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Supplementary File S1. Proof of iteration equations in ADMM solution

The ADMM method is intended to solve optimization problems in the general form
of:

minimize f(x)+g(z)
subjectto 4x+Bz=c (S1)

where x €R” and zER”, where A€ R, BERr and cERr. Function f and g are assumed
convex. We formulate the corresponding augmented Lagrangian:

Lp(x,z,y) :f(x)+g(z)+yT(Ax+Bz—c)+£HAx+BZ—CHE

2 (S2)
where p is the penalty parameter. By introducing a new variable defined as u = y/p, the
scaled form of x-update in ADMM iterations can be written as:

x" =arg min(f(x) + BHAx - szj

" ? (S3)
where v = -Bz+c-u and the superscript + denotes the next iteration. Here we simply con-
sider the case A=I, which is frequently seen in practical application. The righthand side is
termed as the proximity operator [41] of f with penalty p and denoted

prox, (v;p)==arg min(f(x) + BHAx - szj
" ? (S4)

If f(x) is second-order differentiable, it can be shown that:

prox, (v;p) = v— [sz(v) + pIT1 Vf (x) (5)

This is known as Levenberg-Marquardt update, a combination of Gauss Newton and gra-
dient descent to solve nonlinear least square optimization problems. Equation (12) can be
expressed as gj!' = proxs (diag(p)Qjs*-wj*; @) and accordingly we can approximate it to:

2

-1
. . 0 0
qf '~ dlag(p)stk - a)]k - |:aq2~f] (q) |q:11[(1g(p)Q,sA —af +al:| Eqﬁ (q) |q:d{gg(p)Q,sA —of

(S6)
The first-order derivative of fi(g) with respect to g is given as:
1.
gfj(q):—Qf Fdiag \/:/ Flg—F"q
% |74
(S7)

The second-order derivative can be approximated by dropping all off-diagonal terms of
2
the matrix a‘% fi(q@). Hence, the inversion of Tikhonov-regularized Hessian term can be

estimated as:
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o . (1
{aqu/(q)+al} ~Q/. dlag(m)Qj

(S8)
Substitute back to Eq. (56), and we get Eq. (16).
The characteristic equation of the minimizer for update equation (9) is given as:
zyle;'diag(ﬁ)/lf + aQ;'diag(]_))(diag(p)stk” - qf“ ) + }/(Sk+l —5) =0 (59)

Solve the equation above, and we get Eq. (13).
The subproblem (14) does not have a trivial solution, so we solve it by locating the proxi-
mal with respect to pk:

< raminles” ~diag (1) of L+ Ao o1

Since the operation diag(x)y is commutative, the equation above is equivalent to:

P =argn§n“qf” —diag(stk”)p+wf z+ﬂ"p_pk"z

(S11)

We follow the derivation of (16) via proximity operator and obtain Eq. (17), the specific
procedure is not detailed here.

Supplementary File S2. Choices of parameters in ADMM solution

Table 2 directly presents the suggested ranges of parameters in ADMM method. In
this section, we will discuss how these parameters are chosen elaborately at length. We
first give a summarized explanation for their mathematical significance: 1) a is the penalty
parameter which measures the extent to which the local auxiliary variables should fit the
global variable. 2) f is the regularized parameter applied to stabilize pupil recovery and
prevent extreme values of pupil amplitude component. 3) 1 is the step size which deter-
mines how fast the local solutions get close to the global solution. 4) y is a parameter in-
volved in the regularization term to stabilize optimization, especially for weak-phase ob-
jects.

For each parameter, we select three typical values and examine how their variation
affects the reconstruction results. Here, we mainly consider two cases: noise-free and 50%
Gaussian noise, corresponding to Fig. S1 and Fig. S2 respectively. The results of Poisson
noise is quite similar with Gaussian noise and will not detailed here. By contrast, we intu-
itively conclude that the penalty parameter a and step size 1 play the leading role in af-
fecting noise tolerance performance. In the presence of Gaussian noise, it can be seen that
the curve a=1 generates fluctuation to some degree after about five iterations whether am-
plitude or phase, while the other two curves remain similarly stable. For step size 1, the
curve with larger value is characterized by a larger slope during the increase stage and
hence reach convergence with a fewer number of iterations, but the difference is small in
terms of both iteration numbers and numerical results. However, the two curves with
smaller values tend to fluctuate dramatically under the condition of Gaussian noise.

Regarding regularized parameters § and y, we see no distinct effects that they impose
on the noise tolerance performance of ADMM method. Their curves under noise condition
seems to simply derive from the downward displacement of those in the noiseless case,
which indicates the decrease in reconstruction quality. Since parameter f is closely asso-
ciated with pupil update only, the three curves highly coincide with one another. The
curves of parameter y with three different values are quite similar, except that the curve
y =11is placed slightly below the other two. The simulation results above accounts for the
suggested parameter ranges given in Table 2. Also, we have to admit that the demonstra-
tion is not strictly argued and may have certain contingency. For example, the ADMM
update equations suggest that large values of the penalty parameter o tend to produce
small prime residuals but simultaneously increase the values of dual residuals [41]. Proper



Cells 2022, 11, 1512

3 of 5

values for the parameters should be chosen to achieve balance for the convergence per-
formance of the method are jointly determined by both residuals. The absolutely accurate
ranges that guarantee the feasibility of ADMM method should be given after rigorous
mathematical proof. In this paper, the suggested ranges for parameters have been proved
to be effective in our simulations and experiments and can be used as reference.
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Figure S1. Comparison curves for different choices of parameters under noiseless conditions. For
each parameter, three typical values are selected to examine how their variation affects the recon-

struction results. (al)-(a2) penalty parameter a. (b1)-(b2) regularization parameter g. (c1) —(c2) reg-
ularization parameter y. (d1)-(d2) step size 7.
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Figure S2. Comparison curves for different choices of parameters under 50% Gaussian noise. The
graphs totally follow the organization of Fig. S1: (al)-(a2) penalty parameter a. (b1)-(b2) regulariza-
tion parameter . (c1) —(c2) regularization parameter y. (d1)-(d2) step size 1.

Supplementary File S3. Discussions on self-adaptive step size strategy

Many extensions to the classic ADMM method have been reported and most of them rigorously
present superior convergence performance in practical. One typical extension is to use different step
sizes n* for each iteration intended to make final results less dependent on the initial choice of step
size. Though it can be difficult to prove the convergence of ADMM with varying step sizes, powerful
analysis indicates that the original theory still applies if 7 becomes almost unchangeable after a finite
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number of iterations. The framework of self-adaptive step size strategy for ADMM method is basi-
cally given as

m" Rﬁ > ,uR{f

nt=n"/t R > uR;

n*  otherwise
(512)

where 7 >1 and u >1 are constant parameters. Choices of parameters that work well might be 7 =2
and p =10 [56]. The proposed scheme attempts to constrain primal and dual residuals within a cer-
tain range of each other when they both approaches zero.
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Figure S3. Comparison curves for our proposed method and other two schemes with self-adaptive
step size update strategy under the conditions of: (a) no noise. (b) 50% Gaussian noise. (c) Poisson
noise (o = 104).

We have set the suggested choice of step size as n = 1 in this paper. Here, we compare the
reconstruction performance of FPM realized by three different ADMM schemes: (1) n = 1 without
step size update; (2) self-adaptive step size with n° = 1; (3) self-adaptive step size with n° = 0.1.
The introduction of n = 0.1 is inspired from the assumption that the initial step size should be
small enough to stabilize computation and then increases accordingly to avoid stagnation of itera-
tions. The comparison results under the condition of noise-free, Gaussian noise and Poisson noise
are clearly shown in Fig. S3.

We find that all the three schemes perform without obvious differences during the first several
iterations. As the iterations advance forward, the curves of scheme 2 present a state of fluctuation
and especially violently with the disturbance of noise. The curves of scheme 3 shows a tendency of
stable decrease, which achieves numerical results inferior to scheme 1. Generally speaking, the pro-
posed method generates relatively better reconstruction results due to its high-quality convergence
and stability despite its mild fluctuation under Poisson noise.

The validation seemingly contradicts the demonstration we made previously that the self-adap-
tive step size strategy outperforms the original ADMM method. This might be explained by the
non-convex nature of FPM phase retrieval, as we always emphasize in this paper. On the other hand,
the proposed modification is based on an essential theoretical prerequisite that both the primal re-
sidual and dual residual must converge to zero, which is difficult to achieve in practical FPM im-
plementation.



