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Abstract: There are insufficient accurate biomarkers and effective therapeutic targets in current cancer
treatment. Multi-omics regulatory networks in patient bulk tumors and single cells can shed light on
molecular disease mechanisms. Integration of multi-omics data with large-scale patient electronic
medical records (EMRs) can lead to the discovery of biomarkers and therapeutic targets. In this
review, multi-omics data harmonization methods were introduced, and common approaches to
molecular network inference were summarized. Our Prediction Logic Boolean Implication Networks
(PLBINs) have advantages over other methods in constructing genome-scale multi-omics networks
in bulk tumors and single cells in terms of computational efficiency, scalability, and accuracy. Based
on the constructed multi-modal regulatory networks, graph theory network centrality metrics can
be used in the prioritization of candidates for discovering biomarkers and therapeutic targets. Our
approach to integrating multi-omics profiles in a patient cohort with large-scale patient EMRs such as
the SEER-Medicare cancer registry combined with extensive external validation can identify potential
biomarkers applicable in large patient populations. These methodologies form a conceptually
innovative framework to analyze various available information from research laboratories and
healthcare systems, accelerating the discovery of biomarkers and therapeutic targets to ultimately
improve cancer patient survival outcomes.

Keywords: biomarkers; therapeutic targets; multi-omics regulatory networks; single cells; Prediction
Logic Boolean Implication Networks (PLBINs); network centrality; electronic medical records (EMRs);
SEER-Medicare

1. Introduction

Despite decades of efforts in cancer research, cancer ranks as the top cause of death
and shortened life expectancy in every country in the world [1]. In 2040, the global cancer
burden is estimated to increase by 47% from 2020, reaching 28.4 million cases [1]. The
Cancer Moonshot project was launched in 2016 to accelerate scientific discovery, foster
collaboration, and improve data sharing in cancer research [2]. The current unmet clinical
needs in cancer treatment include a lack of biomarkers for precise assessment of cancer
risk, tumor progression, recurrence, and treatment response in individual patients. More
effective therapeutic targets are needed to improve patient survival outcomes.

The advent of high-throughput sequencing technology has led to the discovery of
abnormal genomic variants in cancer patients as novel therapeutic targets, such as the
EML4-ALK fusion gene in non-small-cell lung cancer (NSCLC) [3]. In addition, the blockade
of immune checkpoint inhibitors (ICIs), including PD1, PDL1, and CTLA4, has improved
cancer patient survival outcomes [4–10]. However, there are currently no established
predictive biomarkers in immunotherapy, as PDL1 and tumor mutational burdens are not
proven indicators [11]. Systematic disease mechanisms underlying cancer remain illusive.
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The tumor immune microenvironment is a multidimensional system of immune
cells, stromal cells, and host factors. Complex and interweaving signaling pathways and
networks of genes and proteins function in these various cell types [12]. In the tumor
microenvironment, the presence of tertiary lymphoid structures (TLSs) is linked to good
cancer prognosis [13]. TLSs comprise B cells and adjacent clusters of dendritic cells and T
cells [14]. TLSs and tumor-infiltrating B cells improve ICIs responses in cancer immunother-
apy [15–18]. Recent studies suggest an essential role of B cells in antitumor immunity,
including the determination of protective T cell responses in cancer patients [19–21]. T-cell
dysfunction and therapy have been established for cancer treatment [22–28]. However,
B-cell biology and therapeutic potential have not been substantiated [29–31]. The emerg-
ing single-cell sequencing technique is an effective method to better understand disease
mechanisms and develop novel therapeutic interventions.

Genes and proteins form complex gene regulatory networks (GRN) in living organ-
isms [32,33]. Perturbed gene regulation is closely related to disease and its revelation is
important for developing intervention strategies [34–37]. Molecular network analysis is
crucial to decipher cancer mechanisms and advance precision oncology [38]. Artificial
intelligence (AI) methods are needed to reveal essential GRNs and essential hub genes at
multiple regulatory levels by analyzing emerging multi-modal data in patient bulk tumors
and single cells for the discovery of biomarkers and therapeutic targets.

To achieve optimal treatment selection in individual patients, it is essential to integrate
patient multi-omic biomarkers with clinical, pathological, demographic, and comorbid
factors using electronic medical records (EMRs) [39]. Retrospective analysis of EMRs has
led to the discovery of new and repositioning drugs [40–42].

This review is focused on multi-omics data processing and integration in Section 2,
common systems biology software and data resources in Section 3, molecular network
inference methods in Section 4, hub genes in tumorigenesis, proliferation, and patient
survival in Section 5, and integration of multi-omics data with EMRs in Section 6. Finally,
we provide recommendations for bulk tumor and single-cell multi-omics network analysis
for the discovery of biomarkers and therapeutic targets in Section 7.

2. Bulk Tumor and Single-Cell Multi-Omics Data Analysis
2.1. Multi-Omics Data Processing and Integration

With the rapid development of high-throughput technology, genomic, transcriptomic,
proteomic, and metabolomic profiles have provided ample sources of information for
researchers to understand molecular disease mechanisms. Nevertheless, data generated
from various commercially available platforms and customized arrays pose tremendous
challenges for processing, analysis, and integration. The Genome Analysis Toolkit (GATK)
is the industry standard for processing multi-omics data in bulk tumors and single cells,
including identifying single nucleotides (SNPs) and indels, somatic short variants, copy
number variations (CNV), and structural variations (SV) in germline DNA and RNAseq
data [43]. In addition to data generated from current sequencing technology, a huge amount
of high-throughput data was generated from legacy DNA microarrays. A research group
from the FDA reported that biomarkers and predictive models derived from legacy mi-
croarray data can accurately predict phenotypes in samples profiled with RNA sequencing,
whereas RNA-seq-based models are less accurate in predicting microarray data [44]. This
section provides a brief overview of some software packages and methods used for bulk
tumor multi-omics data processing and integration.

2.1.1. Copy Number Variation

Copy number variation (CNV) is a structural variation that is either a duplication
or deletion event affecting a large number of base pairs. Deletions, amplifications, gains,
and losses collectively termed CNVs, are found in all humans and other mammals [45].
The number of CNVs can make up as much as 5–15% of the human genome [46]. CNVs
are a significant source of genomic diversity and driver of somatic and hereditary human
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diseases including cancer. However, compared to single-nucleotide variations (SNVs),
CNVs are still under-investigated, despite their evolutionary significance and clinical
relevance. This is a consequence of the inherent challenges in identifying CNVs in diverse
populations of cells at low-to-intermediate frequencies [47]. Using a recent method of
a fluorescent gene functioning as a single-cell CNV reporter, CNVs are found to occur
frequently and undergo selection with predictable dynamics across independently evolving
replicate populations [47]. CNVs have been applied in the molecular diagnosis of many
diseases and non-invasive prenatal care. Nevertheless, CNVs have not reached their full
potential as emerging biomarkers. Cancer immunotherapy targets, including PD1, PDL1,
CD27, and CD20 have more CNVs than SNVs in NSCLC tumors in The Cancer Genome
Atlas (TCGA) [48]. Tumor mutation burdens are used in cancer management, but not
CNVs. The screening, diagnosis, prognosis, and monitoring of several illnesses, including
cancer and cardiovascular disease, are likely to be significantly impacted by CNVs [49].

Genomic alterations in DNA might interfere with the normal function of the genes.
The genomic instability and structural dynamics of cancer cells require that CNV data be
examined to discover the underlying associations between CNVs, gene/protein expression,
and functional aberrations. Different platforms were used to profile genome-scale CNVs,
including high-resolution SNP arrays (GeneChip Mapping 250K-Nsp array, Affymetrix),
whole-genome tiling path aCGH (BCCRC whole genome tilling path array v2), and whole
exome sequencing (SOLiD 5500xl) [50]. Various CNV data processing methods were
developed as described below.

PennCNV-Affy [51], a Perl/C-based software tool, is the most commonly used method
for CNV calling for data produced with SNP genotyping arrays. The first step is to process
the raw CEL files and generate the signal intensity data. The second step is to split the
signal file generated from step 1 into individual files. After the file splitting is completed,
CNV calls will be generated by PennCNV. The output provides information on the CN
state for each SNP probe. Normally, a CN < 2 indicates a deletion in copy number, and a
CN > 2 indicates a duplication. For the SNP probes located within the same gene, the probe
with the maximum intensity is used to represent the CN state for the gene.

Bioconductor packages CGHbase [52] and CGHcall [53] are often used to call the
CNV in the aCGH data. The log2 normalized ratios of Cy3/Cy5 are used as inputs. In
CGHcall, the number of output classes can be selected among 3 classes (loss, normal, gain),
4 classes (loss, normal, gain, amplification), or 5 classes (double deletion, loss, normal,
gain, amplification).

GISTIC2.0 is a pipeline used to find genes targeted by somatic copy-number alter-
ations (SCNAs) in human cancers [54]. GISTIC2.0 uses an iterative optimization algorithm
to deconstruct each segmented copy-number profile into its most likely set of SCNAs.
Compared with other methods, GISTIC2.0 is advantageous in separating arm-level and
focal SCNAs explicitly by length.

CNV data generated by various platforms provide the corresponding chromosome
location of each SNP. To harmonize the CNV data from various platforms, we can convert
the genome assembly version from earlier versions, such as hg17, to hg38 by using the
Python package CruzDB, a fast and intuitive tool for the UCSC genome browser [55].
Using the latest reference genome is an important step to ensure compatibility in the CNV
data integration.

2.1.2. Categorization of Gene Regulation

Cancer is caused by dysregulated tumor suppressor genes or oncogenes. Due to
genetic mutations or alterations in gene regulation, such genes are switched on or off and
are expressed at abnormally high or low levels in tumor initiation and progression. It is
important to define the up-regulation, normal, and down-regulation ranges by categorizing
the gene expression data generated from high-throughput microarray or RNA sequencing.
Housekeeping genes are generally used to categorize gene expression data.
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Housekeeping genes are essential for the existence of the cell, regardless of their
specific role in the tissue or organism. Housekeeping genes are expressed in all cells of
an organism regardless of conditions (normal or pathophysiological), tissue type, devel-
opmental stage, cell cycle status, or external signals. Unlike in qRT-PCR, housekeeping
genes are not generally used for normalization in RNA sequencing analysis. Therefore, the
variation in gene expression measurements due to different sample preparation techniques
is not accounted for in the RNA expression analysis. A set of stably expressed house-
keeping genes in particular tissue types should be used for the corresponding research.
For instance, a set of housekeeping genes were used for NSCLC [56–60], including ACTB,
B2M, CDKN1B, ESD, FLOT2, GAPDH, GRB2, GUSB, HMBS, HPRT1, HSP90AB1, IPO8,
LDHA, NONO, PGK1, POLR2A, PPIA, PPIH, PPP1CA, RHOA, RPL13A, SDCBP, TBP, TFRC,
UBC, YAP1, and YWHAZ to define the threshold of gene expression level in multi-omics
regulatory network studies [48,61]. Specifically, the total percentage of up-regulated and
down-regulated samples was fixed for all the housekeeping genes to be 30%, and the
average standard deviation of the normal range for the selected housekeeping genes was
calculated. This average standard deviation was applied to all other genes in the genome to
define their normal, up-regulation, or down-regulation ranges [48,61]. “Half SAM score” is
recommended for differential gene expression analysis of data generated from microarrays
and next-generation sequencing (NGS) [62]. DEseq2 is commonly used for fold change and
differential gene expression analysis of NGS data [63].

2.1.3. Categorization of Protein Regulation

Protein expression represents how proteins are synthesized, modified, and regulated
in an organism. The synthesis and regulation of proteins depend on the functional require-
ments in the cell. The blueprint for proteins is stored in DNA and decoded by a highly
regulated transcriptional process that produces messenger RNA (mRNA). The information
encoded by mRNA is subsequently translated into proteins as functional units of biological
processes. Protein expression data generated from AQUA [56] and Nano-LC-MS/MS [64]
are often log-transformed for differential expression analysis and Cox survival modeling.

The up-regulation, normal, and down-regulation ranges of protein expression also
need to be defined, similar to gene expression. In a regulatory network analysis of NSCLC
tumors [64], the categorization of protein regulation was performed by using the normal
range defined with NSCLC housekeeping genes [56–60], including B2M, ESD, FLOT2,
GAPDH, GRB2, HPRT1, HSP90AB1, LDHA, NONO, POLR2A, PPP1CA, RHOA, SDCBP, and
TFRC, based on their protein expression in NSCLC tumors and non-cancerous adjacent
tissues in Xu’s cohort [65]. The total percentage of up-regulated and down-regulated
samples was fixed for all the housekeeping proteins, and the average standard deviation
of the normal range for the selected housekeeping proteins was calculated and applied to
all other proteins in the genome to define their normal, up-regulation, or down-regulation
ranges [64].

2.2. Single-Cell Muti-Omics Data Processing

Each cell type has its distinct function. The single-cell analysis allows the study
within a cell population to reveal how cell networks function [66,67]. Ginkgo [68] is an
open-source web-based platform for single-cell CNV analysis. Single-cell transcriptomics
simultaneously measures the gene expression level of individual cells in a given popu-
lation [69]. Single-cell whole-genome analyses by Linear Amplification via Transposon
Insertion (LIANTI) can generate sufficient DNA for next-generation sequencing [70]. In
processing the single-cell gene expression data from Illumina HiSeq 2000, gene features
are counted with the featureCounts method [71] based on the Gencode v19 transcriptome
annotation. In processing the data from Illumina HiSeq 4000, the reads are mapped with
STAR aligner [72] based on human genome reference GRCh38, and SAMtools [73] is used
to sort and index the mapped reads.
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The dropout phenomenon, i.e., the RNA in the cell is not detected due to limitations
of current experimental protocols, is severe in single-cell transcriptomic data. As a result,
a large number of genes are expressed with a value of 0 in many cells. This makes it
difficult to classify single-cell gene expression as in bulk tumors, and the housekeeping
gene technique described above cannot achieve usable results. Thus, single-cell gene
expression data is generally classified into two categories, “not expressed” for genes with a
feature count of 0, and “expressed” for genes with a future count greater than 0 in regulatory
networks [74]. DEsingle [75] in Bioconductor is a common method for single-cell differential
expression analysis.

3. Common Systems Biology Software and Data Resources
3.1. Pathway Analysis

Molecular pathway analysis is important to translate multi-omics analysis to drug
discovery [76]. Once a list of genes is identified from a study, gene set enrichment analysis
can be performed to examine the relevant biological processes and canonical pathways.
Enrichment is the process of classifying genes according to a priori knowledge. The
following tools are used for pathway analysis.

GSEA is an online tool to evaluate the over-representation of a gene list in a compre-
hensive database MSigDB [77]. The input to GSEA is a gene expression matrix in which
the samples are divided into two sets. All genes are first sorted from largest to smallest
based on the processed differential expressions, which are used to represent the trend of
gene expression changes between the two sets. GSEA analyzes whether all genes in a
gene set are enriched at the top or bottom of a ranked list for a biological process. If they
are enriched at the top, the gene set is considered overall up-regulated in this biological
process. Conversely, if they are enriched at the bottom, this gene set is considered overall
down-regulated in this biological process.

ToppFun in ToppGene Suite is a one-stop portal for enrichment analysis and candidate
gene prioritization based on functional annotations and protein interaction networks [78].
ToppFun provides enrichment analysis of pathways, gene families, cytobands, drugs,
diseases, etc. The input to ToppFun is a list of genes. The outputs include significant
functional enrichment results with information such as p-values, FDRs, etc.

Qiagen Ingenuity Pathways Analysis (IPA) is an online pathway analysis tool incorpo-
rating curated molecular interactions and their involvement in diseases with confirmed
information retrieved from scholarly publications. Using these data, it is possible to map
interactions among a list of genes in various pathological conditions, such as cancer and
immunological diseases.

Adviata iPathwayGuide computes the over-representation of an input gene list in a
pathway or disease using Fisher’s method. Multiple hypothesis testing is applied using
FDR or Bonferroni corrections. The enrichment analysis utilizes pathways and diseases
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [79,80], gene on-
tologies (GO) from the Gene Ontology Consortium database [81], and miRNA-mRNA
target pairs from the miRBase and MICROCOSM databases [82]. Experimentally confirmed
microRNA targets can be retrieved from TarBase [83].

3.2. Proliferation Assays

Cancer cells have high rates of cell division and growth, and are very prolific. The
DepMap portal provides genome-scale CRISPR-Cas9/RNA interference (RNAi) screen-
ing data in Cancer Cell Line Encylopedia (CCLE). The dependency scores in CRISPR-
Cas9 [84] knockout and RNAi [85] knockdown screening data measure a gene’s impact
on proliferation. Essential genes significantly impact the cellular growth in a cell line in
knockout/knockdown assays; otherwise, they are defined as nonessential. Gene knock-
out/knockdown effects, represented with dependency scores, are normalized such that the
median dependency score of the non-essential genes is 0, and the median dependency score
of the essential genes is –1 in each cell line. Negative dependency scores indicate the cancer
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cell line growth is highly dependent on the gene; positive dependency scores indicate
the cell line grows faster after the gene is knocked out or knocked down. A normalized
dependency score less than –0.5 is considered a significant effect in CRISPR-Cas9 knockout
or RNAi knockdown.

The current single-cell technologies, including single-cell sequencing and CRISPR-
Cas9/RNAi screening, have not been widely adopted. Recent studies explored editing
immune cells using CRISPR-Cas9 [86–89]. Nevertheless, there is a lack of single-cell genome-
scale CRISPR-Cas9/RNAi screening data for broad research and clinical applications.

3.3. Stromal and Immune Infiltration and Cell Activity

The extracellular matrix, soluble chemicals, and tumor stromal cells constitute the
tumor microenvironment. The formation of the tumor microenvironment will result in the
chemotaxis of numerous immune cells (e.g., macrophages, T cells, etc.) that form part of the
tumor microenvironment. In the tumor microenvironment, immune cells and stromal cells
are the two main non-tumor components, which are of great potential for cancer diagnosis
and prognosis assessment.

The Estimation of STromal and Immune cells in MAlignant Tumours (ESTIMATE) [90]
predicts tumor purity and infers the stromal and immune infiltration in tumor tissues.
The function estimateScore of the ESTIMATE package in R computes the stromal score and
immune score in each sample using transcriptomic data.

The xCell tool [91] predicts the levels of 64 immune and stroma cell types based on
gene expression data. The xCell scores for patient samples can be calculated using single-
sample gene set enrichment analysis (ssGSEA) to analyze the immune microenvironment.
Low xCell scores indicate the cell type has similar levels across all samples; whereas high
xCell scores indicate the cell type has different levels across all samples.

TIMER 2.0 [92–94] and CIBERSORTx [95] are comprehensive resources for systemati-
cally analyzing the immune infiltration in tumors. They provide the abundance of immune
infiltration estimated by a variety of immune deconvolution methods. TIMER 2.0 [92–94]
and CIBRSORTx [95] compute the association of gene expression and immune infiltration
in multiple cell types including myeloid dendritic cells, macrophages, neutrophils, CD4+
T cells, CD8+ T cells, B cells, etc. using a variety of immune deconvolution methods.
Microenvironment Cell Populations-counter (MCP-counter) [96] quantifies the absolute
abundance of eight immune and two stromal cell populations in heterogeneous tissues
using transcriptomic data. MCP-counter estimates immune infiltrates across healthy tissues
and non-hematopoietic tumors in human samples.

3.4. Drug Discovery and Repurposing

LINCS L1000 Connectivity Map (CMap) [26,27] provides an online tool to identify
functional pathways and drugs based on gene expression signatures of up-regulated or
down-regulated genes. CMap incorporates over 1.5M transcriptomic profiles from the
treatment of ~5000 small molecules and ~3000 genetic reagents in multiple cell types.
A hypothesis is considered valid for further investigation with a p-value < 0.05 and a
connectivity score > 0.9. The selected compounds can be further analyzed with the drug
screening data to discover potential repositioning drugs [48,61,74].

Drug screening data from PRISM [97] and GDSC1/2 [98–100] datasets contain drug
activity data in CCLE. Multiple doses were tested for each drug. Cell lines are considered
resistant to a drug if the IC50 or EC50 values are higher than the maximum dose; cell lines
are considered sensitive to a drug if the IC50 or EC50 values are lower than the minimum
dose. Using the mean ± 0.5 standard deviations of the drug sensitivity measurements,
the remaining cell lines can be categorized into three groups, including sensitive, partial
response, or resistant [101,102]. This in vitro drug sensitivity categorization is correspond-
ing to RECIST 1.1 (i.e., complete response, partial response, and stable disease/disease
progression) in evaluating therapeutic responses in patient solid tumors [103].
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4. Common Approaches to Molecular Network Inference

Molecular networks have been widely used to understand multicellular functions
in disease [104] and elucidate drug response from modulators to targets [105]. Artificial
intelligence/machine learning methods are needed to construct multi-omics genome-scale
networks. This section reviewed common approaches for network inference in terms of
computational efficiency, scalability, and accuracy.

4.1. Relevance Networks

Relevance Networks mainly construct gene regulatory network (GRN) models by
calculating the associations between genes. This method considers that genes with similar
expression profiles may interact with each other and therefore may have similar func-
tions [106]. If the expression value of gene A is increased and the expression value of gene
B is simultaneously increased or decreased, the relationship between the two genes can be
detected and modeled. The regulatory relationship can also be inferred by the transcrip-
tional dependence between them. The main idea of the correlation detection method is that
for a predetermined threshold if the association between genes is higher than the threshold,
the genes will be connected by edges in the network. Two genes are more related if they
have the same or similar regulatory mechanisms, especially for target genes of the same
transcription factor or genes on the same biological pathway. The relevance between genes
can be inferred with the following metrics.

4.1.1. Pearson Correlation Coefficient (PCC)

PCC [33] is a linear correlation coefficient, which reflects the degree of linear correlation
between two variables. Let X and Y be two random variables, PCC(X, Y) is defined as:

PCC(X, Y) =
∑i
(
Xi − Xi

)(
Yi −Yi

)√
∑i
(
Xi − Xi

)2 ×
√

∑i
(
Yi −Yi

)2
(1)

where Xi, Yi are the mean values of X and Y, respectively. PCC(X, Y) takes values between
−1 and 1. When PCC(X, Y) is −1 or 1, it means that the two variables are completely
correlated; when PCC(X, Y) is 0, the two variables are linearly uncorrelated. Figure 1
shows a simple example of constructing a network model using PCC.
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Figure 1. Constructing a relevance network using Pearson Correlation Coefficient (PCC).

Weighted gene correlation network analysis (WGCNA) is a typical method for con-
structing gene co-expression regulatory networks with PCC [107], where genes are first
divided into clusters using hierarchical clustering, and highly co-expressed genes in each
cluster are connected by correlation values. Genomic networks are established after the in-
terrelationships of every pair of genes have been determined. Various correlation networks
have been implemented for multi-omics analysis. MiBiOmics [108] implements WGCNA in
R as a Shiny app for multi-omics network analysis and visualization. OmicsAnalyst [109]
system models correlation networks and is hosted on Google Cloud. CorDiffViz [110] is
an R package to construct and visualize multi-omics differential correlation networks. In
addition to Pearson’s correlation, CorDiffViz utilizes rank-based correlation metrics coping
with non-Gaussian observations commonly present in omics data for more robust infer-
ences of differential correlations. The outputs are automatically saved to a local directory
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by calling a single R function viz() with some specified parameters. The users can then
visualize the results by opening the HTML file in a browser.

Since PCC only needs to calculate the similarity of expression profiles between genes,
it has the advantage of low computational time and space complexity. It is therefore able to
cope with large-scale data and can be applied to both continuous and discrete data, but
not categorical data. Since PCC can only measure the linear relationship between nodes,
it is only capable of analyzing genes with similar expression profiles. Moreover, PCC is
vulnerable to noise and random perturbations, which makes it inaccurate and less robust.

4.1.2. Gaussian Graphical Models (GGM)

GGM is an undirected probabilistic graphical model that assumes gene expression
data follow a multidimensional normal distribution. A partial correlation coefficient matrix
between genes is first calculated, and then the edges of the network are selected by testing
whether each element of the partial correlation coefficient matrix is significantly different
from zero.

For a network containing n genes with expression levels denoted as x1, x2, . . . , xn,
assuming the genes are joint normally distributed, the partial correlation coefficient is:

ρij = Corr
(

xi, xj

∣∣∣x−(i, j)

)
(2)

where x−(i, j) = {xk|1 ≤ k 6= i, j ≤ n}. ρij 6= 0 means the two genes are conditionally
dependent so that there is an edge between them. The partial correlation coefficient can be
expressed as the inverse of the covariance matrix as follows:

ρij = −
σij
√
σiiσjj

(3)

where σij is the element of the inverse covariance matrix. However, if the number of genes
n is large but the sample size is small, the covariance matrix cannot be obtained. To avoid
the calculation of the covariance matrix, some methods were proposed based on low-order
partial correlation analysis [111–113].

The advantage of GGM is that it can eliminate a lot of indirect connections between
genes to facilitate further analysis. The disadvantages are (1) the edges of the network it
constructs are undirected and cannot infer causality, and (2) the static model cannot reflect
the dynamic behaviors in GRNs.

4.1.3. Mutual Information (MI)

To improve the limitations of correlation coefficients in association-based methods,
information theory-based methods have been proposed for the construction of GRNs. Mu-
tual information (MI) [114] is usually used to describe the statistical correlation between
two systems or to reflect the amount of information embedded in one system about the
other system using entropy [115,116]. According to the definition of entropy in information
theory, the mutual regulatory information between genes can be analyzed from an informa-
tion theory point of view, and the gene expression information can be quantified by using
the Shannon evaluation of information entropy [117]. The entropy of a gene expression
pattern is a measure of the information contained, and the model describes the association
of genes in terms of entropy and mutual information.

The entropy of a gene expression pattern X is a measure of the amount of information
it contains and is calculated as:

H(X) = −∑
x

p(x) log2 p(x) (4)
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where p(x) is the probability of X = x. The larger the entropy value, the more the gene
expression level tends to be randomly distributed. Let p(x, y) be the joint probability when
X = x and Y = y, then the joint entropy of X and Y is defined as:

H(X, Y) = −∑
x

∑
y

p(x, y) log2 p(x. y) (5)

From this, we can obtain the MI of the random variables X and Y as:

MI(X, Y) = H(X) + H(Y)− H(X, Y) (6)

A high MI indicates a close relationship between two genes and a low MI indicates
their independence [118]. To construct a gene association network, the MI is used to
(1) calculate the degree of association between all gene pairs, (2) define the existence of
associations between gene pairs that pass the pre-set threshold, and (3) to connect these
gene pairs with edges [119].

MI is a widely recognized metric for quantifying statistical association [120]. The
most important advantage of MI is its ability to infer nonlinear relationships between
genes accurately and efficiently [121–123]. Secondly, MI can handle large-scale data with
a limited sample size [124–126]. The disadvantage is that MI may overestimate the inter-
action relationships between genes and the constructed networks tend to contain many
false-positive edges. To reduce the false positive edges, the influence of other genes can
be analyzed and eliminated when calculating the association degree of two genes, i.e.,
Conditional Mutual Information (CMI). CMI was introduced to delete these false positive
edges [118,127]. However, CMI appears to underestimate the regulatory relationships
between genes in some cases, increasing false negative network edges. To address these
problems, Zhang et al. [128] proposed the CMI2NI algorithm, which reduces this error by
introducing the concept of relative entropy by calculating the Kullback-Leribler divergence.

The association network model can only obtain whether two genes are associated
or not, but cannot infer the specific regulatory relationship. To distinguish direct and
indirect effects, various optimization methods based on information theory have been
proposed. The Algorithm for the Reconstruction of Accurate Cellular Networks (ARCANE)
by Margolin et al. [121] employs an information theory-based approach to constructing
association networks by using the Data Processing Inequality (DPI) constraint. If the data
processing imbalance exceeds a certain threshold, ARCANE evaluates all possible gene
triplets and prunes the least significant edge in each triplet with the smallest MI among the
corresponding genes. ARACNE is a relatively conservative network construction method
that retains the majority of edges inferred from the network. The Context Likelihood of
Relatedness (CLR) algorithm [111] proposes an adaptive background correction step to
remove erroneous correlations. CLR estimates paired MI values for all gene pairs and
then converts the MI values into z-scores for comparison with the sample distribution to
estimate the statistical possibility of the specific gene pair. Maximum relevance/minimum
redundancy (MRMR) used by MRNET [129] can infer gene interactions. The MRMR
algorithm is used to choose the ideal subset of regulators, which initially treats one gene as
the target gene and the rest genes as its potential regulators. C3NET [130] retains only the
core causality of the network, i.e., only the MI of the gene pair that is higher than the MI
with any other gene in the genome for both genes, and then the connection between these
pair of genes will be established.

MI constructs undirected networks, and most applications require known gene regula-
tion to assume the directionality between genes. Therefore, the wide use of such methods
is limited by the available a priori information of the data.

4.2. Bayesian Belief Networks (BBNs)

The Bayesian belief network (BBN) model is a probabilistic graphical model describing
the conditional structural independence between random variables and is used to construct
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networks by establishing a joint probability distribution of nodes using the Bayesian
theory. The concept of the probabilistic graphical model was first proposed and applied
to intelligent systems [131–133]. Hartemink et al. [134] proposed Bayesian network-based
GRN models around 2000. The Bayesian theory was combined with graph theoretic models
to quantitatively model the general properties of gene regulation [135].

Learning the BBN structure from data is all about finding a network that fits best to
a given dataset. Suppose B1, B2, . . . , Bn denote random events in the sample space and
P(Bi) can be estimated based on previous data analysis or prior knowledge, then P(Bi)
is said to be the prior knowledge; the probability of Bi occurring in the case of event A
is the posterior, i.e., P(Bi|A). As the sample information keeps changing, the posterior
probabilities are constantly updated. The previous posterior probability will be used as
the prior probability when obtaining the new posterior probability. This is a process of
constant updating and iterative adjustment.

A BBN consists of two parts: the network structure and the conditional probability
distribution, which can be defined as a binary group: B = (G, P). G = (N, E) is a Directed
Acyclic Graph (DAG) [136]. N is the set of nodes, and each node Xi can be regarded
as a variable taking discrete or continuous values. E is the set of directed edges, and
each edge represents a directed probabilistic dependency between two nodes. The degree
of dependency is determined by the conditional probability. P is a set of conditional
probability distributions: P = {P(Xi|parent(Xi)) : Xi ∈ N} [137], where parent(Xi) is
the parent nodes of Xi in graph G. The edge pointing from Xi to Xj indicates that Xi is
the parent node of Xj. The Markov assumption is implicit in BBNs that the probability of
each node is related to its parent node only, i.e., each node is independent of its non-child
nodes when the parent nodes are known [138]. Based on this conditional independence
property, by applying the chain rule of probability and conditional independence, the joint
probability distribution of the specified settings in the Bayesian network G can be expressed
in the form of a product:

P(XI , X2, . . . , Xn) =
n

∏
i=1

P(Xi|parent(Xi)) (7)

The BBN model can describe the state of a gene in both discrete and continuous data,
which provides an intuitive and simple way to understand and present GRNs. Figure 2
depicts an example of a discrete BBN. According to Equation (7), the probability that
the state of all three (A, B, and C) nodes are 1 is: P(A = 1, B = 1, C = 1) = P(B = 1)×
P(A = 1|B = 1)× P(C = 1|A = 1, B = 1) = 0.6× 0.7× 0.7 = 0.294.
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Figure 2. Example of a discrete Bayesian network.

The usage of BBNs requires the computation of conditional probabilities between child
nodes and all their possible parent nodes, which grows exponentially in computational
time as more variables are incorporated. It has been shown that finding the optimal graph
for BBNs is an NP-hard problem [139], which poses a tremendous challenge to constructing
complete gene regulatory networks for higher organisms such as humans [140]. To solve
this problem, Campos et al. [141] proposed a method based on structural constraints that
can reduce the search space by inferring the maximum number of potential parents of a
node. Liu et al. [142] designed the Local Bayesian Networks model by (1) first constructing
the initial graph with mutual information and conditional mutual information, (2) then
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splitting the initial network by the K-nearest neighbors algorithm to reduce the search space,
(3) using Bayesian networks to build small the sub-networks, and (4) finally integrating the
generated sub-networks.

BBNs can process random data, fuse different types of data and prior information to
introduce a suitable network structure, and can handle incomplete noisy data and hidden
variable data [143]. The BBN model is highly interpretable and the results are accurate, but
it is computationally complex. Hence, it is less capable of handling large-scale data and
needs to develop appropriate methods to reduce the search space. When applied to GRNs,
BBNs consider the noise of the gene expression data itself as well as the stochastic nature
and allow the use of Bayesian theory to incorporate some a priori biological knowledge,
such as heterogeneous information [137], in deciding gene relationships.

CBNplot [144] is an R package that uses biological pathway information curated by
enrichment analysis to construct and visualize BBNs. The structural inference in CBNplot
is based on the bootstrap method of the R package bnlearn, which uses preprocessed gene
expression data to infer BBNs, and uses eigengene as the expression value for pathway
inferences. The results of the CBNplot highlight the interactions between genes and
pathways through knowledge mining and visualization. CBNplot can be installed in R
through devtools. The algorithms in the R package bnlearn are implemented with C++ in
BayesNetty [145,146]. Networks are drawn with the igraph R package. TETRAD IV [147] is
another implementation of BBNs.

There are major limitations of BBNs. First, BBNs identify regulatory networks as
directed acyclic graphs (DAG) that do not include feedback loops. Second, BBNs do not
take into account the dynamics of regulatory relationships [133], although feedback loops
and dynamics are very important features of regulatory networks.

4.3. Dynamic Bayesian Networks (DBNs)

To capture the dynamic characteristics in GRNs and the information on loop interac-
tions between genes, dynamic Bayesian networks (DBN) were proposed to consider the
time-delayed nature of gene regulation and incorporate the dimension of time information
in BBNs. The value of a random variable in DBN is determined by the previous time point,
and DBN is the transformation process of the random variables at all possible random
discrete points [148,149]. The DBN structure is modeled at discrete time points t. Similar to
the assumption of the BBN, if Xt is the expression of n genes at time points t, the DBN can
be described as:

P(Xt|Xt−1) =
n

∏
i=1

P(Xi, t|parent(Xi, t)) (8)

where Xi, t is the expression value of the gene Xi, on time slice t, and parent(Xi, t) is the set
of its parent nodes. Figure 3A represents a static BBN and Figure 3B represents a DBN. In
the static BBN (Figure 3A), the loop A→ B→ C → A is not allowed, but this feedback
mechanism can be represented in the DBN (Figure 3B).
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Smith et al. [150] used the DBN model to analyze microarray data, combining the nega-
tive feedback of gene regulation with the time delay factor, so it is necessary to use different
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nodes in the network to represent the expression of the same gene. Song et al. [151] proposed
a new data integration model on DBN by combining a priori knowledge of the relationship
between microarray data and genes to construct GRNs using parallel algorithms.

4.4. Ordinary Differential Equation (ODE) Based Networks

Differential equation models use continuous variables to describe changes in gene
expression values as a function of other genes and environmental influences, and it cap-
tures the dynamics of GRNs in a quantitative form. The flexibility of differential equation
modeling enables the representation of more complex relationships between components.
Ordinary Differential Equations (ODEs) are often used to model GRNs. Differential equa-
tion models regard the expression level of a gene as a function of time and therefore require
the use of time-series data when constructing a GRN. In the process of using ODE to
construct GRNs, each differential equation represents the relationship between target genes
and their regulatory factors, and the corresponding parameters determine the topology of
the network and the interrelationships between genes. The ODE of GRN is expressed as:

dxi
dt

= fi(x), 1 ≤ i ≤ n (9)

where xi represents the expression level of gene Xi. X1, . . . ., Xn are the n genes that affect
gene Xi, and x = [x1, . . . , xn]

T is their expression levels. dxi
dt represents the rate of change

of the expression level of gene Xi at moment t in the GRN modeling. fi(x) illustrates the
mode of action and the regulatory mechanism between genes, i.e., the structure of the
regulatory network. The function fi(x) can be linear, segmented linear, pseudo linear, or
continuous nonlinear functions. fi(x) in its simplest form is a linear function and can be
expressed as:

dxi
dt

= ∑
j
ωijxj + bi, 1 ≤ i ≤ n (10)

The relationship between the genes in the regulatory network can be expressed by the
parameterωij, for which the activation, repression, and no-regulation relationships take
values of positive, negative, and 0, respectively. bi denotes the basal activity of the gene
Xi. Linear differential problems can be solved using singular value decomposition, least
squares regression, or likelihood-based approaches [152,153].

However, the regulatory relationships in cells are not simply linear [154] and can
be inscribed using nonlinear regulatory functions fi(x). The disadvantage of nonlinear
functions is the computational difficulty and the high computational cost of finding the
solution to the differential equation. Moreover, the number of samples is usually too
small compared to the number of genes, resulting in a non-singular matrix that will have
multiple solutions satisfying the differential equation, which in turn requires the selection
of reasonable model parameters from multiple solutions. Therefore, the search space of
the nonlinear model structure needs to be strictly limited. Sakamoto et al. [155] used
genetic programming to identify small-scale networks by fitting a polynomial function f ;
Spieth et al. [156] used different search mechanisms such as evolutionary algorithms to
infer small networks.

The advantages of ODE modeling are: (1) it is powerful and flexible; (2) it facilitates
the description of complex relationships in GRNs; and (3) it is especially suitable for genes
with periodic expression. ODE models are mathematically well expressed and have great
potential in the analysis of local GRNs. In addition, ODEs can be used to study the effects
on gene expression levels by changing environmental variables, introducing new variables,
etc., and comparing the changes in the weight matrix before and afterward.

The disadvantages of differential equations are: (1) the parameters in the model
are difficult to estimate, and (2) it is hard to obtain a globally optimal solution. In large
networks, the ODE model is limited by sample size requirements, lacks robustness to noisy
data, and does not capture the stochastic information contained in gene expression data
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very well. In the absence of constraints, the ODE system will have an infinite number of
solutions. Therefore, to determine the appropriate ODE model and to perform accurate
parameter estimation, a thorough study of the nature of the f function and the definition of
reasonable constraints based on prior knowledge are required.

4.5. Boolean Networks

The Boolean network model, first introduced by Kauffman in 1969 [157], is a dynamic
discrete model in which the network nodes have synchronous relationships [158]. The
Boolean network model is one of the simplest models to reveal GRNs, which treats genes as
logical elements [159]. Individual genes can be represented by Boolean variables regardless
of whether they are expressed or not. The Boolean network model abstracts the expression
level of a gene by clustering or threshold discretization into two states: on and o f f , the
state “on” indicating that the gene is expressed (or overexpressed state) and the state “o f f ”
indicating that the gene is not expressed (or low expression state). The interactions in
Boolean networks between genes must follow Boolean rules. A Boolean network contains n
nodes (representing genes in GRNs) in the repressed or expressed states (i.e., 0 or 1), which
are connected by the logical operators “and”, “or”, and “not” [160]. The expression level of
a given gene is obtained by a Boolean function on the expression levels of multiple genes
associated with that gene, and the states of all genes are updated using a synchronous
update mechanism. The challenge of Boolean network construction for GRN lies in finding
the appropriate Boolean function for each gene so that the model can accurately interpret
the observed data.

A Boolean network is a directed graph, denoted by G(N, E), E is the set of directed
edges, where each node Xi ∈ N is determined by a function. The next state at t + 1 of the
network can be represented by all inputs and the functions of the nodes at a time point t:

Xi(t + 1) = Bi[X1(t), . . . , Xn(t)] (11)

Xi(t) represents the expression level of gene i at moment t. The function Bi represents
the Boolean function of the whole network for gene i. The interaction relationship between
genes is represented by Boolean functions, and Boolean rules are expressed in the form
of truth tables. Figure 4A depicts a simple Boolean network G(N, E), and Figure 4B
represents the state transition corresponding to the linkage graph G′(N′, E′) of Figure 4A.
The truth table of this network is shown in Figure 4C.
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Boolean networks simplify the actual GRNs, providing a framework to describe the
complex interactions between genes in GRNs in a biological context. Boolean networks
emphasize the underlying global network rather than a quantitative biochemical model.
Boolean functions can find possible gene interaction relationships, which can be used as a
basis for modeling real gene regulatory networks.

The disadvantage of Boolean networks is their imprecision. Boolean networks can
only be represented as a crude qualitative model that portrays the interactions between
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genes by combining fixed logical rules. It is difficult to accurately describe the real GRN
enumerating all possible logical operations, so the Boolean network can only be used
as the basis for modeling the real GRN. The update of the network state in the Boolean
model is synchronous. However, biological networks are typically asynchronous. Boolean
network modeling discretizes gene expression levels into two simple values. However,
in real biological systems, gene expression is not a simple state, but continuous. When
discretizing gene data, it will inevitably result in the loss of many important expression
information [161], which can largely affect the accuracy of the model. Moreover, gene
expression regulation should have at least three states: up-regulated, normal, or down-
regulated, and its discretization is a difficult process. The setting of the threshold is crucial
to determine the state of the node, and errors in the threshold setting will directly lead to
changes in the gene state. It in turn will lead to inaccurate inferences, which is a common
drawback of discrete models.

Liang et al. [162] first proposed to predict possible GRN structures from gene ex-
pression data using Boolean networks and developed a Boolean network-based software
Reverse Engineering Algorithm (REVEAL) by considering the information entropy between
nodes to help build the network structure. Kim et al. [163] proposed to utilize chi-squared
tests to eliminate uncorrelated edges between nodes to accelerate the search for the optimal
network structure. Due to the stochastic nature of biological systems and the noise con-
tained in gene expression data, Boolean networks as deterministic models are not able to
capture network regulatory relationships accurately. To solve this problem, a combination
of the Boolean network and Markov chain was developed into the Probabilistic Boolean
Network (PBN) model [164], which is a more flexible topology that adds stochasticity to the
original network and can better handle the uncertainties among genes in the probabilistic
framework. Boolean networks can be combined with MI to infer the structural and dynamic
relationships between genes for time-series data [165]. The Single Cell Network Synthesis
toolkit (SCNS) [166] is a computational tool for reconstructing and analyzing executable
models from single-cell gene expression data. SCNS constructs a state transition graph of
binary expression profiles using single-cell qPCR or RNA sequencing data acquired over
the entire time course. An asynchronous Boolean network model is built by searching for
rules that drive the transition from early to late cell states and thus reconstructing Boolean
logical regulatory rules.

4.6. Boolean Implication Networks

The Boolean implication is the logical relationship between two Boolean variables,
where the state of one variable can imply the state of the other variable. Boolean implication
networks were first proposed by Sahoo et al. in 2008 [167] for building genome-wide
gene relationship networks based on microarray data. The nodes in Boolean implication
networks are genes and the edges are implication relationships. The implication is an if-then
rule. For example, “if gene A is expressed high, then gene B is expressed high” which can be
also expressed as “A high implies B high”. The Boolean implication network automatically
sets a separate threshold for each gene, which is used to classify the expression of a gene as
“low” or “high”. Then, the Boolean implications will be identified between each pair of
genes in the whole genome.

There are six possible Boolean relationships in the Boolean implication network, includ-
ing four asymmetric relationships: “A high⇒ B high”, “A high⇒ B low”, “A low⇒ B high”,
and “A low⇒ B low”; two symmetric relationships: if “A high⇒ B high” is accompanied
by “B high⇒ A high”, then gene A and gene B are “Boolean equivalent”, if “A high⇒ B
low” and “B high⇒ A low” at the same time, then gene A and gene B are “opposite”.

The process of establishing Boolean connections between two genes A and B is shown
in Figure 5. First of all, each gene has a threshold t derived using the StepMiner algo-
rithm [168], and the interval of t± 0.5 is called “intermediate” (the gray areas in Figure 5).
The values in the “intermediate” area may be misclassified, so the values in the “inter-
mediate” range do not participate in the network creation process. Next, among the four
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quadrants consisting of high-low expressions of gene A and gene B, we need to check which
one is significantly sparser than the other quadrants. The sparsity can be calculated using
the statistic and error rate (Equations (12) and (13)). For example, we want to detect the
sparsity in quadrant IV (i.e., A high B low) and thus infer the implication rule of A high⇒ B
high. Let aI , aI I , aI I I , aIV be the number of values in each quadrant.

total = aI + aI I + aI I I + aIV

nA high = aI + aIV

nB low = aI I I + aIV

expected =
nA high + nB low

total
observed = aIV

statistic =
expected− observed√

expected
(12)

error rate =
1
2

(
aIV

aIV − aI
+

aIV
aIV + aI I I

)
(13)
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Figure 5. Example of a Boolean implication rule. (A). Inducing an implication rule based on quadrants
of the categorized expression levels of gene A and gene B. The intermediate areas in gray are removed
from the implication rule induction. (B). Six specific implication rules connecting gene A and gene B.

If quadrant IV has a calculated statistic greater than 3.0 and an error rate less than
0.1, we will consider that rule A high⇒ B high as significant. After the whole genome,
pairwise Boolean implication rules were generated, and the Boolean Implication network
was built.

Sinha et al. [169] applied the Boolean implication on mutation, copy number, methy-
lation, and gene expression data. Their results indicated that a large number of Boolean
implications exist in the data that could not be detected by other methods. Further analysis
using GSEA showed that the genes obtained through their Boolean implications also have
biological significance. Their analysis showed that Boolean implications could be used for
finding genes whose expression was regulated by copy number variations or DNA methy-
lation changes. In the work of Çakır et al. [170], the combination of Boolean implication
analysis with SOM metadata found relationships between genes, metagenes, and similarly



Cells 2023, 12, 101 16 of 33

behaving metagene groups, and provided a more general and functional module-oriented
view of the data.

The advantages of the Boolean implication networks are: (1) it can indicate the biologi-
cal mechanisms between the pair of associated genes; (2) it is a directed graph in that each
gene pair have a causal relationship with each other; and (3) it can incorporate feedback
loops in the network. The disadvantage of these Boolean implication networks is all the
gene variables have to be binary. Genes with an expression level in the “intermediate”
range that is not up-regulated or down-regulated are removed from the analysis. Similarly,
genes with normal copy numbers are also removed in the Boolean implication network
modeling. This will result in considerable data loss and incomplete representation of
real GRNs.

4.7. Prediction Logic Boolean Implication Networks (PLBINs)

We developed Boolean implication networks [171,172] based on prediction logic [173].
Using this algorithm, Boolean implication networks are inducted with logic rules connect-
ing two binary variables. A contingency table is created for each pair of genes (Figure 6).
The cells in the contingency table show the count of samples in each situation. There are
six possible Boolean implication rules, and the count of error cells for each implication
rule is used to calculate the precision and the scope to select the implication rules. The
implication rules and their corresponding error cells are shown in Figure 6. The scope
Up and precision ∇p for implication rule between nodei and nodej are calculated with the
following equations:

Up = Uij =
Ni. × N.j

N2 (14)

Up = ∑
i

∑
j

ωij ×Uij (15)

∇p = ∇ij = 1−
Nij

N ×Up
(16)

∇p = ∑
i

∑
j

ωij ×Uij

Up
×∇ij (17)

Cells 2022, 11, x FOR PEER REVIEW 17 of 34 
 

 

𝑈𝑝 = 𝑈𝑖𝑗 =
𝑁𝑖. ×  𝑁.𝑗

𝑁2
 (13) 

𝑈𝑝 = ∑ ∑ 𝜔𝑖𝑗 × 𝑈𝑖𝑗

𝑗𝑖

 (14) 

𝛻𝑝 = 𝛻𝑖𝑗 = 1 −
𝑁𝑖𝑗

𝑁 × 𝑈𝑝

 (15) 

∇𝑝= ∑ ∑
𝜔𝑖𝑗 × 𝑈𝑖𝑗

𝑈𝑝

× ∇𝑖𝑗

𝑗𝑖

 (16) 

Equations 14 and 16 are for multiple cells, where 𝜔𝑖𝑗 = 1 for error cells, otherwise, 

𝜔𝑖𝑗 = 0. To select the implication rules, thresholds for precision and scope are defined by 

the one-tailed z-tests based on the sample size and a preset z value. If a rule has the highest 

scope and precision amongst all six rules, and the scope and precision are greater than the 

thresholds, this implication rule will be considered a significant rule. The z value used for 

network construction is at least 1.645 (95% confidence interval, α = 0.05, one-tailed z-tests). 

 

Figure 6. Contingency table of the Boolean implication rule and their corresponding error cells in 

prediction logic. 

The use of error cells enables the analysis of multivariate data in Boolean implication 

networks. The computational complexity of constructing genome-scale networks is O(n2), 

where n is the number of genes. Our PLBINs can model cyclic relations including feedback 

loops. PLBINs have been applied in modeling multi-omics [48,61,64] and single-cell [74] 

networks for the discovery of prognostic biomarkers and therapeutic targets in NSCLC.  

4.8. Neural Networks 

As an important branch in the field of machine learning, neural networks have been 

applied to systems biology and bioinformatics [174–176]. The relationships between genes 

and other gene products are often so complex for simple linear models to capture. Inspired 

by the animal central nervous system, neural networks are an effective mathematical 

model to learn multilayered complex patterns in linear and nonlinear functions. These 

advantages allow them to capture data features well and meet the requirements of higher 

accuracy in modeling multi-omics GRNs. 

Neural Networks consist of multiple layers of neurons that are connected with other 

neurons in their preceding and succeeding layers. These neurons form three basic types 

of layers: the input layer, hidden layer, and output layer. A basic structure of the neural 

network is shown in Figure 7. The neural network model passes the feature representation 

of each level to the next level of unit modules by combining some simple nonlinear unit 

modules. By combining such nonlinear modules, neural networks can automatically ex-

tract higher and more abstract features from the original data and portray a more detailed 

Figure 6. Contingency table of the Boolean implication rule and their corresponding error cells in
prediction logic.

Equations (14) and (16) are for multiple cells, where ωij = 1 for error cells, otherwise,
ωij = 0. To select the implication rules, thresholds for precision and scope are defined by
the one-tailed z-tests based on the sample size and a preset z value. If a rule has the highest
scope and precision amongst all six rules, and the scope and precision are greater than the
thresholds, this implication rule will be considered a significant rule. The z value used for
network construction is at least 1.645 (95% confidence interval, α = 0.05, one-tailed z-tests).

The use of error cells enables the analysis of multivariate data in Boolean implication
networks. The computational complexity of constructing genome-scale networks is O(n2),
where n is the number of genes. Our PLBINs can model cyclic relations including feedback
loops. PLBINs have been applied in modeling multi-omics [48,61,64] and single-cell [74]
networks for the discovery of prognostic biomarkers and therapeutic targets in NSCLC.
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4.8. Neural Networks

As an important branch in the field of machine learning, neural networks have been
applied to systems biology and bioinformatics [174–176]. The relationships between genes
and other gene products are often so complex for simple linear models to capture. Inspired
by the animal central nervous system, neural networks are an effective mathematical model
to learn multilayered complex patterns in linear and nonlinear functions. These advantages
allow them to capture data features well and meet the requirements of higher accuracy in
modeling multi-omics GRNs.

Neural Networks consist of multiple layers of neurons that are connected with other
neurons in their preceding and succeeding layers. These neurons form three basic types
of layers: the input layer, hidden layer, and output layer. A basic structure of the neural
network is shown in Figure 7. The neural network model passes the feature representation
of each level to the next level of unit modules by combining some simple nonlinear unit
modules. By combining such nonlinear modules, neural networks can automatically extract
higher and more abstract features from the original data and portray a more detailed biolog-
ical data structure, which can provide modeling for complex nonlinear systems [177,178].
Neural networks introduce nonlinear factors through activation functions such as the Relu
function, Sigmoid function, and Tanh function.
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Alipanahi et al. [179] developed the DeepBind framework to predict the sequence
specificities of DNA- and RNA-binding proteins using deep learning models. The DeepBind
framework consists of a convolutional neural network for feature representation learning
and a fully connected prediction module for feature combination, using gradient descent
and backpropagation algorithms to train the model and compute nucleic acid binding
interactions from different datasets. The DeepBind framework can be applied to a wide
range of datasets and can improve the predictive power compared to traditional single-
domain methods.

The Recurrent Neural Network model exhibits strong modeling capabilities with its
nonlinear structure and can adaptively recognize and remember temporal and spatial
patterns, which can more realistically simulate the working processes of real biological
systems. Because of its ability to establish nonlinear and dynamic interactions between
genes, RNN is also a well-established method for deriving GRNs with up to 30 genes [180].

Graph neural networks (GNN), as a generalization of neural networks, are deep
learning architectures that can handle graph and graph-related problems, such as node
classification, link prediction, and graph classification [181,182]. Graph Convolution Net-
works [183], a kind of GNN, migrate the traditional convolutional operations in deep
learning to the processing of graph-structured data and specify them through complex
spectral graph theory derivation. Its core idea is to learn the features of a node in a graph
itself and the features of its neighbors and aggregate them to generate a new mapping of
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functions representing vectors for this node. Wang et al. [184] proposed an end-to-end
gene regulatory graph neural network (GRGNN) to reconstruct GRNs in a supervised and
semi-supervised framework using gene expression data. To obtain better inductive general-
ization, the GRN inference is formulated as a graph classification problem to distinguish
whether a subgraph centered on two nodes contains a link between these two nodes. The
computational complexity to construct GRGNN is exponential of the number (h-hop) of
subgraphs [184]. Single-cell graph neural network (scGNN) was developed to provide
a hypothesis-free deep learning framework for single-cell RNA-sequencing data imputa-
tion and clustering [185]. Major deep learning-based methods in cancer classification and
clustering using multi-omics and single-cell data were benchmarked [186].

The main limitation of neural network-based GRN inference is the requirement of
the training data. The network training requires benchmarks with systematically explicit,
experimentally validated, gold-standard conditioning relationships. On species with com-
plete data, the goal of inference may be easily achieved. However, it is challenging in
constructing genome-scale neural network-based GRN in complex human diseases, such
as cancer. Two problems exist with deep learning modeling of genomic data: (1) the in-
sufficient amount of training data, which affects the model performance, and (2) the high
data dimensionality, which leads to a huge number of model parameters and increases the
training difficulty. In addition, although neural networks are very good at learning complex
tasks, their internal descriptions are generally difficult to interpret, and training deeply
layered models is algorithmically difficult to handle and statistically prone to over-fit.

4.9. Summary of Existing Network Inference Methods

These network methods have many applications in the discovery of biomarkers [187–193]
and therapeutic targets [194–196]. They are implemented in several software packages.
GeNeCK [197] is a web server that allows users to build GRNs from expression data using
different network construction methods, including four partial correlation-based methods:
GeneNet, NS, SPACE, and ESPACE; four likelihood-based methods: GLASSO, GLASSO-SF,
BayesianGLASSO, and EGLASSO; and two mutual information-based methods: PCACMI
and CMI2NI. EGLASSO and ESPACE accept hub gene specification to improve the network
results. There is also an ensemble method, ENA, which does not require choosing or tuning
parameters so it is suitable for most users. ENA provides a p-value for each edge in the
network to indicate its statistical significance. The Weka software (Version 3.8.6) [198]
implements commonly used machine learning methods for classification, including radial
basis function networks and Bayesian belief networks (BBNs). A summary of software
tools for multi-omics processing, pathway analysis, and network inferencing is provided in
Table 1.

Despite the successful applications of these network models in classification and clus-
tering, there are certain limitations in these methods to construct genome-scale GRNs using
emerging multi-omics data. Relevance networks can only measure the linear relationship
between genes and are not robust. Relevance networks cannot model categorical data
such as DNA mutations or CNVs in muti-omics analysis. Bayesian networks have high
computational complexity and can only be used for small and medium-sized data. The
static Bayesian networks cannot represent cyclic relations such as feedback loops. The
parameter learning process of ODE networks is very complex and is limited by data sample
size. Other Boolean (implication) networks can only model binary variables, which do
not present biological states of mutations, CNVs, or gene/protein expression. Neural net-
works are limited by high requirements for sample size and completeness of information in
training data and the exponential complexity of the number of subgraphs, which makes it
infeasible to model genome-scale multi-omics networks for complex human diseases such
as cancer.
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Table 1. Summary of software for multi-omics data processing, pathway analysis, and network
inferencing in bulk tumors and single cells.

Purpose Software

Data Processing

Multi-omics data GATK [43]
Copy number variation PennCNV-Affy [51], CGHbase [52], CGHcall [53], GISTIC2.0 [54]

Single-cell RNA sequencing Ginkgo [68], STAR aligner [72], SAMtools [73], DEsingle [75], scGNN [185]

Pathway Analysis GSEA [77], ToppFun [78], Qiagen IPA, Adviata iPathwayGuide

Stromal and Immune Infiltration and
Cell Activity

ESTIMATE [90], xCell [91], TIMER 2.0 [92–94], CIBERSORTx [95],
MCP-counter [96]

Drug Discovery and Repositioning CMap [26,27]

Network Inferencing Methods GeNeCK [197]

Relevance networks MiBiOmics [108], OmicsAnalyst [109], CorDiffViz [110]

Bayesian networks CBNplot [144], TETRAD IV [147]

Boolean networks SCNS [166]

PLBINs Proprietary

Classification Weka [198] (including neural networks and Bayesian networks)

Our PLBINs overcome the limitations of other methodologies. First, PLBINs can
integrate discrete CNV data and continuous gene/protein expression data seamlessly that
relevance networks cannot. Second, PLBINs can model cyclic molecular interactions that the
acyclic Bayesian networks cannot. Third, PLBINs have a computational complexity of O(n2)
and can efficiently model genome-scale GRNs that Bayesian networks, neural networks,
and ODE networks cannot. Finally, PLBINs can model multinary data with robust statistical
tests, whereas other Boolean networks can only analyze binary variables. This is a major
advantage of PLBINs because there need to be at least three biologically relevant states
without losing important information in categorized CNV (amplification/normal/deletion)
andgene/protein expression data (upregulation/normal/downregulation). Our PLBINs
identified gene signatures that accurately predict the risk of lung cancer risk and tumor
recurrence, outperforming previous studies ones in the same patient data [171,199–201],
meanwhile, revealing more biologically relevant molecular interactions than other network
methodologies in comprehensive evaluation with MSigDB [171,201]. Using our PLBINs,
we developed a seven-gene signature for NSCLC prognosis and prediction of the clini-
cal benefits of adjuvant chemotherapy in early-stage NSCLC patients, including clinical
trials [56]. Our 7-gene signature is unique that it (1) works on all NSCLC histological
subtypes and multiple clinical testing platforms; (2) predicts the risk of tumor recurrence;
and (3) classifies NSCLC tumors from non-cancerous normal adjacent tissues [56,61,64].

The comparative data of our PLBINs and other methods were published previ-
ously [171,201]. The precision and false discovery rate (FDR) of the gene coexpression
networks were evaluated as follows [171]. The validity of computationally derived coex-
pression relations was comprehensively evaluated with five gene set collections (positional,
curated, motif, computational, and Gene Oncology) and canonical pathway databases in the
MSigDB [77]. A coexpression relation was labeled as a true positive (TP) if both genes were
present in the same gene set or pathway in any examined database. A coexpression relation
was labeled a false positive (FP) if the gene pair did not share any gene set or pathway in
all the examined databases. A coexpression relation was defined as non-discriminatory
(ND) if at least one gene in the pair was not annotated in a database [202]. The evaluation
did not include ND coexpression relations as they were not confirmatory. The precision of
a gene expression network was defined as TP/(TP + FP). The precision of our identified
smoking-mediated coexpression networks in NSCLC patient tumors was 100% [171]. To
test the statistical significance of the network precision, the null distribution was gener-
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ated in 1000 random permutations of the class labels in the test cohort. The precision
of our identified smoking-mediated coexpression networks was significant at p < 0.001,
with no TP generated in the random tests. The FDR of gene coexpression networks was
defined as the average of FP/(TP + FP) in 1000 permutations. The FDR of our identified
smoking-mediated coexpression networks in NSCLC patient tumors was 0.0099. In contrast,
Pearson’s correlation networks did not identify any coexpression relations using the same
methodology on the same datasets [171]. In the evaluation of our identified 21 NSCLC
prognostic gene signatures [199] using the NCI Director’s Challenge Study [203], our
PLBINs-derived gene coexpression relations from the training cohort could be successfully
reproduced in both test cohorts with significantly high precision (precision = 1 for 18 gene
signatures) and low FDR (FDR < 0.1) for all 21 gene signatures [201]. As a comparison, the
Bayesian networks implemented in TETRAD IV [147] did not identify any coexpression
relations from the training cohort that were validated in both test cohorts [201]. The Boolean
implication networks by Sahoo et al. [167] did not identify coexpression with many of
the major NSCLC hallmarks, making it infeasible to select marker genes with concurrent
crosstalk with multiple signaling pathways as we did with our PLBINs. In the genome-
scale evaluation, our PLBINs achieved significantly high precision in 1000 random tests
(p < 0.05), whereas the precision of the Boolean implication networks by Sahoo et al. [167]
was not significant in 1000 random tests (p = 0.21) [201]. These results demonstrate that our
PLBINs are more accurate in retrieving biologically relevant gene associations, in addition
to other advantages such as computational scalability and efficiency.

5. Hub Genes in Multi-Omics and Single-Cell Networks

Some hub genes in multi-omics networks were shown to be promising cancer biomark-
ers and therapeutic targets [204,205]. Nevertheless, there were insufficient genome-scale
investigations on multi-omics network hub genes and their biological and clinical relevance
in human cancers. Graph theory centrality metrics can characterize hub genes. Common
metrics include degree centrality (in-degree and out-degree centralities) [206], eigenvector
centrality [207–209], betweenness centrality [210,211], closeness centrality [212–214], and
VoteRank centrality [215]. Degree centrality is simply the total number of neighbors of
each node. The eigenvector centrality of a node is the sum of the centrality of its neigh-
bors. Betweenness centrality is the frequency of a node appearing on the shortest paths
of all node pairs in the entire network. Closeness centrality is the average length of the
shortest paths between the node and all other nodes in the network. VoteRank centrality is
selected with a voting score that is calculated by the sum of all neighbors’ voting abilities.
Degree centrality and eigenvector centrality are also classified as local centrality metrics
because only neighbors of each node are included in the calculation. Betweenness centrality,
closeness centrality, and VoteRank centrality are categorized as global centrality metrics
since the connectivity of the entire graph is used in the metrics computation. These cen-
trality metrics are correlated in many cases [214,216]. A Python package NetworkX [217]
calculates centrality metrics.

A barrier to this systematic evaluation is the limitations of existing computational
methodologies in constructing genome-scale multi-omics GRNs, as summarized above. In
a recent study [218], our PLBINs were used to construct 12 genome-scale GRNs of CNV,
mRNA, and protein expression in NSCLC tumors. Seven centrality metrics were correlated
with NSCLC tumorigenesis measured with T-statics in differential gene/protein expres-
sion between tumors vs. non-cancerous adjacent tissues (NATs), proliferation quantified
with dependency scores from CRISPR-Cas9/RNAi screening of human NSCLC cell lines,
and patient survival with hazard ratios from Cox modeling of The Cancer Genome Atlas
(TCGA) [218]. Hub genes in multi-omics networks involving gene/protein expression
were found to be associated with oncogenic, proliferative potentials and poor patient
survival. Hub genes with higher co-occurrences of CNV aberrations seemed to have
tumor-suppressive and anti-proliferative properties. Regulated genes in hubs were linked
to proliferative potential and worse patient survival, whereas regulatory genes in hubs
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were linked to anti-proliferative potential and better patient survival. Established cancer
immunotherapy targets PD1, PDL1, CTLA4, and CD27 were top hub genes in most con-
structed multi-omics GRNs [218]. These results show that multi-omics network centrality
in bulk tumors can be used in the prioritization of biomarkers and therapeutic targets.

Similarly, our PLBINs [74] were applied to genome-wide transcriptomic profiles of B
cells from tumors and NATs [219], T cells from peripheral blood lymphocytes (PBL) [220],
and tumor-infiltrating T-cell gene expression data of NSCLC patients. In each cell sample,
a gene was defined as expressed (with a feature count > 0) or not-expressed (with a feature
count = 0). The details of single-cell network construction were provided in our previously
published study [74]. The results of five single-cell co-expression networks are shown in
Table 2.

Table 2. Information of single-cell gene co-expression networks. The network nodes are genes and
network edges are computed gene associations (one-tailed z-tests, p < 0.05, 95% confidence interval).

Patient Cohort Network (Number of
Cell Samples)

Number of
Network Nodes

Number of
Network Edges

GSE84789
NATs: B-cell gene

co-expression (n = 96) 13,797 21,474,928

Tumors: B-cell gene
co-expression (n = 96) 13,420 6,298,276

GSE151531
Healthy donors: T-cell PBL

gene co-expression (n = 431) 16,143 5,246,634

NSCLC Patients: T-cell PBL
gene co-expression (n = 92) 11,082 2,138,492

GSE151537 Tumors: T-cell gene
co-expression (n = 2950) 20,171 7,805,674

We examined the centrality metrics of four established immune checkpoint inhibitors
(ICIs), including PD1, PDL1, CD27, and CTLA4. Figure 8 shows the centrality distribution
of the ICIs that were within the top 10th percentile in the constructed networks. PD1 was
ranked as a top hub gene in the T-cell PBL gene co-expression network in healthy donors.
CTLA4 was ranked as a top hub gene in the T-cell PBL gene co-expression network in
NSCLC tumors. CD27 was ranked as a top hub gene in the T-cell PBL gene co-expression
network in NSCLC patients. These results are consistent with their functional involvements
in T-cell immunity. PDL1 was not ranked within the top 10th percentile of any of the
examined centrality metrics in the constructed networks. None of these ICIs were ranked
as top hub genes in B-cell gene co-expression networks in tumors or NATs.

In a previous study, we identified a gene co-expression network missing in NSCLC
tumor B cells using PLBINs [74]. Genes in this network either promote proliferation in
human NSCLC epithelial cells or are indicative of NSCLC patient outcomes at both mRNA
and protein expression levels in bulk tumors. These network genes were associated with
drug response to 10 therapeutic regimens in 135 human NSCLC cell lines. Based on this
single B-cell co-expression network, we discovered tyrosine kinase inhibitor lestaurtinib as
a new drug option for treating NSCLC [74]. Here, we examined if this clinically relevant
single B-cell network had higher average centrality compared with 1000 random networks
with the same number of genes selected from the genome. The results showed that the
previously published B-cell network had significantly higher average centrality (p < 0.05)
than 1000 random networks selected from genome-scale single B-cell networks in tumors
and NATs, single T-cell PBL networks in NSCLC patients and healthy donors, and T-cell
network in NSCLC tumors (Figure 9). These results support the relevance of single-cell
network hub genes in tumor biology.
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Figure 8. Distribution of centrality metrics in single-cell gene co-expression networks with CD27,
CTLA4, or PD1 ranked within the top 10th percentile. Each subplot represented a centrality metric:
(A). Degree centrality; (B). Closeness centrality; (C). Betweenness centrality; (D). VoteRank centrality.
Each violin plot showed the distribution of the centrality metric in one specific network: I. T-cell PBL
gene co-expression network in normal samples. II. T-cell PBL gene co-expression network in NSCLC
patients. III. T-cell gene co-expression network in NSCLC tumors.
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Figure 9. The comparison of centrality metrics of our published single B-cell network vs. randomly
selected networks with the same number of genes. The p values showed the percentage of randomly
selected genes having a higher ranked average centrality metric than the clinically relevant single B-
cell network. Each column in the plot showed a centrality metric: I. Degree centrality; II. Eigenvector
centrality; III. Closeness centrality; IV. Betweenness centrality; V. VoteRank centrality. Each row
represented a single-cell gene co-expression network constructed in normal PBL T cells, NSCLC PBL
T cells, tumor infiltrating T cells, normal B cells, and tumor infiltrating B cells, respectively. NS: not
statistically significant.

Our PLBIN algorithm was written in C and R and was run on Spruce Knob High-
Performance Computing (HPC) Clusters. It took about 67 min for the algorithm to finish
on an HPC node with 4 × 8 Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz 64GB memory 1TB
HDD, in the case of whole-genome network construction which yielded approximately
20 million rules. The program for network centrality metrics calculation was written
in Python. The running time on the HPC cluster node for a multi-omics network with
20 million edges and 12 thousand nodes for each centrality metric was provided in Table 3.
The complexity of each method and the actual running time were consistent as shown in
Table 3.

A summary of concordant significant correlations between multi-omics network cen-
trality and tumorigenesis, proliferation, and patient survival cross NSCLC cohorts reported
in our previous study [218] is provided in Table 3. According to the running time (Ta-
ble 2) and the concordant significant correlations (Table 4), eigenvector centrality, closeness
centrality, and degree centrality were the top three performing methods in terms of compu-
tational efficiency and recapitulation of network biological and clinical relevance. Degree
centrality is the best choice if genes are regulated or regulators need to be studied with
in-degree or out-degree centralities, respectively.
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Table 3. Computational complexity and running time of each centrality method. N: the number of
nodes (genes). E: the number of edges (gene associations).

Method Complexity
Running Time

(of a Network with
20 Million Edges)

PLBIN O
(

N2) 67 min

Degree Centrality O(N) 0.02 s

Eigenvector Centrality O(N + E) 89 s

Closeness Centrality O(NE) 121 min

Betweenness Centrality O
(

N2logN + NE
)

24 h

VoteRank Centrality O
(

E + rlogN + r E2

N2

)
53 h

Table 4. Counts of concordant significant associations of each centrality metric with tumorigenesis,
proliferation, and patient survival in the multi-omics networks.

Centrality
Metric

Tumorigenesis
(mRNA

Expression)

Tumorigenesis
(Protein

Expression)

Proliferation
(CRISPR-Cas9)

Proliferation
(RNAi)

Patient
Survival Sum

Degree
Centrality 3 2 3 3 2 13

Eigenvector
Centrality 4 1 5 5 3 18

Closeness
Centrality 4 1 5 4 2 16

Betweenness
Centrality 0 1 2 2 1 6

VoteRank
Centrality 0 0 4 3 1 8

Sum 11 5 19 17 9 61

6. Integrating Multi-Omics Data with Patient Electronic Medical Records

The successful application of biomarkers and drugs requires rigorous testing in the
patient population considering diverse clinical, pathological, comorbid, and demographic
factors. In certain cancer types such as lung cancer, lifestyle factors including smoking, and
environmental and occupational exposures, also need to be considered. Nevertheless, it is
not currently feasible to conduct multi-omics and single-cell profiling in tens of thousands
of patients using a well-controlled clinical study design, due to the required costs, time,
and infrastructure. When a new treatment is added to the NCCN guidelines, it may take
years to collect sufficient data to establish predictive biomarkers. In current biomarker
studies, candidate genes are first identified from clinical cohorts of a limited number of
patient samples and are then validated by leveraging public data such as TCGA. The
following gaps exist in clinical applications of biomarkers: (1) Most published patient
cohorts, including TCGA, do not have complete treatment information and the number
of patients in specific treatment categories is very small, making it infeasible to establish
predictive biomarkers of therapeutic response for clinical utility; (2) Some sequencing
facilities do not have patient treatment or outcome information on all the samples they
have sequenced for predictive biomarker R&D; and (3) Large-scale patient EMRs of hospital
information systems or cancer registries have enough patients with comprehensive clinical
information but do not have sufficient matched patient genome-scale profiles for biomarker
discovery. To determine the applicability of multi-omics biomarkers in general patient
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populations, large-scale EMRs and genomic/transcriptomic profiles from specific patient
cohorts must be combined.

By merging SEER-Medicare data, we created a unique technique to find prognostic
and chemopredictive biomarkers with the potential to be used in large patient populations
to fill this gap [221]. The SEER database is a compilation of registration information from
specific geographic areas, which account for around 26% of the U.S. population [222].
Without additional natural language processing, the linked SEER-Medicare data are ade-
quately annotated and prepared for computational analysis. A previous study identified
chemopredictive genes by correlating mRNA expression profiles in solid tumors in the
advanced cancer stage of a Serial Analysis of Gene Expression (SAGE) database with
patient survival in SEER data [223]. In our previous study, a novel tumor progression
indicator, combining AJCC cancer staging [224] T, N, and M factors with tumor grade
was used to correlate miRNA expression in a lung squamous cell carcinoma (LUSC) pa-
tient cohort with SEER-medicare LUSC patient outcomes receiving different treatments.
The identified chemopredictive miRNAs were then validated with extensive pubic data
and our collected patient cohorts. Our study revealed miRNA-mediated transcriptional
networks in NSCLC proliferation and progression using CRISPR-Cas9/RNAi screening
data [221]. Our findings show that, in the absence of novel cohorts with tens of thousands
of patients who have matched clinical outcomes and genome-scale transcriptomic profiles,
extrapolation of miRNA expression from smaller cohorts to larger population-based data
can serve as an additional confirmatory tool based on similarities in tumor progression.
This method, in conjunction with stringent external validation, can discover prognostic
and predictive biomarkers with concordant expression patterns in tumor development in
sizable patient populations.

7. Recommendations

Multi-omics network analysis of bulk tumors and single cells can help understand
molecular mechanisms in multi-dimensional tumor immune microenvironments for the
identification of clinically relevant biomarkers and effective therapeutic targets. The in-
creasing amount of data generated with various high-throughput platforms can accelerate
scientific discovery, and meanwhile, pose a challenge in harmonization and computation.
To integrate genomic data such as CNV and SV generated from different sources, the
genome assembly version in each dataset should be converted to hg38. To define the regu-
lation of gene and protein expression, a set of housekeeping genes with stable expression in
the studied tissue type should be used for data normalization. To construct genome-scale
multi-omics regulatory networks, our Prediction Logic Boolean Implication Networks
(PLBINs) have advantages over other methods in terms of computational efficiency, scal-
ability, and accuracy [48,61,64,74]. Our recent study shows that graph theory network
centralities can be used for the prioritization of biomarkers and therapeutic targets [218].
Eigenvector centrality, degree centrality, and closeness centrality are top-ranked metrics
regarding time complexity and performance. Finally, multi-omic biomarkers should be
integrated with patient clinical, pathological, demographic, and comorbid factors for opti-
mal treatment selection. Our approach to integrating multi-omic profiles with large-scale
patient EMRs such as the SEER-Medicare cancer registry [221] can identify biomarkers with
consistent expression patterns in tumor progression, with potential prognostic and pre-
dictive implications in large patient populations. Our methodologies form a conceptually
innovative framework encompassing various available information from research laborato-
ries to healthcare systems for the discovery of biomarkers and therapeutic targets, including
new and repositioning drugs, ultimately improving cancer patient survival outcomes.

8. Patents

The artificial intelligence methodology using Boolean implication networks based on
prediction logic for drug discovery was filed under PCT/US22/75136.
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