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Abstract: Cannabinoids, mainly cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), are the most
studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical
properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory
agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely
unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is
involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus
disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore,
we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting
key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-
like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated
in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines,
interleukin-1β (IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of
transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the
effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human
THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that
CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following
LPS + ATP stimulation, leading to a reduction in the levels of IL-1β in THP-1 macrophages and
HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids
inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD
and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after
LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was
significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in
turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after
LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the
LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation
of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study
warrant further investigation of these cannabinoids in vivo.

Keywords: delta-9-tetrahydrocannabinol; cannabidiol; cannabinoids; NLRP3 inflammasome; STAT3;
TYK2; cytokine storm; interleukins; TNF-α; macrophages; primary lung bronchial epithelial cells

1. Introduction

According to the Public Health Agency of Canada, millions of Canadians suffer
from chronic diseases, also called noncommunicable diseases (NCDs), which account for
the highest causes of death (88% of all deaths) in Canada [1,2]. NCDs include a variety
of chronic diseases, such as cancer, arthritis, diabetes, cardiovascular disorders, chronic
respiratory diseases, and mood disorders. Additionally, 44% of Canadian adults (age of
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20 years and older) have at least one of the above-mentioned chronic conditions, including
osteoporosis and dementia [3]. Moreover, the treatment cost of chronic diseases in Canada
is approximately $190 billion annually, which is approximately 58% of the country’s annual
healthcare spending [4].

Almost all chronic diseases or NCDs can be classified as chronic inflammatory dis-
eases, given that chronic inflammation is a vital contributor to their pathophysiology. Acute
inflammation is the body’s defense response to harmful external pathogens and is a cru-
cial part of our innate immunity. However, unhindered acute inflammation, persistent
acute inflammatory signals, and sterile inflammation result in chronic inflammation [5].
Various chronic diseases, such as diabetes, autoimmune disorders, obesity, and inflamma-
tory bowel disorders, are linked to chronic inflammation and elevated circulating levels of
pro-inflammatory cytokines in the body despite their short half-lives. This constant patho-
logical rise in cytokines, termed cytokine storm or cytokine release syndrome, can result in
systemic effects causing organ damage if it is not controlled [6]. In the milieu of the current
coronavirus disease 2019 (COVID-19) pandemic, people with pre-existing chronic inflam-
matory conditions are susceptible to acute respiratory distress syndrome (ARDS), which
is characterized by elevated levels of cytokines after severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection [7]. The cytokine release in chronic inflammation
is governed by several complex signaling pathways with considerable overlap, which
explains the substantial side effects of approved cytokine inhibitors [8]. Hence, targeted
anti-inflammatory drugs that can curb cytokine storms are needed for the treatment of
NCDs along with ARDS in COVID-19.

Signaling pathways governed by the nucleotide-binding and oligomerization domain-
like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, and signal trans-
ducer and activator of transcription-3 (STAT-3) are implicated in different chronic inflam-
matory diseases along with induction of cytokine release in COVID-19 [5,9–14]. The NLRP3
protein is one of the important pattern recognition receptors that detect conserved micro-
bial structures called pathogen-associated molecular patterns (PAMPs) and host-derived
sterile damage (or danger)-associated molecular patterns (DAMPs) to mount an innate
immune response. Once the first signal from PAMPs and/or DAMPs is detected, non-
transcriptional or transcriptional priming via nuclear factor-κB (NF-κB) causes increased
expression of NLRP3. Next, multiple secondary signals, such as cathepsin released from
lysosomal rupture or in response to mitochondrial oxidative stress, among others [15],
lead to the formation and activation of NLRP3 inflammasome. Once initiated, canonical
NLRP3 inflammasome activation results in the formation of active caspase-1, which in
turn leads to the cleavage of pro-interleukin-1β (pro-IL-1β) and pro-IL-18 and the release
of mature cytokines. The release of mature IL-1β and IL-18 causes cell death by pyropto-
sis [5]. Although physiological NLRP3 inflammasome activation is important in innate
immunity, its pathophysiological activation is implicated in many chronic inflammatory
diseases, including cancers and cardiovascular diseases, and in triggering cytokine storms
in COVID-19 [5,10]. Similarly, STAT3 is a transcription factor that induces the expression
of numerous pro-inflammatory cytokines, including IL-17, IL-23, and IL-8, among others,
once activated [12]. Most importantly, IL-6 is a vital STAT-3 activator during inflammation,
and the IL-6-STAT3 axis has been identified as a critical target for treating COVID-19-
induced cytokine storm [11,13]. In non-immune and immune cells, cytokines such as IL-6,
IL-1β, and tumor necrosis factor-alpha (TNF-α) and the transcription factors NF-κB and
STAT3 play an important role in the pathogenesis of chronic inflammation. Under the
settings of chronic inflammation, elevated cytokines, especially IL-6, activate the Janus
kinase (JAK)/STAT pathway, mainly STAT3. JAK is a family of tyrosine kinases, and an
increased expression of its member, tyrosine kinase-2 (TYK2), has been recently implicated
in life-threatening COVID-19 in a genome-wide analysis of 2636 patients [16]. Once JAKs,
such as TYK2, phosphorylate cytosolic STAT3, it results in nuclear translocation of the
latter, leading to increased cytokine release. Moreover, NF-κB interacts synergistically
with STAT3, causing the hyperactivation of NF-κB, followed by an increased production
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of inflammatory cytokines, such as IL-6. As more IL-6 is generated, it causes sequential
activation of STAT3 and NF-κB, triggering a positive feedback loop of NF-κB activation via
the IL-6-JAK-STAT3 pathway. This feedback loop is termed the IL-6 amplifier, which is a
key player in autoimmune disorders, oncogenesis, and COVID-19-mediated ARDS and
multiorgan failure [11,13,14]. Targeting NLRP3 inflammasome and STAT3 signaling would
be crucial to curb cytokine storm.

Cannabis sativa (C. sativa) is an essential plant originating from Asia and has been
utilized extensively in ancient medicine. Cannabinoids are the most important pharma-
cologically active ingredients extracted from C. sativa, in which cannabidiol (CBD) and
∆9-tetrahydrocannabinol (THC) are the most studied. Attention and the published litera-
ture regarding several applications of cannabinoids, including their potent anti-inflammatory
effects, have been growing in the last decade. Our laboratory recently published that certain
high CBD cannabis extracts significantly reduced the gene expression of pro-inflammatory
cytokines in 3D tissue models of inflammation [17]. The available literature endorses the
immunosuppressive role of CBD via different mechanisms, including the induction of
apoptosis, activation of immune cells, and reduction of pro-inflammatory cytokines [18,19].
Current data also indicate that CBD inhibits NLRP3 inflammasome activation via the inhi-
bition of NF-κB priming and may modulate the JAK/STAT pathway by limiting the levels
of pro-inflammatory cytokines [5,20,21]. Although several previous studies suggest the
pro-inflammatory potential of THC [22], growing new evidence indicates the potent anti-
inflammatory effects of THC via the induction of immunosuppressive regulatory T cells
and suppression of cytokine storm, among other mechanisms [23,24]. However, despite
the crucial role of NLRP3 and STAT-3 signaling in the development of cytokine storms and
documented evidence of CBD and THC in lowering elevated levels of cytokines, no study
has clearly determined whether CBD and THC curb cytokine storms via the inhibition
of these pathways in vitro and/or in vivo. Hence, in this manuscript, we attempted to
study the molecular mechanisms behind curbing the lipopolysaccharide (LPS)-induced
cytokine release by CBD and THC in human THP-1 macrophages and primary human lung
bronchial epithelial cells (HBECs).

2. Materials and Methods
2.1. Chemicals and Reagents

CBD (C-045), ∆9-THC (T4764), LPS from Escherichia coli O111:B4 (L4391), and adeno-
sine 5′-triphosphate (ATP) disodium salt hydrate (A6419) were obtained from Sigma
Aldrich, Oakville, ON, Canada. Phorbol-12-myristate-13-acetate (PMA) was purchased
from Enzo (BML-PE160-0005), Farmingdale, NY, USA. CBD and THC were provided as
1 mg/mL stock solutions in methanol and stored at −20 ◦C. Both cannabinoids were cho-
sen to be used at a final concentration of 5 µM based on our optimization and previously
published results [25,26]. LPS was prepared by dissolving 1 mg powder in 1 mL of sterile
phosphate buffer saline (PBS) to obtain 1 mg/mL solution as per the manufacturer’s instruc-
tions. PMA was dissolved in dimethyl sulfoxide (DMSO), cell culture reagent (CAS 67-68-5)
[sc-358801, Santa Cruz Biotechnology (SCBT), Dallas, TX, USA] and further diluted to ap-
propriate concentrations using sterile PBS. Trypan blue solution, 0.4% (15250061) was
acquired from ThermoFisher Scientific (Life Technologies Inc., Burlington, ON, Canada).

2.2. Cell Culture and Treatments

The THP-1 (ATCC TIB-202) cells were purchased from American Type Culture Collec-
tion (Rockville, MD, USA) and cultured as a suspension in Roswell Park Memorial Institute
Medium (RPMI-1640) (Cat# 350-000-CL, Wisent Inc., Saint-Jean-Baptiste, QC, Canada) sup-
plemented with 10% heat-inactivated premium-grade fetal bovine serum (FBS) (97068-085,
VWR International, Edmonton, AB, Canada) and 1% penicillin-streptomycin antibiotic
(LS15140122, Gibco, Life Technologies Inc., Burlington, ON, Canada). Primary normal
human bronchial epithelial cells (HBECs) (NHBE-CRY) were purchased from MatTek
Life Sciences (MatTek, Ashland, MA, USA) and thawed in the basal medium (NHBE-BM,
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MatTek) supplemented with growth supplement (NHBE-GS, MatTek) and hydrocortisone
(NHBE-HCS, MatTek). The cells were isolated from a healthy Caucasian 59-year-old fe-
male by MatTek and shipped frozen as is. The optimum growing conditions were set
for 37 ◦C for at 5% CO2–95% O2 in the humidified incubator (ThermoFisher Scientific).
THP-1 cells were used only from passages 4–7 for all experiments, and regarding HBECs,
all experiments were performed from the stock vial of cells without re-freezing and not
including hydrocortisone in the media. The THP-1 cells were terminally differentiated into
macrophages by adding PMA at a final concentration of 50 ng/mL for 48 h. After two
days, cells were rested for 24 h in fresh PMA-free complete RPMI-1640 media, as suggested
elsewhere [27]. LPS (0.5 µg/mL) was then added for 3 h, followed by ATP (5 mM) for
1 h in fresh medium wherever indicated. HBECs were cultured and subcultured as per
the manufacturer’s instructions using Trypsin-EDTA (0.05%, Gibco), and soybean trypsin
inhibitor (SBTI; ATCC 30-2104). LPS (0.5 µg/mL) was used for 8 h followed by ATP (5 mM)
for 1 h in a fresh medium wherever indicated. CBD and THC were added 30 min before
adding LPS.

2.3. Immunoblotting

After respective treatments, cells were harvested using cell lysis buffer (Cell Signal-
ing Technology (CST), 9803, Danvers, MA, USA) by adding 1 mM phenylmethylsulfonyl
fluoride (PMSF) immediately before use followed by brief sonication. Cell debris was
then cleared by centrifugation at 10,000 g for 2 min [28], and total cell lysates were then
stored at −80 ◦C freezer. Protein concentrations were determined using Bradford as-
say [29], and about 45–50 µg of proteins were loaded per sample for sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 10% resolving and 4% stack-
ing gels. The resolved proteins were then transferred to polyvinylidene difluoride (PVDF)
membranes (Amersham Hybond® P, GE Healthcare) for 2 h on ice. The PVDF membranes
were subsequently blocked with 5% nonfat dry milk prepared in 1X Tris-buffered saline,
0.1% Tween® 20 Detergent (TBST) for at least 2 h at room temperature (RT). Next, mem-
branes were incubated with appropriate primary antibodies at specified concentrations
overnight at 4 ◦C, followed by three washes with 0.1% TBST and incubation with respec-
tive horseradish peroxidase (HRP)-conjugated secondary antibodies (1:2500, SCBT) for at
least 2 h at RT. Immunoreactivity was visualized using SuperSignal™ West Atto Ultimate
Sensitivity Substrate (A38555, ThermoFisher Scientific) for low abundant proteins and
UltraScence Pico Ultra Western Substrate (CCH345-B, FroggaBio, Concord, ON, Canada)
for all other proteins. To probe for phosphorylated and total proteins, mild stripping buffer
(15 g glycine, 1 g SDS, 10 mL Tween 20, pH 2.2 in 1 L distilled water, Abcam) was used per
the manufacturer’s instructions. National Institutes of Health (NIH) ImageJ software was
utilized for densitometric analyses, and three to four independent technical replications
were used for statistical analyses [28]. The primary antibodies were used as mentioned
below (Table 1).

Table 1. Primary antibodies with manufacturers and dilutions.

Primary Antibody Manufacturer (Cat#) Dilution

NLRP3 CST (15101S) 1:750

Caspase-1 CST (4199S) 1:500

IL-1β SCBT (sc-32294) 1:500

NFκB p65 SCBT (sc-8008) 1:750

phospho-NFκB p65 (Ser-536) CST (13346S) 1:750

STAT-3 SCBT (sc-8019) 1:750

phospho-STAT3 (Tyr-705) SCBT (sc-8059) 1:750

STAT-1 Abcam (ab109320) 1:2000
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Table 1. Cont.

Primary Antibody Manufacturer (Cat#) Dilution

phospho-STAT1 (Ser-727) Abcam (ab109461) 1:2000

TYK2 CST (14193S) 1:1000

phospho-TYK2 (Tyr-1054/1055) CST (9321S) 1:500

GAPDH SCBT (sc-32233) 1:1000

β-actin SCBT (sc-47778) 1:1000

2.4. Immunoblotting for Mature IL-1β

To detect a mature form of IL-1β in the cell culture supernatants, we optimized the
methanol-chloroform precipitation protocol, as explained here [30]. In brief, 100 µL of cell
culture supernatant was mixed with a 2:1 mixture of methanol:chloroform to precipitate
protein pellets and reconstituted with 50 µL 1X SDS sample buffer. Next, samples were
incubated at 95 ◦C for 5 min, and SDS-PAGE was performed as explained above.

2.5. Gene Expression

Total RNA was extracted using 5 mL of TRIzol® Reagent (15596018, Invitrogen, Life
Technologies Inc., Burlington, ON, Canada) per 100 mm of the cell-culture plate as per the
manufacturer’s instructions. The RNA purity and yield were determined by Nanodrop
(ThermoFisher Scientific). The cDNA was synthesized using iScript™ Select cDNA Synthe-
sis Kit (1708897, BioRad Laboratories, Saint-Laurent, QC, Canada) by utilizing 500 ng of
total RNA sample according to the manufacturer’s protocols. The generated cDNA was
then employed to perform quantitative real-time polymerase chain reaction (qRT-PCR)
using SsoFast™ EvaGreen® Supermix (1725200, BioRad Laboratories) in duplicates using
the CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad). Data were analyzed using
the 2−∆∆CT method and GAPDH was used to normalize gene expression. The following
primers used for our experiments were ordered from Eurofins (Ottawa, ON, Canada)
(Table 2).

Table 2. List of primers used for qRT-PCR.

Gene Name Forward Primer Reverse Primer

Nlrp3 GAAGAGGAGTGGATGGGTTTAC TCTGCTTCTCACGTACTTTCTG

Il-1β CCTTAGGGTAGTGCTAAGAGGA AAGTGAGTAGGAGAGGTGAGAG

Tyk2 CAAATGTCCCTGTGAGGTCTATC GGACTGTCTTCAGAATGGGTATG

Gapdh CAGGAGGCATTGCTGATGAT GAAGGCTGGGGCTCATTT

2.6. Multiplex Enzyme-Linked Immunosorbent Assay (ELISA)

Cell culture supernatant (media) samples from all experiments were collected after
cannabinoids and LPS treatment and centrifuged at 3000× g at 4 ◦C to remove debris.
Next, the samples were aliquoted and stored in a −80 ◦C freezer. The frozen aliquots were
shipped to Eve Technologies Corp. (Calgary, AB, Canada) on dry ice, and all samples
were analyzed for the levels of cytokines immediately upon thawing. Thirteen different
cytokines were measured using Luminex™ 200 system (Luminex, Austin, TX, USA) by
Eve Technologies Corp. by utilizing Human Focused 13-Plex Discovery Assay® (Millipore
Sigma, Burlington, MA, USA) according to the manufacturer’s protocol. Out of 13, six
cytokines displayed measurable levels in our samples. To quantify IL-1β, we used Human
IL-1 beta/IL-1F2 Quantikine ELISA Kit (DLB50, R&D systems, Toronto, ON, Canada);
as for this experiment, cell culture supernatant samples were obtained after LPS + ATP
treatment. The assay was performed as per the manufacturer’s instructions, and the
absorbance was measured at 450 nm with a correction at 540 nm. A standard curve was
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plotted using standard IL-1β supplied with the kit; Assay Blaster software (ADI-28-00020,
Enzo) was used to calculate the concentration of all samples. Each experiment included
four biological replicates, and an average of at least two technical replicates was considered
for one biological replicate. The THP-1 cell supernatant samples treated with LPS + ATP
were diluted 4 times due very high absorbance of released IL-1β.

2.7. Reactive Oxygen Species (ROS) Generation Assay

The ROS generation following LPS stimulation and the effects of cannabinoids
on the same was assessed by ROS indicator 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) using Cellular ROS Assay Kit (ab113851, Abcam, Toronto, ON, Canada).
Briefly, 0.5–1 × 106 cells/mL were plated in a 12-well plate for THP-1 cells and in a 96-well
plate for HBECs. In the case of HBECs, cells were treated as per indicated times, with
diluted DCFDA (20 µM) added 45 min before the completion of experiments. Cells were
incubated at 37 ◦C in the dark, and the fluorescence was measured by a microplate reader
with Ex/Em = 485/535 nm. In the case of THP-1 cells, cells were first incubated with 20 µM
DCFDA for 45 min at 37 ◦C in the dark, followed by washings and treatment. Cells were
then harvested in 95% DMSO, and fluorescence was immediately measured in a 96-well
plate. All readings were subtracted from the background reading of untreated cells to
calculate relative fluorescence intensity.

2.8. Trypan Blue Cell Viability Assay

The trypan blue dye exclusion test is based on the principle that viable cell membranes
are intact, thus excluding the dye leaving clear cytoplasm, whereas nonviable cells take
up the dye, staining the cytoplasm blue in color [31]. In brief, when the cells were ready,
they were washed with PBS after removing media, and trypsin-EDTA was added. Fresh
RPMI-1640 media was added for THP-1 cells, and SBTI was added for HBECs to neutralize
trypsin, followed by centrifugation at 1200 rpm for 4 min. The cell pellet was resuspended
in fresh media after removing the supernatant, and then an aliquot of suspended cells
was mixed with trypan blue in a 1:1 ratio. The viable and nonviable cells were counted
on a LUNA-I automated cell counter (Logos Biosystems, Annandale, VA, USA), and %
cell viability values were calculated. For each group, three independent experiments were
performed in duplicate.

2.9. Statistics

The data collected were analyzed by one-way analysis of variance (ANOVA) with
post hoc Tukey’s multiple-comparison tests (GraphPad Prism 6). Data were reported as
means ± standard deviation (SD). For significance, a p-value less than 0.05 was considered
statistically significant in all cases.

3. Results
3.1. CBD and THC Inhibit the Expression of NLRP3 Inflammasome Proteins in THP-1 Cells and
HBECs to Downregulate the Expression of Mature IL-1β

To study the effects of CBD and THC on the expression of NLRP3 inflammasome pro-
teins, we pre-treated THP-1 cells and HBECs with CBD and THC, followed by LPS + ATP
to induce inflammasome activation. In THP-1 cells, we discovered that CBD and, for
the first time, THC, significantly blocked the expression of NLRP3, pro-caspase-1, and
pro-IL-1β after LPS + ATP treatment (Figure 1A–C). In particular, the expression of pro-
IL-1β was markedly downregulated by CBD and THC (p < 0.01); hence, we sought to
determine the expression of mature IL-1β in cell culture supernatants. Our data revealed
that higher expression of the mature form of IL-1β after LPS + ATP treatment was also
markedly inhibited by CBD and THC (Figure 1D). We observed somewhat analogous re-
sults in HBECs. The expression of NLRP3 and pro-IL-1β was significantly downregulated
by CBD and THC after LPS + ATP stimulation in HBECs (Figure 2A,B). However, we
did not find a significant difference in the expression of pro-caspase-1 across all experi-
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mental groups (data not shown). When we performed immunoblotting for mature IL-1β
in cell culture supernatants, the increased expression of the mature form of IL-1β after
LPS + ATP stimulation was significantly abrogated by CBD and THC in HBECs (Figure 2C).
Unfortunately, we could not detect cleaved caspase-1 expression in our cell lysates and
cell culture supernatants. Nevertheless, our immunoblotting data uncovered that CBD
and THC could abolish NLRP3 inflammasome activation by decreasing the expression of
NLRP3 inflammasome-associated proteins.
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Figure 1. Effect of cannabinoids on the expression of NLRP3 inflammasome proteins in THP-1
macrophages. (A): CBD and THC decreased the expression of NLRP3 after LPS + ATP stimulation in
THP-1 macrophages: Representative Western blots of NLRP3 and GAPDH bands and the quantifica-
tion of the same using one-way ANOVA with Tukey’s multiple-comparison test. Four independent
experiments (n = 3–4) of THP-1 cell lysates obtained after pre-treatment with CBD or THC for 30 min
and LPS stimulation for 3 h followed by ATP for 1 h were analyzed, and data are expressed as
means ± SD; * p < 0.05, ** p < 0.01. (Abbreviation: LA: LPS + ATP). (B): CBD and THC decreased the
ratio of the expressions of caspase-1 p20/p45 after LPS + ATP stimulation in THP-1 macrophages:
Representative Western blots of caspase-1 p45 (pro-caspase1), p20, and GAPDH bands and the
quantification of caspase-1 p20/p45 ratio using one-way ANOVA with Tukey’s multiple-comparison
test. Four independent experiments (n = 4) of THP-1 cell lysates obtained after pre-treatment with
CBD or THC for 30 min and LPS stimulation for 3 h followed by ATP for 1 h were analyzed, and
data are expressed as means ± SD; * p < 0.05, ** p < 0.01. (Abbreviation: LA: LPS + ATP). (C): CBD
and THC decreased the expression of pro-IL-1β after LPS + ATP stimulation in THP-1 macrophages:
Representative Western blots of pro-IL-1β and GAPDH bands and the quantification of the same us-
ing one-way ANOVA with Tukey’s multiple-comparison test. Four independent experiments (n = 4)
of THP-1 cell lysates obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation
for 3 h followed by ATP for 1 h were analyzed, and data are expressed as means ± SD; ** p < 0.01,
*** p < 0.001. (Abbreviation: LA: LPS + ATP). (D): CBD and THC decreased the expression of ma-
ture IL-1β after LPS + ATP stimulation in cell supernatants of THP-1 macrophages: Representative
Western blots of mature-IL-1β and β-actin bands and the quantification of the same using one-way
ANOVA with Tukey’s multiple-comparison test. Four independent experiments (n = 4) of THP-1
cell supernatants obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation
for 3 h followed by ATP for 1 h were analyzed, and data are expressed as means ± SD; ** p < 0.01,
*** p < 0.001, **** p < 0.0001. (Abbreviation: LA: LPS + ATP).
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Figure 2. Effect of cannabinoids on the expression of NLRP3 inflammasome proteins in primary
human bronchial epithelial cells. (A): CBD and THC decreased the expression of NLRP3 after
LPS + ATP stimulation in primary HBEC: Representative Western blots of NLRP3 and GAPDH bands
and the quantification of the same using one-way ANOVA with Tukey’s multiple-comparison test.
Four independent experiments (n = 4) of primary human bronchial epithelial cell lysates obtained
after pre-treatment with CBD or THC for 30 min and LPS stimulation for 8 h followed by ATP for 1 h
were analyzed, and data are expressed as means ± SD; * p < 0.05, ** p < 0.01. (Abbreviations: HBECs:
Human bronchial epithelial cells; LA: LPS + ATP). (B): CBD and THC decreased the expression of
pro-IL-1β after LPS + ATP stimulation in primary HBECs: Representative Western blots of pro-IL-1β
and GAPDH bands and the quantification of the same using one-way ANOVA with Tukey’s multiple-
comparison test. Four independent experiments (n = 4) of primary human bronchial epithelial
cell lysates obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation for
8 h followed by ATP for 1 h were analyzed, and data are expressed as means ± SD; * p < 0.05,
** p < 0.01, **** p < 0.0001. (Abbreviations: HBECs: Human bronchial epithelial cells; LA: LPS + ATP).
(C): CBD and THC decreased the expression of mature IL-1β after LPS + ATP stimulation in cell
supernatants of primary HBECs: Representative Western blots of mature-IL-1β and β-actin bands and
the quantification of the same using one-way ANOVA with Tukey’s multiple-comparison test. Four
independent experiments (n = 4) of primary human bronchial epithelial cell supernatants obtained
after pre-treatment with CBD or THC for 30 min and LPS stimulation for 8 h followed by ATP for 1 h
were analyzed, and data are expressed as means ± SD; * p < 0.05, ** p < 0.01. (Abbreviations: HBECs:
Human bronchial epithelial cells; LA: LPS + ATP).

3.2. CBD, but Not THC, Diminishes the Phosphorylation of NF-κB p-65 Subunit at Ser-536,
Thereby Reducing the Expression of Inflammasome Proteins in THP-1 Cells and HBECs

The phosphorylation of the transcription factor NF-κB and its subsequent nuclear
translocation increased the transcription of several pro-inflammatory target genes. The
pro-IL-1β and NLRP3 genes are direct targets of NF-κB, and the activation of NF-κB via
upstream stimulation of toll-like receptors by LPS serves as a priming signal of NLRP3
inflammasome activation [32,33]. As NF-κB contains multiple subunits [32], we chose to
study the phosphorylation of the p-65 subunit at Ser-536 position (p-NFκB) because of its
established role in mediating the priming of NLRP3 inflammasome [34]. We discovered
that LPS treatment significantly inhibited the expression of total NF-κB (t-NFκB) and
upregulated the expression of p-NFκB in THP-1 cells (Figure 3A). As shown by others [35],
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our data displayed that only CBD, and not THC, reduced the expression of p-NFκB after
LPS treatment and substantially increased the expression of t-NFκB (p < 0.001) (Figure 3A).
The immunoblotting data from HBECs revealed no significant changes in the expression of
t-NFκB; however, the expression of p-NFκB was significantly downregulated by CBD, and
not by THC (Figure 3B). Given that NFκB is a transcriptional activator of Nlrp3 and Il-1β
genes, we measured the normalized expression of these genes in THP-1 cells and HBECs.
We noticed that LPS treatment significantly induced the expression of Nlrp3 and Il-1β as
compared with the vehicle, and pre-treatment with CBD and THC significantly blocked
their expression as compared with LPS in both THP-1 cells and HBECs (Figure 3C,D).
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Figure 3. Effect of cannabinoids on the NFκB-mediated gene expression in THP-1 macrophages
and primary human bronchial epithelial cells. (A): CBD, not THC, decreased the expression of
phospho-NFκB p65 (Ser-536) after LPS stimulation in THP-1 macrophages: Representative Western
blots of NFκB, p-NFκB, and GAPDH bands and the quantification of the same using one-way ANOVA
with Tukey’s multiple-comparison test. Four independent experiments (n = 4) of THP-1 cell lysates
obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation for 3 h were analyzed,
and data are expressed as means ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. (B): CBD,
not THC, decreased the ratio of the expressions of phospho-NFκB p65 (Ser-536)/NFκB after LPS
stimulation in primary HBECs: Representative Western blots of NFκB, p-NFκB, and GAPDH bands
and the quantification of the same using one-way ANOVA with Tukey’s multiple-comparison test.
Four independent experiments (n = 4) of primary human bronchial epithelial cell lysates obtained
after pre-treatment with CBD or THC for 30 min and LPS stimulation for 8 h were analyzed, and data
are expressed as means ± SD; * p < 0.05, *** p < 0.001, **** p < 0.0001. (Abbreviation: HBECs: Human
bronchial epithelial cells). (C): CBD and THC decreased the gene expression of Nlrp3 and Il-1β after
LPS stimulation in THP-1 macrophages: The mRNA expression of Nlrp3 and Il-1β relative to GAPDH
normalized to vehicle quantified using one-way ANOVA with Tukey’s multiple-comparison test.
Four independent experiments (n = 4) using total RNA isolated from THP-1 cells obtained after
pre-treatment with CBD or THC for 30 min and LPS stimulation for 3 h were analyzed, and data are
expressed as means ± SD; ** p < 0.01, *** p < 0.001, **** p < 0.0001. Each independent experiment
was run in duplicates. (D): CBD and THC decreased the gene expression of Nlrp3 and Il-1β after LPS
stimulation in primary HBECs: The mRNA expression of Nlrp3 and Il-1β relative to GAPDH normalized
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to vehicle was quantified using one-way ANOVA with Tukey’s multiple-comparison test. Four
independent experiments (n = 4) using total RNA isolated from primary bronchial epithelial cells
obtained after by pre-treatment with CBD or THC for 30 min and LPS stimulation for 8 h were
analyzed, and data are expressed as means± SD; * p < 0.05, ** p < 0.01, *** p < 0.001. Each independent
experiment was run in duplicates. (Abbreviation: HBECs: Human bronchial epithelial cells).

3.3. CBD and THC Markedly Reduce the Increased Levels of IL-1β, IL-6, IL-8, and TNF-α after
LPS Stimulation in THP-1 Cells and HBECs, Thus Curbing LPS-Mediated Cytokine Release

The release of IL-1β is a cardinal output of NLRP3 inflammasome activation. We
discovered that the levels of IL-1β were significantly upregulated after LPS + ATP stim-
ulation compared with the vehicle, and CBD and THC were able to markedly decrease
IL-1β compared with the LPS + ATP group in THP-1 cells and HBECs (Figure 4A). Notably,
the rise of IL-1β in immune cells (THP-1 cells) is far greater than that in non-immune cells
(HBECs). To compare the effects of CBD and THC on LPS-stimulated cytokine release,
we performed a multiplex ELISA. Our data revealed that 0.5 µg/mL of LPS treatment
for 3 h markedly upregulated levels of numerous pro-inflammatory cytokines, such as
IL-6, IL-8, and TNF-α, in non-immune and immune cells. Interestingly, CBD and THC
were able to significantly decrease the levels of IL-6, IL-8, and TNF-α in THP-1 cells and
HBECs (Figure 4B–D). Additionally, in HBECs, CBD and THC also diminished the in-
creased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) after LPS
treatment (Figure 4E). However, in THP-1 cells, the elevated levels of IL-10 after LPS stimu-
lation were significantly lowered by CBD but not by THC (Figure 4E). Overall, our data
uncovered the potential anti-inflammatory action of CBD and THC via declining the levels
of major pro-inflammatory cytokines triggered by LPS stimulation in non-immune and
immune cells.
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Figure 4. Effect of cannabinoids on the levels of cytokines in THP-1 macrophages and primary human
bronchial epithelial cells. (A): CBD and THC decreased the levels of IL-1β after LPS + ATP stimulation
in THP-1 macrophages and primary HBECs: The levels of released IL-1β in the cell supernatants
were measured using ELISA kit (R&D systems) and quantified using one-way ANOVA with Tukey’s
multiple-comparison test. Four independent experiments (n = 4) from THP-1 and primary human
bronchial epithelial cell supernatants obtained after pre-treatment with CBD or THC for 30 min and
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LPS stimulation (3 h for THP-1 cells and 8 h for primary HBECs) followed by ATP treatment for
1 h were performed, and data are expressed as means ± SD; *** p < 0.001, **** p < 0.0001. Each
independent experiment was run in duplicates. (Abbreviation: LA: LPS + ATP; HBECs: Human
bronchial epithelial cells). (B): CBD and THC decreased the levels of IL-6 after LPS stimulation in
THP-1 macrophages and primary HBECs: The levels of released IL-6 in the cell supernatants were
measured using multiplex ELISA and quantified using one-way ANOVA with Tukey’s multiple-
comparison test. Four independent experiments (n = 4) from THP-1 and primary human bronchial
epithelial cell supernatants obtained after pre-treatment with CBD or THC for 30 min and LPS
stimulation (3 h for THP-1 cells and 8 h for primary HBECs) were performed, and data are expressed
as means ± SD; * p < 0.05, ** p < 0.01, **** p < 0.0001. Each independent experiment was run in
duplicates. (Abbreviation: HBECs: Human bronchial epithelial cells). (C): CBD and THC decreased
the levels of IL-8 after LPS stimulation in THP-1 macrophages and primary HBECs: The levels of
released IL-8 in the cell supernatants were measured using multiplex ELISA and quantified using
one-way ANOVA with Tukey’s multiple-comparison test. Four independent experiments (n = 4)
from THP-1 and primary human bronchial epithelial cell supernatants obtained after pre-treatment
with CBD or THC for 30 min and LPS stimulation (3 h for THP-1 cells and 8 h for primary HBECs)
were performed, and data are expressed as means ± SD; * p < 0.05, ** p < 0.01, **** p < 0.0001. Each
independent experiment was run in duplicates. (Abbreviation: HBECs: Human bronchial epithelial
cells). (D): CBD and THC decreased the levels of TNF-α after LPS stimulation in THP-1 macrophages
and primary HBECs: The levels of released TNF-α in the cell supernatants were measured using
multiplex ELISA and quantified using one-way ANOVA with Tukey’s multiple-comparison test.
Four independent experiments (n = 4) from THP-1 and primary human bronchial epithelial cell
supernatants obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation (3 h for
THP-1 cells and 8 h for primary HBECs) were performed, and data are expressed as means ± SD;
** p < 0.01, **** p < 0.0001. Each independent experiment was run in duplicates. (Abbreviation: HBECs:
Human bronchial epithelial cells). (E): CBD decreased the levels of IL-10 after LPS stimulation in
THP-1 macrophages whereas CBD and THC decreased the levels of GM-CSF after LPS stimulation in
primary HBECs: The levels of released IL-10 and GM-CSF in the cell supernatants were measured
using multiplex ELISA and quantified using one-way ANOVA with Tukey’s multiple-comparison
test. Four independent experiments (n = 4) from THP-1 and primary human bronchial epithelial cell
supernatants obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation (3 h
for THP-1 cells and 8 h for primary HBECs) were performed and data are expressed as means ± SD;
** p < 0.01, **** p < 0.0001. Each independent experiment was run in duplicates. (Abbreviation:
HBECs: Human bronchial epithelial cells).

3.4. CBD and THC Curb the Cellular ROS Generation Induced by LPS in THP-1 Cells and HBECs

LPS and ATP can both induce ROS-dependent oxidative stress via multiple intra-
cellular mechanisms leading to the activation of caspase-1 and the secretion of IL-1β in
macrophages [36,37]. ROS-mediated oxidative stress is one of the well-characterized sec-
ond signals required for the activation of the NLRP3 inflammasome. Additionally, LPS
treatment alone can induce oxidative stress due to cytotoxicity and affects cell viability [38].
Hence, we measured the cellular ROS levels using the fluorogenic cell-permeable dye
DCFDA to quantitatively detect hydroxyl, peroxyl, and other ROS levels in live cells and
performed a cell viability assay using the dye trypan blue as an indicator of cytotoxicity.
We found that, as shown by others [36,37], LPS + ATP treatment significantly increased
ROS levels in THP-1 cells as compared with the vehicle, and pre-treatment with CBD and
THC substantially lowered the LPS + ATP-induced spike in ROS (Figure 5A). Remarkably,
we also discovered that the increased ROS generation induced by LPS + ATP was subdued
by CBD and THC in HBECs (Figure 5B). We found no difference in percentage cell viability
as measured by trypan blue assay in all experimental groups, indicating that the concentra-
tions of all chemicals used were not cytotoxic to our THP-1 cells and HBECs (Figure 5A,B).
These data suggest that CBD and THC noticeably prevent ROS generation initiated by
LPS + ATP in our non-immune and immune cells without being cytotoxic to them.
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Figure 5. Effect of cannabinoids on ROS generation and cell viability in THP-1 macrophages and
primary human bronchial epithelial cells. (A): CBD and THC decreased the cellular ROS levels after
LPS + ATP stimulation without affecting cell viability in THP-1 macrophages: The ROS levels and %
cell viability were measured using cellular ROS assay kit (Abcam) and trypan blue assay, respectively
and quantified using one-way ANOVA with Tukey’s multiple-comparison test. Four independent
experiments (n = 4) for ROS assay and three independent experiments (n = 3) for trypan blue assay
from THP-1 cells obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation
for 3 h followed by ATP 1 h were performed, and data are expressed as means ± SD; * p < 0.05,
*** p < 0.001. Each independent experiment was run in duplicates for both assays. (Abbreviation: LA:
LPS + ATP). (B): CBD and THC decreased the cellular ROS levels after LPS + ATP stimulation without
affecting cell viability in primary HBECs: The ROS levels and % cell viability were measured using
cellular ROS assay kit (Abcam) and trypan blue assay, respectively and quantified using one-way
ANOVA with Tukey’s multiple-comparison test. Four independent experiments (n = 4) for ROS assay
and three independent experiments (n = 3) for trypan blue assay from primary HBECs obtained after
pre-treatment with CBD or THC for 30 min and LPS stimulation for 8 h followed by ATP 1 h were
performed, and data are expressed as means ± SD; ** p < 0.01, **** p < 0.0001. Each independent
experiment was run in duplicates for both assays. (Abbreviation: LA: LPS + ATP; HBECs: Human
bronchial epithelial cells).

3.5. CBD and THC Decrease the Phosphorylation of STAT3 in Part via Reducing the
Phosphorylation of TYK2 after LPS Stimulation in HBECs but Not in THP-1 Macrophages

STAT3 is one of the most important downstream signaling molecules for many cy-
tokines, including IL-6 and TNF-α [39,40]. Following the activation of respective cytokine
receptors, tyrosine kinases, such as JAKs, phosphorylate STAT3 at Tyr-705 (p-STAT3),
leading to its dimerization and nuclear translocation and the transcriptional activation
of a variety of pro-inflammatory cytokines. We studied the ratio of expressions of total
STAT3 to p-STAT3 at Tyr-705 and discovered that CBD and THC significantly decreased the
upregulated ratio of t-STAT3/p-STAT3 after LPS stimulation in THP-1 macrophages and
HBECs (Figure 6A,B). We also determined the phosphorylation status of STAT1 and found
no significant changes in the ratio of t-STAT1/p-STAT1 in all our experimental groups
(data not shown). The signaling of one of the JAKs, TYK2-mediated STAT3, has been im-
plicated in chronic inflammatory diseases, such as cancer and Alzheimer’s disease [41,42].
A higher gene expression of Tyk2 is also associated with severe COVID-19 in a genome-
wide association study [16]. Hence, we measured the expression of the Tyk2 gene and the
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phosphorylation status of TYK2 (p-TYK2) after LPS treatment. We discovered that Tyk2
gene expression was significantly upregulated after LPS stimulation, which was efficiently
downregulated by CBD and THC in THP-1 macrophages and HBECs (Figure 6C). However,
surprisingly, the ratio of the expressions of p-TYK2/t-TYK2 was significantly higher in the
LPS group as compared with the vehicle, and CBD or THC was able to effectively diminish
this increase in p-TYK2/t-TYK2 ratio in THP-1 macrophages and HBECs (Figure 6D,E). Our
immunoblotting data indicate that CBD and THC inhibit cytokine-mediated TYK2-STAT3
signaling, thus demonstrating anti-inflammatory action.
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Figure 6. Effect of cannabinoids on TYK-2-mediated phosphorylation of STAT3 in THP-1 macrophages and
primary human bronchial epithelial cells. (A): CBD and THC decreased the ratio of the expressions of
phospho-STAT3 (Tyr-705)/STAT3 after LPS stimulation in THP-1 macrophages: Representative West-
ern blots of p-STAT3, STAT3, and GAPDH bands and the quantification of the ratio p-STAT3/STAT3
using one-way ANOVA with Tukey’s multiple-comparison test. Four independent experiments
(n = 4) of primary human bronchial epithelial cell lysates obtained after pre-treatment with CBD or
THC for 30 min and LPS stimulation for 3 h were analyzed, and data are expressed as means ± SD;
* p < 0.05, ** p < 0.01, *** p < 0.001. (B): CBD and THC decreased ratio of the expressions of phospho-
STAT3 (Tyr-705)/STAT3 after LPS stimulation in primary HBECs: Representative Western blots
of p-STAT3, STAT3, and GAPDH bands and the quantification of the ratio p-STAT3/STAT3 using
one-way ANOVA with Tukey’s multiple-comparison test. Four independent experiments (n = 4) of
THP-1 cell lysates obtained after pre-treatment with CBD or THC for 30 min and LPS stimulation for
8 h were analyzed, and data are expressed as means ± SD; * p < 0.05, **** p < 0.0001. (Abbreviation:
HBECs: Human bronchial epithelial cells). (C): CBD and THC decreased the gene expression of
Tyk2 after LPS stimulation in THP-1 macrophages and primary HBECs: The mRNA expression of
Tyk2 relative to GAPDH normalized to vehicle was quantified using one-way ANOVA with Tukey’s
multiple-comparison test. Four independent experiments (n = 4) using total RNA isolated from
THP-1 and primary bronchial epithelial cells obtained after by pre-treatment with CBD or THC for
30 min and LPS stimulation (3 h for THP-1 cells and 8 h for primary HBECs) were analyzed, and data
are expressed as means ± SD; **** p < 0.0001. Each independent experiment was run in duplicates.
(Abbreviation: HBECs: Human bronchial epithelial cells). (D): CBD and THC decreased the ratio of
the expressions of phospho-TYK2 (Tyr1054/1055)/TYK2 after LPS stimulation in THP-1 macrophages:
Representative Western blots of p-TYK2, TYK2, and GAPDH bands and the quantificationof the ratio
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p-TYK2/TYK2 using one-way ANOVA with Tukey’s multiple-comparison test. Four independent
experiments (n = 4) of THP-1 cell lysates obtained after pre-treatment with CBD or THC for 30 min
and LPS stimulation for 3 h were analyzed, and data are expressed as means ± SD; * p < 0.05,
*** p < 0.001, **** p < 0.0001. (E): CBD and THC decreased the ratio of the expressions of phospho-
TYK2 (Tyr1054/1055)/TYK2 after LPS stimulation in primary HBECs: Representative Western blots of
p-TYK2, TYK2, and GAPDH bands and the quantification of the ratio p-TYK2/TYK2 using one-way
ANOVA with Tukey’s multiple-comparison test. Four independent experiments (n = 4) of primary
human bronchial epithelial cell lysates obtained after pre-treatment with CBD or THC for 30 min and
LPS stimulation for 8 h were analyzed, and data are expressed as means± SD; ** p < 0.01, *** p < 0.001.
(Abbreviation: HBECs: Human bronchial epithelial cells).

4. Discussion

Chronic systemic inflammation (CSI) plays a crucial role in the development of a
variety of chronic human disorders. A normal acute inflammatory response is physically
limited, where the insult has occurred and resolves once the insult has passed. However, the
existence of several psychosomatic, biological, socioeconomic, and environmental factors
has been associated not only with the avoidance of the resolution of acute inflammation
but also with the promotion of a state of chronic low-grade sterile systemic inflammation
categorized by stimulation of different immune mechanisms discrete from those activated
during an acute immune response [43]. CSI is often triggered by sterile host-derived
DAMPs, and the most common triggers include unhealthy diet; lack of sleep and dis-
turbed circadian rhythm; physical inactivity; intestinal dysbiosis; (visceral) obesity; stress;
exposure to xenobiotics, such as tobacco smoking, hazardous chemical wastes, and air
pollutants; and chronic infections [43]. CSI has been associated with elevated circulating
levels of cytokines and chemokines. Additionally, persistent low-grade SCI eventually
results in collateral tissue and organ damage by promoting oxidative stress as one of the
major mechanisms [43,44]. The evidence from meta-analyses of long-term prospective
studies comprising 160,309 people showed that increased circulating levels of inflamma-
tory biomarker C-reactive protein were linked to increased risks of coronary heart disease,
ischaemic stroke, and mortality [45]. A recently published study showed that nonsurvivor
COVID-19 patients had increased levels of LPS, IL-6, and TNF-α, among others [46].

NLRP3 inflammasome activation via DAMPs and oxidative stress has been impli-
cated in increasing susceptibility to chronic inflammatory disorders, such as cardiovascular
diseases [44,47]. In addition, a recent clinical trial concluded that NLRP3 inflammasome
activation by antibody-mediated SARS-CoV-2 in monocytes/macrophages triggers inflam-
matory cell death and terminates the infection but causes systemic inflammation that
contributes to COVID-19 pathogenesis [48]. Similarly, elevated baseline levels of phos-
phorylated STAT proteins and defective JAK-STAT signaling have been immunologically
linked to chronic inflammation [49]. Inflammasome activation and IL-6-STAT3 signaling
have been proven to be associated with the severity of disease in patients with COVID-19
via inducing the release of pro-inflammatory cytokines [13,50]. Although cannabinoids
have documented evidence of being potent anti-inflammatory agents [51], the molecular
mechanisms behind the same remain largely unknown.

The purpose of our research was to elucidate the molecular mechanisms behind the
ability of major cannabinoids to inhibit the LPS-induced cytokine release in immune and
non-immune cells. We aimed to fill the knowledge gap, at least partly, by providing new
mechanisms of the anti-inflammatory action of CBD and THC. We selected human THP-1
macrophages as a representative immune cell model and primary HBECs as a representative
non-immune cell model to study in vitro cytokine release following LPS stimulation. The
reason for the use of non-immune and immune cells was to provide a clear distinction
between local and systemic anti-inflammatory mechanisms, respectively. Our data revealed
that pre-treatment with CBD and THC effectively decreased the expression of NLRP3 and
pro-IL-1β in THP-1 macrophages and HBECs (Figures 1A,C and 2A,C). The significantly
lowered expression of pro-caspase-1 was observed in THP-1 macrophages (Figure 1B) but
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not in HBECs (data not shown). However, the result of inflammasome activation, that is,
the maturation of pro-IL-1β to IL-1β, was substantially reduced by CBD and THC in THP-1
macrophages and HBECs (Figures 1D and 2C). These data suggest that CBD and THC
treatment alone inhibited NLRP3 inflammasome activation by reducing the expression
of inflammasome-associated proteins. CBD has been previously shown to inhibit NLRP3
inflammasome activation by reducing the expression of its proteins in the livers of high-fat
diet-treated mice and RAW264.7 murine macrophages [25]. However, indirect evidence
shows that THC can inhibit NLRP3 inflammasome activity by reducing caspase-1 and
IL-1β levels via cannabinoid 2 (CB2) receptor activation [5]. Hence, we showed for the
first time that THC inhibits the expression of NLRP3 inflammasome proteins to block its
activation in THP-1 macrophages and HBECs.

Our results demonstrated that the NF-κB-mediated transcriptional upregulation of
Nlrp3 and Il-1β after LPS stimulation was significantly abrogated by CBD and THC in THP-1
macrophages and HBECs (Figure 3C,D). However, CBD could downregulate p-NF-κB levels
in both immune and non-immune cells but not THC (Figure 3A,B). To better understand
the NF-κB data in THP-1 macrophages, we individually analyzed the levels of p-NF-κB and
NF-κB normalized to GAPDH due to significant changes in the expression of NF-κB after
LPS stimulation (Figure 3A). However, for HBECs, NF-κB levels did not alter after LPS
stimulation, so we normalized p-NF-κB levels to NF-κB for analysis (Figure 3B). These data
corroborate previously published research showing that THC does not affect LPS-activated
NF-κB signaling in BV-2 microglial cells [35]. Similarly, CBD has been shown to inhibit
NLRP3 activation by blocking the NF-κB pathway in vivo and in vitro, ref. [25], as also
shown in our data. The mechanism by which THC decreased NLRP3 activation is still
unknown. Zinc-finger protein growth factor independence 1 (Gfi1) is a transcription factor
that, upon activation, inhibits NLRP3 inflammasome activation in macrophages by binding
to the Gli-responsive element 1 (GRE1) in the Nlrp3 promoter [52]. Interestingly, THC has
been shown to increase the gene expression of Gfi significantly in vivo [53]. Hence, THC
might be able to inhibit NLRP3 inflammasome activation via upregulating Gfi activity,
which is currently under investigation in our laboratory.

Increased circulating levels of the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and
TNF-α are hallmarks in the immunopathology of chronic inflammatory diseases, including
COVID-19. Our IL-1β ELISA data demonstrated that high IL-1β-induced by LPS + ATP was
effectively attenuated by pre-treatment with CBD and THC in cell supernatants of THP-1
macrophages and HBECs (Figure 4A). Our multiplex ELISA data showed elevated levels
of IL-6, IL-8, and TNF-α after LPS stimulation, which were significantly downregulated
by CBD and THC alone (Figure 4B–D). Such effects of CBD and THC or combinations of
CBD and THC have been previously reported to inhibit the levels of cytokines post-LPS
in vitro and in vivo [35,54,55]. Furthermore, THC treatment is beneficial in alleviating
ARDS by inducing apoptosis in immune cells in a mouse model of ARDS [23]. Our data
in HBECs showed that CBD and THC suppressed the elevated levels of GM-CSF post-
LPS, which was congruent with previously published reports using peripheral blood
mononuclear cells isolated from human blood and immune cells [56,57]. Interestingly,
THC did not affect the increased IL-10 levels induced by LPS in THP-1 macrophages,
whereas CBD significantly reduced its levels post-LPS (Figure 4E). We believe that because
of the significant cytokine storm induced by LPS (higher levels of IL-6, IL-8, and TNF-α) in
THP-1 macrophages, the levels of the anti-inflammatory cytokine IL-10 were increased as a
compensation mechanism, indicating an imbalance between pro- and anti-inflammatory
cytokines. THC, in this case, proved to be a more potent anti-inflammatory cannabinoid
than CBD (Figure 4E). Such an effect of THC-induced increase in IL-10 levels has been
previously reported in monocytic myeloid-derived cells of endotoxemic mice via the
activation of CB1 receptors, leading to lung protection [58]. Oxidative stress-induced tissue
and organ damage occurring simultaneously with cytokine surge is highly characteristic in
the pathophysiology of chronic lung disorders and COVID-19 [59,60]. Our cellular ROS
generation assay revealed that CBD and THC substantially attenuated oxidative stress
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induced by LPS + ATP in THP-1 macrophages and HBECs without being cytotoxic to these
cells (Figure 5A,B). Our results are consistent with published reports showing that CBD
and THC possess considerable antioxidant properties [61,62].

As mentioned earlier, the cytokine-activated JAK-STAT pathway, especially the IL-6-
STAT3 pathway, has been linked to the induction of pro-inflammatory cytokines and the
pathophysiology of COVID-19 [12,13]. Our immunoblotting data revealed that CBD and
THC effectively diminished the increased p-STAT3/t-STAT3 ratio after LPS stimulation in
THP-1 macrophages and HBECs (Figure 6A,B). Our qRT-PCR results demonstrated that
CBD and THC significantly reduced the elevated expression of Tyk2, a JAK implicated
in the severity of COVID-19 [16], post-LPS treatment in THP-1 macrophages and HBECs
(Figure 6C). However, no changes were observed in the protein expression of TYK2 in
primary HBECs, and on the contrary, the protein expression of TYK2 in THP-1 macrophages
was significantly reduced after LPS stimulation (Figure 6A). This finding led us to analyze
phosphorylation of TYK2 (p-TYK2), and we found that the ratio of p-TYK2/TYK2 was
significantly higher after LPS treatment in both types of cells, which was significantly re-
duced by CBD and THC (Figure 6D,E). Although we have not investigated this mechanism,
TNF-α has been shown to activate JAK1 and TYK2 in human B cells to further stimulate
JAK1-STAT3 signaling via TNF-receptor-1 [39]. Additionally, IL-6 and TNF-α have both
been shown to activate STAT3 and NF-κB in human T cells to promote inflammatory tumor
growth [63]. CBD and THC have been proven to be effective in mice models of lung
inflammation and ARDS [23,64]. Hence, our data, along with other published literature,
strongly suggest that CBD and THC may be protective in lung inflammation by inhibiting
IL-6/TYK2/STAT3 pathways in HBECs; however, the contribution from other JAKs in this
regard remains to be investigated.

5. Limitations and Future Directions

Our study has several limitations that must be considered before interpreting the
results. Human THP-1 macrophages behave similarly to freshly isolated primary human
peripheral blood monocyte-derived macrophages (MDMs); however, changes in gene
expression after LPS stimulation markedly differ between them [65]. THP-1 cells are still
very widely used as an in vitro cell model to study inflammatory signaling. Nevertheless,
the experiments in this research work should be validated in MDMs or freshly isolated
murine monocytes/macrophages to reach definitive conclusions. Next, our focus in this
work was to decipher the role of cannabinoids in the regulation of anti-inflammatory
pathways. As shown in primary human skin keratinocytes and primary human dermal
fibroblasts, LPS stimulation increases the mRNA expression of CB1 and CB2 [66]. The ex-
pression of cannabinoid receptors is very likely to have been affected by LPS in our studies.
Such changes may have noticeable effects, especially with respect to THC pharmacology.
However, we were interested in studying cannabinoid receptor-independent mechanisms;
hence, CB1/CB2-specific ligands were not employed. Third, we pretreated our cells with
CBD and THC, as published elsewhere [21]; however, for future in vivo experiments, the
treatment of chronic inflammation can be mimicked by treating animals with cannabinoids
after the induction of inflammation. Lastly, in the future, the contribution of different
JAKs in inhibiting STAT3 signaling and transcription factors modulated by THC can be
identified by performing RNA sequencing. The role of cannabinoids on NLRP3 inflam-
masome assembly can be elucidated by studying protein–protein interactions between
NLRP3 inflammasome-associated proteins via co-immunoprecipitation, surface plasmon
resonance, or mass spectrometry.

6. Conclusions and Clinical Implications

Chronic inflammatory disorders are accountable for more than 50% of deaths world-
wide. The understanding and targeting of crucial inflammatory signaling pathways could
substantially support current therapy to improve patients’ quality of life. Our research
demonstrated that cannabinoids, particularly CBD and THC, inhibit NLRP3 inflamma-
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some signaling to attenuate the elevated levels of IL-1β released by LPS + ATP in THP-1
macrophages and primary HBECs. The possible mechanisms behind their action are via
inhibiting NF-κB priming and reducing cellular ROS generation (Figure 7). Moreover,
LPS-induced release of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was also
significantly weakened by CBD and THC, in part by inhibiting IL-6/TYK2/STAT3 pathway
in both THP-1 macrophages and primary HBECs (Figure 7). Our data strongly suggest that
CBD and THC can be developed as key therapeutic molecules to substantially diminish
inflammasome activation and IL-6-STAT3 signaling both locally at the level of lungs and
systemically in immune cells to support the current treatment of chronic inflammatory dis-
orders. These data must also be explored to consider CBD, THC, and/or their combination
as a strategy to curb cytokine storm during ARDS in COVID-19.
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Figure 7. Summary of anti-inflammatory pathways activated by CBD and THC to curb LPS-induced
cytokine storm: 1©. LPS activates TLR4 receptors which in turn phosphorylates NF-κB. Phosphory-
lated NF-κB moieties translocate to the nucleus, thereby upregulating the expression of variety of
pro-inflammatory genes. 2©. This TLR4-NFκB-mediated “priming” (increased expression of NLRP3,
pro-IL-1β, and pro-caspase-1) is the first step in the activation of NLRP3 inflammasome. 3©. LPS also
induces oxidative stress causing higher levels of ROS which in turn act as second “activation” signal
leading to NLRP3 inflammasome assembly and activation. 4©. The NLRP3 inflammasome activation
causes the release of mature IL-1β leading to cell death via pyroptosis. 5©. Along with inflammasome
activation, NFκB activation also increases the levels of variety of other pro-inflammatory cytokines
including IL-6. IL-6 binds to its receptors coupled to transmembrane protein, gp130, which in turn,
in part, phosphorylates TYK2. 6©. Phosphorylated TYK2, in turn, phosphorylates STAT3 leading
to the translocation of the latter to the nucleus. Phosphorylated STAT3 furthermore potentiates
NFκB activation. 7©. Nuclear translocation of STAT3 and NFκB activate gene expression of various
pro-inflammatory cytokines leading to cytokine release syndrome or cytokine storm. This cytokine
storm activates vicious cycle of IL-6 amplification (IL-6 AMP) which is implicated in chronic inflam-
mation, tissue injury, and organ damage. Our in vitro data revealed that CBD and THC block all the
steps numbered in the figure above in both THP-1 macrophages (immune cells) and primary human
bronchial epithelial cells (non-immune cells).
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