA level of the target gene Angptl4 in vitro and
in vivo [30]

4.3. PPARγ and Breast Cancer

PPARγ1 and PPARγ2 are two isoforms of PPARγ, that were found in mice. The
PPARγ2 mRNA was the predominant PPAR isoform in mouse mammary tissues [159]. In
humans and monkeys, in addition to PPARγ1 and PPARγ2, a third isoform of PPARγ4 was
found. These isoforms are the transcripts of seven mRNA spliceosomes (PPARγ1, PPARγ2,
PPARγ3, PPARγ4, PPARγ5, PPARγ6, and PPARγ7) from the different transcription start
sites, which are transcribed through alternative splicing of exons in the 5’-terminal region
(A1, A2, B, C, and D) [160]. The PPARγ1, PPARγ3, PPARγ5, and PPARγ7 mRNAs translate
into the same protein, PPARγ1, while PPARγ2 mRNA translates into PPARγ2 protein,
whereas PPARγ4 and PPARγ6 mRNAs translate into the same PPARγ4 protein. PPARγ1
is expressed in almost all tissues, with the highest level in white and brown adipose
tissues. Under normal physiological conditions, the larger PPARγ2 isoform (with additional
amino acids at the amino-terminal of PPARγ2, 30 in mice and 28 in humans) is only
expressed in brown and white adipose tissue, whereas its expression in the liver and
skeletal muscle is caused by excessive caloric intake or genetic obesity. PPARγ4 is under-
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researched and expressed in macrophages and adipose tissues [161–163]. PPARγ widely
expressed in white and brown adipose tissues, the large intestine, and the spleen. However,
PPARγ is also found in the liver, pancreas, and tissues of the immune system [164]. A
considerable number of studies have confirmed that ligand-activated PPARγ could regulate
fat distribution and glucose and lipid metabolism [165] and reduce the inflammatory
response of cardiovascular cells, especially endothelial cells [166]. Its specific agonist is
relatively effective in the treatment of hyperlipidemia, hyperglycemia, and cardiovascular
disease [167]. The specific agonists of PPARγ, i.e., TZDs, are clinical drugs currently on the
market as insulin sensitizers for the treatment of type 2 diabetes, targeting PPARγ to exert
a hypoglycemic effect. The antidiabetic activity of TZDs was first discovered in the early
1980s [168–171]. PPARγ is also involved in neural differentiation during the formation
of neural precursor cells [83]. Therefore, its specific agonists could also act as protective
agents for neurons, inducing synaptic plasticity and neurite outgrowth, and improving
the symptoms of some neurological diseases [172]. In addition to the above effects, a large
number of reports also pointed out that ligand-activated PPARγ exerts anti-tumor effects by
promoting cell apoptosis and preventing cell proliferation, regulating cell metastasis, and
stimulating angiogenesis, thereby inhibiting the occurrence and development of tumors
of the liver [173], bladder [174], lung [175,176], brain [177], thyroid [178], esophagus [179]
and colorectum [180–183].

PPARγ also plays a role in breast cancer progression. In 1998, it was reported that
TZD-activated PPARγ could induce terminal differentiation of malignant mammary ep-
ithelial cells in vitro [184]. However, in 1999, researchers found that ligand-activated
PPARγ could prevent the development of experimental breast cancer in vivo. The report
showed that GW7845 as an activator of PPARγ significantly inhibited nitrosomethylurea
(NMU)-induced mammary tumor incidence, tumor number, and tumor weight in rats [79].
Subsequent reports of ligand-activated PPARγ inhibiting breast cancer development have
experienced a rise. A 2001 study showed that TGZ inhibited DMBA-induced mammary
tumor progression in rats, reduced malignancy incidence, and induced regression or stasis
of total tumor volume [108]. A study in 2009 showed that the conjugated fatty acid α-
eleostearic acid (α-ESA) could act as an agonist of PPARγ, upregulating the level of PPARγ
mRNA in MCF7 cells, upregulating PPARγ’s DNA binding activity and transcriptional
activity, and mediating PPARγ nuclear translocation, thereby reducing MCF7 cell viability
and promoting tumor cell apoptosis. At the same time, α-ESA-induced high PPARγ expres-
sion was associated with an inhibitory effect on ERK1/2 MAPK phosphorylation activation.
This suggests that pERK1/2 might play a negative regulatory role on PPARγ levels [185].
Bonofiglio’s team discovered an important pathway for PPARγ in human breast cancer
cell growth, cycle arrest, and apoptosis. RGZ-activated PPARγ inhibits the PI3K/AKT
pathway and induces the antiproliferative effect of MCF7 cells [186]. RGZ also increased
the binding of PPARγ to the NF-κB sequence on the promoter sequence of p53, upregulated
the expression level of p53 in MCF7, induced caspase 9 cleavage and DNA fragmentation,
triggered the apoptotic pathway, stopped the growth, and promoted apoptosis of breast
cancer cells [187]. Furthermore, in several breast cancer cell lines, RGZ activated the human
Fas ligand (FasL) promoter in a PPARγ-dependent manner, increased the binding of PPARγ
with Sp1 to the Sp1 sequence located within the FasL promoter, and positively regulated
FasL expression [188]. FasL is a type II transmembrane protein expressed on the membrane
surface of activated T lymphocytes and cancer cells. By binding to its receptor Fas [189,190],
it activates the cascade of caspases and induces apoptosis [191]. These studies reveal a
novel molecular mechanism by which PPARγ induces growth arrest and apoptosis in
breast cancer cells. An in vivo study in 2011 showed that TZD-activated PPARγ inhibited
MAPK/STAT3/AKT phosphorylation-mediated leptin signaling in MCF7 cells. On one
hand, this effect led to the inhibition of MCF7 xenografts through the counteraction of
the stimulatory effects of leptin on estrogen signaling. On the other hand, it inhibited
leptin-induced cell-cell aggregation and tumor cell proliferation, exerting pro-apoptotic
and anti-proliferative effects on breast cancer cell lines [192].
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Almost all experimental studies on PPARγ ligands reflect the prevention effect of these
ligands on the occurrence and development of breast cancer. However, a 20-week human
clinical trial found that the clinical value of TGZ treatment in patients with refractory
metastatic breast cancer was not significant. All 22 patients receiving treatment displayed
different levels of disease progression within 6 months. Some might even have started other
systemic therapies. All patients with serum tumor marker expression above baseline had
increased levels of these markers again within 8 weeks [193]. The public has been warned
against TGZ by the U.S. Food and Drug Administration, and it was taken off the market
in 2000 because of its specific hepatotoxicity [194]. It was subsequently withdrawn in the
UK as well. In 1999 and 2000, RGZ and PGZ were marketed as targeted type 2 diabetes
treatments in the US and Europe [195]. BGZ completed phase III clinical trials in 2010 and
has not yet been listed [196]. However, short-term treatment with RGZ (2–6 weeks, n = 38)
also did not protect tumor cell proliferation significantly in patients with an early stage of
breast cancer [197]. Therefore, it is necessary to either synthesize new PPARγ activators with
clinical value and few toxic side effects or find other drugs that can be used in combination
with existing ligands for breast cancer treatment. In fact, as early as 1998, a study found that
the combination of TGZ and all-trans-retinoic acid (ATRA) had a synergistic and irreversible
inhibitory effect on the growth of MCF7 cells in vitro, induced MCF7 cell apoptosis, and
was accompanied by a significant reduction of bcl-2. In vivo injection of the combined drug
had no obvious toxic effects in mice. A drug combination could also significantly induce
apoptosis and fibrosis-related morphological changes in breast cancer cells [198]. A 2008
study found that the PPARγ ligand N-(9-fluorenyl-methyloxycarbonyl)-l-leucine (F-L-Leu)
combined with the COX-2 inhibitor celecoxib significantly delayed the median age of death
in breast cancer mice. Breast cancer cell growth is also synergistically inhibited in vitro [199].
Bonofiglio’s team found that combining RGZ and RXR ligand 9-cis-retinoic acid (9RA) at
nanomolar levels significantly inhibited the activity of breast cancer cells and promoted
endogenous apoptosis. Combined treatment with RGZ and 9RA up-regulated the mRNA
and protein levels of p53 and its effector gene p21 (WAF1/Cip1) in MCF7 cells, which
led to a series of programmed apoptosis events such as the disruption of mitochondrial
membrane potential, the release of cytochrome c, the activation of caspase 9, and DNA
fragmentation [200]. The combination of CGZ and 9RA, another compound of the TZD
family, could also synergistically prevent the human colon cancer cells’ Caco2 growth
and induce apoptosis [201]. A 2011 study showed that the combination of TZD and the
demethylating drug hydralazine could upregulate PPARγ transcriptional and translational
levels in triple-negative breast cancer (TNBC) cells, thereby promoting the anti-proliferative
and apoptotic effects of TNBC cells and reducing the xenograft tumor growth proliferation
index [202]. In conclusion, the multi-drug combination regimen using PPARγ ligands could
have a key role in the treatment of many malignant tumors, including breast cancer [203],
ovarian cancer [204,205], colon cancer [206,207], and lung cancer [208,209].

In addition to its ligand-activated state, PPARγ also involves itself in the develop-
ment of breast cancer in a non-ligand-independent manner. The PPARs and ERα are both
members of the nuclear receptor superfamily. The ERα signaling pathway has a critical
role in metabolism regulation and various physiological processes in the development of
breast cancer [210,211]. Bonofiglio’s team found for the first time that ERα could bind to
the PPRE element to inhibit its mediated transcriptional activity independently of PPARs.
Interestingly, PPAR/RXR heterodimers could also bind to the ER response element (ERE)
independently of ERs [212]. PPARγ physically interacted with ERα to form a ternary
complex with a regulatory subunit of PI3K and p85. PPARγ and ERα played opposite
roles in the regulation of PI3K/AKT signaling, which involves cell survival and prolifer-
ation [186]. The crosstalk between the PPARγ and ERα signaling pathways revealed the
important role of PPARγ in the development of ER+ breast cancer. Since PPARγ-null mice
are embryonic lethal, scientists have developed other ways to create transgenic animal
models that silence PPARγ. Yin et al. investigated the susceptibility of PPARγ inactivation
to MPA- and DMBA-induced breast cancer in mice by constructing an MMTV-Pax8PPARγ
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transgenic mouse model. In the absence of induction, the mammary glands of transgenic
and wild-type mice did not differ in functional development or propensity for tumor for-
mation, a finding consistent with Cui et al.’s [213]. However, after being induced by MPA
and DMBA, transgenic mice developed higher tumor diversity than wild-type mice. These
tumors were predominantly ER+ ductal breast cancers, further revealing the role of PPARγ
in the development of ER+ breast cancer. The decrease in PTEN expression, the induction
of pERK1 and pAKT levels, and decreasing pGSK3β level, Pax8PPARγ promotes Wnt
signaling [214]. However, in constructing transgenic mice with constitutively active forms
of MMTV-VpPPARγ, Saez et al. found that activation of PPARγ signaling did not affect
mammary gland development in transgenic mice, which had no phenotypic difference with
wild-type mice. On the other hand, when such transgenic mice were crossed with breast
cancer-prone transgenic MMTV-PyV mice, the progeny biogenic mice developed tumors
much faster and with a higher degree of malignancy and differentiation of the tumors. This
molecular mechanism for promoting breast cancer development might also be attributed to
the promotion of PPARγ on the Wnt signaling pathway [215]. Tian et al. conducted a paral-
lel experiment on immunocompetent FVB mice, with one group of implanted tumor cells
transduced with wild-type PPARγ, and the other with constitutively active PPARγCA. They
found that the growth of mammary tumors in mice implanted with PPARγCA-transduced
cells was enhanced, which was correlated with endothelial stem cells and angiogenesis
increasing. PPARγCA induced ErbB2-transformed mammary epithelial cells to secrete
Angptl4 protein, which enhanced angiogenesis in vivo and promoted tumor growth [216].
The above studies based on animal models reveal the contradictory roles (either inhibiting
or promoting) of PPARγ in the occurrence and development of breast cancer. The potential
reasons for this discrepancy remain to be investigated. The possible causes could be traced
to the differences in the construction of animal models or the difference in the length of
experimental periods. In addition, a 2019 study showed that PPARγ directly bound to
the PPRE element of the protein tyrosine phosphatase receptor-type F (PTPRF) promoter
and recruited RNA polymerase II and H3K4me3 to promote the transcription of PTPRF.
These processes inhibited breast cancer cell proliferation and migration in vitro and inhib-
ited breast tumor growth and distant metastasis in mice [217]. A 2020 experiment in vitro
showed that PPARγ, which is commonly expressed in human primary and metastatic breast
cancer [218], interacted with Nur77, recruited the ubiquitin E3 enzyme Trim13 to target
the ubiquitin proteasomal degradation of Nur77, and promoted breast cancer progression.
Nur77, a tumor suppressor, inhibits breast cancer cells from uptaking exogenous fatty
acids and blocks the accumulation of fatty acids in the tumor metabolic microenvironment
by inhibiting the transcription of the transmembrane protein CD36 and the cytoplasmic
fatty acid-binding protein FABP4. Therefore, blocking the interaction between PPARγ
and Nur77 can be used as a clinical approach for PPARγ ligand-independent treatment
of breast cancer (Table 4) [219]. However, due to the relatively high concentrations of
endogenous natural ligands in cells, it remains to be verified whether these conclusions are
truly ligand-independent of PPARγ.

In 2005, an immunohistochemical test of 170 patients with invasive breast cancer
showed that the expression of PPARγ was negatively associated with histological grade
(p = 0.019). PPARγ had a significantly favorable effect on recurrence-free survival in breast
ductal carcinoma patients (p = 0.027) and was an independent prognostic factor in ductal
carcinoma patients (p = 0.039) [220]. In 2008, a study presented that the nuclear expression
of PPARγ had a preventive effect on the recurrence of female breast ductal carcinoma in situ.
Its expression level was negatively correlated with tumor recurrence (p = 0.024) [221]. These
clinical research studies and the above experimental results reveal the important function of
PPARγ in the occurrence and development of breast cancer. The overexpression of PPARγ
in breast tumors and the physiological effects of its ligands on breast cancer cells indicate
that PPARγ will be a possible target in breast cancer clinical prevention and treatment.
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Table 4. The effects of PPARγ on breast cancer.

The Role in
Breast Cancer Binding Ligand The Effect on Breast Cancer

PPARγ

cancer-promoting
–

Promoted Wnt signaling and induced transgenic mice to develop
tumors much faster with a higher degree of malignancy and
differentiation of the tumors [215]

– Promoted the growth of tumors and angiogenesis in mice, increasing
Angptl4 expression and endothelial stem cells [216]

–
Interacted with Nur77, recruited Trim13 to target the ubiquitin
proteasomal degradation of Nur77, and promoted cancer
progression [219]

cancer-suppressing

TZD Induced terminal differentiation of malignant mammary epithelial
cells [184]

GW7845 Inhibited NMU-induced tumor incidence, tumor number, and tumor
weight in rats [79].

TGZ
Inhibited DMBA-induced tumor progression in rats, reduced
malignancy incidence, and induced regression or stasis of total tumor
volume [108]

α-eleostearic acid Reduced MCF7 cell viability and promoted cell apoptosis [185]

RGZ Inhibited PI3K/AKT pathway, inhibited proliferation of MCF7
cells [186]

RGZ
Promoted the expression of p53 in MCF7, induced caspase 9 cleavage
and DNA fragmentation, and promoted cell growth arrest and
apoptosis [187]

RGZ Promoted target gene FasL expression, activated the cascade of
caspases, and induced apoptosis [191]

TZD
Inhibited MAPK/STAT3/AKT phosphorylation-mediated leptin
signaling in MCF7 cells inhibited cell proliferation and promoted cell
apoptosis [192]

BRL49,653 Inhibited the PI3K/AKT pathway and promoted PTEN expression in
MCF7 cells, inhibiting cell growth [186]

– PPARγ silcence promoted Wnt signaling and induced transgenic mice
to develope higher tumor diversity, especially ER+ ductal tumors [214]

– Inhibited cell proliferation and migration in vitro, inhibited tumor
growth, and distant metastasis in mice [217]

4.4. PPARs and TNBC

TNBC, the most aggressive subtype of breast cancer, has no effect on hormone therapy
or HER2-targeted therapy due to its lack of the three receptors. Surgery or chemotherapy,
the only viable option, is a systemic therapy that causes not only physical distress but a
poor prognosis for TNBC patients [222]. Therefore, it is very necessary to explore new
treatment methods or target drugs to improve the prognosis of TNBC. Li et al. found that
the PPARα-specific agonist fenofibrate had anti-proliferative effects on breast cancer cell
lines, and the top 5 most sensitive cells are all TNBC cell lines [223]. Kwong found that
fatty acid binding protein 7 (FABP7) failed to induce the efficient use of glucose to generate
ATP in the TNBC cell line Hs578T during serum starvation, eventually leading to cell death.
This metabolic effect of FABP7 on Hs578T cells was mediated by PPARα [224]. Studies
by Stephen’s group showed that PPARβ/δ activated by GW501,516 could promote the
proliferation of MCF7 and T47D cells, but it had no similar effect on the TNBC cell lines
MDA-MB-231 and BT-20 [143]. The expression level of PPARβ/δ in highly aggressive basal
cells was significantly higher than that in luminal cells [156]. In addition, Adhikary’s team
found that ST247 and DG172 specifically antagonized PPARβ/δ strongly inhibited the
invasion ability of MDA-MB-231 cells induced by serum and TGFβ [158]. Jiang’s team
found that the expression of PPARγ in the breast tissues of TNBC patients was significantly
lower than that of other subtype patients, and its expression in MDA-MB-231 cells was also
significantly lower than that of other breast cancer cell lines. Previous studies have reported
that the PPARγ-specific agonist RGZ had antitumor effects in breast cancer. However, it did
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not exert significant anti-proliferative effects on MDA-MB-231 cells. RGZ combined with
the demethylation agent hydralazine significantly inhibited the proliferation of MDA-MB-
231 cells and promoted cell apoptosis [200]. Apaya et al. showed that epoxy-eicosatrienoic
acid (EET) induced the nuclear translocation of FABP4 and FABP5 in MDA-MB-231 cells,
thereby promoting the nuclear accumulation of PPARγ and affecting cell proliferation and
migration [225]. These results reveal the important roles of all three subtypes of PPARs
and their ligands in TNBC and suggest that more attention should be directed to drug
combination therapies against TNBC.

5. Discussion

PPARs are key transcription factors in the process of fatty acid oxidative decomposi-
tion. They have a key role in nutrient metabolism and lipid homeostasis. The PPARs are
involved in regulating several cellular physiological functions, consisting of cell differentia-
tion, proliferation, metabolism, apoptosis, and other activities related to tumor formation.
Several controversial reports on PPARs presented in this paper suggest that their function
as tumor-promoting or tumor-suppressing factors in breast cancer still remains unclear. A
number of classical signaling pathways in cells as a whole affect physiological function,
such as cell carcinogenesis. The complexity of the pathways regulated by PPARs provides a
one-sided explanation for their different functions in breast cancer (Figure 6). For example,
both silence and constitutive activation of PPARγ enhanced Wnt signaling and promoted
mammary tumorigenesis in transgenic mice [214,215]. GW501,516-activated PPARβ/δ
promoted increased PDK1 activation in DMBA-induced mice [147]. The overexpression
of PDK1 in mouse mammary epithelial cells in turn upregulated PPARβ/δ levels and
enhanced PPARβ/δ-induced energy metabolism. However, GW501,516 treatment did not
alter PDK1 protein levels [149]. Although the promoting effect of PPARβ/δ on breast cancer
is partially dependent on the PDK1 signaling pathway, studies showed that PDK1 is not a
target gene of PPARβ/δ [136,155,157], which further reveals the correlation between the
two may be mediated by some factors in other signaling pathways. Many clinical drugs tar-
geting PPARs (such as fibrate hypolipidemic drugs and TZD hypoglycemic drugs) can treat
metabolic syndromes such as diabetes, obesity, hyperlipidemia, and cardiovascular disease.
Moreover, epidemiological studies have shown that metabolic disorders are often associ-
ated with the occurrence of malignant tumors, such as breast cancer [226,227]. Therefore,
PPARs remain a potential target for the prevention and treatment of breast cancer.

There are many predisposing factors for breast cancer, among which long-term estro-
gen exposure has been confirmed to be directly associated with the malignant proliferation,
invasion, and metastasis of breast cancer cells [228]. ERs are the key factors in response to
estrogen stimulation and mediate signal transduction and function in cells. Additionally,
together with PPARs, they are members of the nuclear receptor superfamily. This review
examined numerous reports on PPARs and found that regardless of the subtypes, the
effects on ER+ and ER- breast cancer cells were different. Activated PPARα had the most
significant pro-proliferation effect on ER+ MCF7 cells [104].Although the effect of PPARβ/δ
on the proliferation of breast cancer cells is highly controversial, its effect on ER+ and
ER- cells is indeed different [143,145]. A hallmark feature of MMTV-PPARβ/δ transgenic
mice constructed by embryonic pronuclear injection developed ER+/PR+/HER2- mam-
mary tumors, directly revealing the correlation between PPARβ/δ and ER+ ductal breast
cancer [150]. PPARγ and ERα physically interacted to regulate the PI3K/AKT signaling
pathway, which is involved in breast cancer cell survival and proliferation [186]. Further,
MMTV-Pax8PPARγ transgenic mice produce mainly ER+ ductal breast cancer under the
induction of MPA and DMBA [214]. This correlation between PPARs and ERs suggests that
they can be used as synergistic targets for breast cancer clinical treatment. Consequently, the
molecules and signals involved in regulating estrogen and its receptor pathways are very
complex. They exhibit dynamic changes with differences in the intracellular environment.
The function of PPARs in breast cancer is also disputable. Therefore, more experiments are
needed for the development of common target drugs in the future.
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Figure 6. Schematic illustration of ligand-activated or ligand-independent PPARs affecting breast
cancer progression. PPRE: peroxisome proliferator response element; Cyp1b1: cytochrome P450
1B1; RUNX2: Runt-related transcription factor 2; MTA1: metastasis-associated 1; CRL4B: Cullin
4B-Ring E3 ligase; PDK1: 3-phosphoinositide-dependent protein kinase 1; PTEN: phosphatase and
tensin homolog; AKT: AKT serine/threonine kinase 1; GSK3β: glycogen synthase kinase 3β; mTOR:
mechanistic target of rapamycin kinase; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; ERK:
mitogen-activated protein kinase 1; DMBA: 7,12 dimethylbenzene(a)anthracene.

The selectivity and affinity of various ligands for PPARs are different between humans
and other mammals. This difference might be one of the causes of the opposite results
obtained from experiments in vitro and in vivo. For example, Wy-14,643, an agonist of
PPARα, enhanced the transcriptional activity of the tumor-promoting factor CYP1B1 in
human MCF7 cells in vitro [106]. In turn, treatment with Wy-14,643 inhibited the ability
of DMBA to induce mammary tumor formation in rats [108]. The GW501,516, an agonist
of PPARβ/δ, induced the proliferation of human MCF7 and T47D cells [143]. However,
it inhibited the proliferation and clone formation of mouse C20 cells and promoted cell
apoptosis [141]. In addition to the interspecies specificity of ligands, the presence or absence
of regulatory factors such as other native natural ligands in cells or mammals may also
contribute to these conflicting results [151]. In addition to acting on its specific receptors,
the fact that ligands have an effect on other substances is worth investigating. In addition,
the compensatory effects of living organisms and cells, ligand-related pharmacokinetic
behaviors, and weak activation or antagonism of high concentrations of ligands on other
subtypes are all important factors that should be considered for inclusion or exclusion in
future experiments [229].

PPARα has high expression in human breast cancer cells and tissues [104,109]. The
PPARβ/δ is weakly expressed or absent in human breast lobular carcinoma and ductal
carcinoma [138–140], and its expression level has a negative correlation with the survival
rate of breast cancer patients [142]. PPARγ is generally highly expressed in human primary
and metastatic breast cancer [218]. The expression of PPARγ is inversely correlated with
the histological grade of invasive breast cancer [220] and with in situ ductal breast cancer
recurrence [221]. It is an independent prognostic factor in patients with ductal carcinoma.



Cells 2023, 12, 130 23 of 33

This correlation revealed that PPARs would be potential clinical targets to prevent and treat
breast cancer.

6. Conclusions

This review analyzed the roles and potential molecular mechanisms of three subtypes
of PPARs in the presence or absence of ligands in breast cancer progression. In addition,
the correlations between PPARs and ERs as the nuclear receptor superfamily and the
investigation of the interaction between PPARs and key regulators in several signaling
pathways were discussed. Furthermore, PPARs as targets for breast cancer prevention
and treatment in order to provide more evidence for the synthesis of new drugs targeting
PPARs or the search for new drug combination treatments. On the basis of the controversial
results discovered in the review, further investigation is essential to reveal the physiological
functions of PPARs.
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