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Abstract: Remitting-RelapsingMultiple Sclerosis (RRMS) and Neuro-Behçet Disease (NBD) are two
chronic neuroinflammatory disorders leading to neurological damage. Herein, we investigated in
these patients the IL-10-producing cells during the early stages of these disorders. Cellular and
molecular investigations were carried out on treatment naive patients suffering from RRMS and
NBD recruited at the first episode of clinical relapse. Our findings demonstrate that CSF-B cells from
NBD patients, but not RRMS, are the major source of intrathecal IL-10 as compared to T-CD4 cells.
Moreover, we showed a lower expression of TGF-β and IL35, in the CSF cells of NBD patients as
compared to the control group. Specific in vitro CpG stimulation of peripheral blood B cells from
NBD patients resulted in a concomitant early mRNA expression of IL6 and IL10 but was limited to
IL10 for RRMS patients. Furthermore, mRNA expression of IL-6 and IL-10 receptors was assessed
and intriguingly IL6ST receptor subunit was significantly lower in NBD CSF, but not RRMS while
IL10RB was increased in both. Deciphering the role of increased IL-10-producing B cells and IL10RB
despite relapsing disease as well as the discordant expression of IL6 and IL6ST may pave the way for
a better understanding of the pathophysiology of these neuro-inflammatory disorders.

Keywords: Neuro-Behçet; multiple sclerosis; B cells; IL-10; IL-6

1. Introduction

Neuroinflammatory diseases are generally triggered when the CNS is infiltrated
by blood-borne leukocytes [1]. This inflammation is associated with the activation of
CNS-resident immune cells, the release of proinflammatory cytokines, the production
of reactive oxygen species and chemokines, and the infiltration of leukocytes through
disturbed blood-brain barriers. All these events create a positive feedback loop in which
continued recruitment and activation of leukocytes and glial cells can lead to sustained
inflammation and long-term neuronal damage [2]. Multiple Sclerosis (MS) is defined as an
immune-mediated neuroinflammatory neurodegenerative disorder of the central nervous
system (CNS) characterized by mild pleocytosis and T cell infiltration in the cerebrospinal
fluid (CSF) [3–5]. On the other hand, Neuro-Behçet’s disease (NBD), the neurological
involvement of Behçet’s disease, is a multisystem auto-inflammatory disorder, associated
with an inflammatory cascade and neutrophils infiltration in the CSF [6,7]. MS and NBD
are multifactorial, complex, and heterogeneous with different clinical and pathological
features. These disorders often afflict genetically predisposed individuals influenced by
environmental factors and dysregulated immune activation. Viral Infectious agents have
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been reported to be associated with the etiologies of CNS diseases. Indeed, it was recently
reported that the risk of MS increased 32-fold after infection with EBV but did not increase
after infection with other viruses [8].

T helper 1 (Th1), and Th17 cells secreting IFN-γ and IL-17 pro-inflammatory cytokines,
respectively, have been described as the major infiltrating lymphocytes within the CNS
in neuroinflammatory diseases which is common to MS and NBD [9]. These cytokines
orchestrate the inflammatory cascade and act on resident CNS cells to induce the production
of IL-1β, IL-6, and TNF-α. Studies on MS and Behçet’s disease reported that Th1 and Th17
cells are involved in the persistence and the progression of the disease [10–15]. Compared
to MS, NBD remains understudied in terms of immunopathogenesis, biologic markers, and
potential treatment targets.

Indeed, the activation of CD4(+) T cells within the CNS leads to the recruitment of
other cells, such as B cells, which could promote inflammation through the secretion of
autoantibodies, pro-inflammatory cytokines, or via antigen-presentation. The role of B cells
as a producer of proinflammatory cytokines and promoting the pathogenesis of chronic
neuroinflammation has set the stage after the success of the antiCD20 therapy in patients
suffering from multiple sclerosis [16]. B cells from MS patients were described to secrete
proinflammatory cytokines [17]. However, a subset of B cells has been described to play a
key role in regulating the immune responses to pathogens and autoantigens. This popu-
lation of regulatory B cells (Bregs) secretes predominantly IL-10, TGF-β and IL-35. IL-35
is a heterodimeric cytokine composed of two subunits IL-12p35/L-12α and IL-27β chains
Ebi3 encoded by IL12A and EBI3 (Epstein-Barr virus-induced gene 3), respectively. It was
shown that IL-10-producing B cells are necessary for recovery in experimental autoimmune
encephalomyelitis (EAE) [18]. The balance between pro and anti-inflammatory cytokines
secreted by a cell could be assessed by the study of its receptors [19]. Since both IL-10 and
IL-6 signaling is primarily transduced through STAT3, the study of their receptor emerged
as a convenient way to appreciate the responsiveness of the cells to these cytokines [20]. To
the best of our knowledge, no data are available on autoinflammatory diseases.

IL-10 was described as the major cytokine, which limits and prevents neurological
damage and resolves acute inflammatory phases but intriguingly we found that it was
increased in CSF of relapsing NBD. Most investigations were mainly focused on the produc-
tion of IL-10 by innate resident cells, microglial cells, and astrocytes [21]. Regulatory high
producing IL-10 B and T cells have been reported in other neuroinflammatory disorders,
but not in CSF of NBD patients. Along with IL-10, IL-6 was described to be elevated in NBD
patients and to contribute to the disease progression [22]. In our study, we aim to analyze
the contribution of cells in IL-10 production in both blood and CSF of patients suffering
NBD as compared to RRMS. In a second step, we examined the potential co-expressed
cytokines with IL-10 and explored the IL-6 and IL-10 receptor expression.

2. Materials and Methods
2.1. Patients

All recruited patients were sampled during the first clinical episode of acute disease
before any immunomodulatory treatment. All patients were enrolled from the Neurology
Service of Mongi Ben Hamida National Institute (Tunis, Tunisia), during 2017–2020. Sub-
jects were diagnosed based on clinical examination, magnetic resonance imaging (MRI),
and CSF laboratory data (IgG index, oligoclonal IgG band).

For this study, we recruited 38 Neuro-Behçet’s patients; 27 patients were enrolled
for the molecular exploration and 11 for the cellular studies and 50 patients suffering
from Multiple Sclerosis divided into 27 included for molecular investigation and 22 for
cellularstudies. The Neuro-Behçet group included in our study has a parenchymal involve-
ment and has fulfilled the International Study Group Criteria for Behçet’s disease [23].
Patients with a non-parenchymal form of NBD were excluded from the study. Multiple
sclerosis patients have remitting relapsing form (RRMS) and have fulfilled the revised
McDonald Criteria [24] All MS patients met the following inclusion criteria: age > 18 years
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old; have the relapsing-remitting (RR) form of the disease; they underwent conventional
MRI (3Tesla) with Gd-enhancement and lumbar puncture and showed positive oligoclonal
bands restricted to CSF by isoelectric focusing. They were examined and scored according
to Kurtzke’s Expanded Disability Status Scale (EDSS) to assess the clinical severity of the
disease. MS patients presenting a primary progressive form were not included. The Control
group consists of 24 subjects with non-inflammatory neurological diseases (NIND) with
a persistent headache that requires a lumbar puncture. Suspicions for those controls of
auto-immune or inflammatory neurological diseases are discorded after further analysis.
Due to the limited CSF cell count, we were confronted to divide patients (RRMS and NBD)
into two groups. For the first group of patients, we performed molecular exploration, and
for the second group, we performed cytometric analysis by using the whole sample of CSF.
Demographic, biological, and clinical characteristics of patients enrolled in this study are
summarized in Table 1.

Table 1. Demographic, biological and clinical characteristics of patients.

Group of Patients for Molecular Exploration Group of Patients for Cellular Exploration

Disease NBD MS NIND p NBD MS p

Number of patients 27 28 24 11 22

Sex ratio (F/M) (11/16) (23/5) (21/3) 0.0003 (5/6) (12/10) 0.72

Mean age 42.65 39.4 42.52
0.66

29.42 34
0.28(sd) (±11.47) (±10.58) (±20.1) (±9.03) (±12.07)

IgG Index 0.52 0.931 0.42
<0.0001

0.53 1.08
<0.0001(sd) (±0.36) (±0.49) (±0.05) (±0.04) (±0.05)

CSF/serum albumin ratio (10−3)
5.27 5.15 4.69

0.51
3.56 4.61

0.17(±1.488) (±1.788) (±2.059) (±1.468) (±1.335)

Cell count 0.96 × 106 0.34 × 106 0.18 × 106 <0.0001 0.99 × 106 0.32 × 106 <0.0001

EDSS 22 - 2

Form of the disease Parenchymal Relapsing - Parenchymal Relapsing
-remitting -remitting

Patients in relapse all all - all all

Patients under therapy none none - none none

NBD = neuro-Behçet disease; RRMS = relapsing-remitting multiple sclerosis; NIND = non-inflammatory neu-
rological disease; F = female; M = male; EDSS = the Expanded Disability Status Scale; CSF, cerebrospinal fluid.
Categorical variables were calculated via Chi-square, Kruskal–Wallis test was used to compare 3 groups, and
Independent Mann-Whitney was used to compare 2 groups for continuous variables. Statistical significance was
defined at p < 0.05.

The ethical approach of this study was approved by the institutional ethical committee
and written informed consent was obtained from all participants before the inclusion in the
study (ethical committee code: IPT/PCI-LR11IPT02/22/2013).

2.2. Sample Collection and Processing

Blood and cerebrospinal fluid (CSF) of controls (NIND) and patients suffering from
inflammatory disorders of the CNS were collected. Patients were sampled at the first
time of clinical relapse. Up to 5 mL of peripheral blood was collected by venipuncture
and up to 3 mL CSF was collected by lumbar puncture on ice. Peripheral blood mononu-
clear cells (PBMCs) were immediately isolated by Ficoll-Hypaque (Eurobio, Paris, France)
density gradient centrifugation. CSF was centrifuged at 1650 rpm for 10 min at +4 ◦C to
isolate the cells. PBMCs and CSF cells pellets were resuspended in RPMI 1640 medium
supplemented with 10% heat-inactivated FCS, 1.5 mM L-glutamine, 100 U/mL penicillin
and 100 µg/mL streptomycin (Gibco BRL–Life Technologies, Grand Island, NY, USA) for
intracellular staining and functional study. For the group of patients intended for molecular
investigations, purified PBMCs were stored in Trizol reagent (Sigma-Aldrich, Taufkirchen,
Germany) and CSF cells were resuspended in an RLT buffer supplemented with 2% of
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beta mercapto-ethanol (QIAGEN, Venlo, The Netherlands). These samples were stored at
−80 ◦C for ensuing RNA extraction.

2.3. Intracellular Il-10 Staining

Freshly isolated PBMCs and CSF cells were activated for six hours with PMA (50 ng/mL,
Sigma-Aldrich), ionomycin (500 ng/mL, Sigma-Aldrich), and Golgiplug (BD Biosciences,
Paris, France) before flow cytometric analysis. Cells were immunostained by surface anti-
body anti-CD19 (HIB19) and anti-CD4 (RPA-T4) conjugated respectively with Fluorescein
isothiocyanate (FITC) and Allophycocyanin (APC) (BD Biosciences, Paris, France). Cells
were fixed and permeabilized according to Cytofix/Cytoperm™ Kit protocol (BD Bio-
sciences, Paris, France). Intracellular Phycoerythrin (PE) conjugated anti-IL-10 antibody
(JES3-9D7) was added to cell suspension for 1 h in dark at +4 ◦C (BD Biosciences, Paris,
France). Data were analyzed using the FlowJo software (version 7.6).

2.4. IL-10 and IL-6 Expression Kinetics

Freshly isolated PBMCs were adjusted to 1 × 106 cells/mL and were seeded onto
24-well flat-bottom plates (Corning, New York, NY, USA) in presence of 3 µg/mL of
CpG ODN 2006 (CarthaGenomics, Tunis, Tunisia) or left unstimulated at 37 ◦C with
5% CO2. Cells were harvested at 1 h, 3 h, 6 h and 24 h after stimulation and stored in RLT
supplemented with 2% of beta mercapto-ethanol at −80 ◦C for subsequent RNA extraction.
Quantitative real-time PCR analysis was carried out to assess the IL-10 and IL-6 induction
using the appropriate primers upon the stimulation with CpG ODN 2006.

2.5. RNA Extraction and Quantitative Real Time PCR

RNAeasy mini kit (QIAGEN, Venlo, The Netherlands) was used to extract RNA from
PBMCs and CSF cells. The extracted RNA was controlled in terms of quality and quantity
using agarose gel electrophoresis and NanoDrop respectively. Reverse transcription was
performed on DNase I treated RNA utilizing High-capacity cDNA reverse transcription kit
(Applied Biosystems by Thermo Fisher, Vilnius, Lithuania) following the manufacturer’s
recommendations. Quantitative real-time PCR was carried out using SyberGreen technol-
ogy on the Applied Biosystems ABI PRIZM 7500 Real-Time PCR System following the
protocol described by Belghith et al. 2018 [25]. In the present study, we quantified genes
encoding for regulatory cytokines TGF-β and IL-35 including the two subunits IL-12p35
and IL-27 β namely TGFB, IL12A, and EBI3. Furthermore, we quantified the genes en-
coding for IL-6 (IL6) and its receptor composed by gp130 (IL6ST) and IL-6rA(IL6R), and
IL-10 (IL10) and the two subunits IL-10RA(IL10RA) and IL-10Rβ (IL10RB). Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as an endogenous reference to perform
Relative quantification of mRNA run in duplicate in three independent experiments. The
sequences of the employed primers are consigned in Supplementary Table S1. Randomly,
the obtained PCR products were supplementary checked on an agarose gel.

2.6. Statistical Analysis

GraphPad Prism version 8.0.0 for Windows, GraphPad Software, San Diego, CA, USA
was used for all the graphs, calculations, and statistical analyses. The Mann–Whitney
U test and Wilcoxon signed-rank test were used to compare between two groups and
Kruskal-Wallis test for three or more groups with nonparametric data. Categorical variables
describing characteristics of patients and controls were compared with contingency tables.
Values of p ≤ 0.05 were considered significant.

3. Results
3.1. CD19 B Cells Are a Major Contributor to IL-10 Production in the CSF of NBD

To better characterize the source of highly expressed IL-10 reported in the CSF of
parenchymal-NBD patients as compared to RRMS patients [14]. We herein confirmed by
flow cytometry high intracytoplasmic IL-10 expression in blood and CSF cells from NBD
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patients. In addition, we sought to investigate the cellular origin of IL-10 by studying
IL-10-producing B and CD4+T cells subsets at the first episode of the clinical symptoms of
NBD as compared to RRMS and NIND.

Total CSF cells of NBD patients in comparison with CSF cells of RRMS showed that
IL-10 levels were significantly higher in NBD than in RRMS patients (p = 0.0098) (Figure 1A).
A representative histogram of IL-10 intracytoplasmic expression in NBD versus RRMS
is shown in Figure 1B. This pattern was also observed in the PBMCs of the two groups
of patients (p = 0.0194) (Figure 1A). In contrast, the gating on IL-10+ cells in the PBMCs
showed no difference in IL-10 production by CD4 and B (Figure 1C), suggesting that in
blood other cells significantly contribute to IL-10 production. In the CSF, higher CD19+/IL-
10+ B cells percentage was observed in NBD as compared to RRMS (p = 0.0382) (Figure 1C).
The distribution of IL-10+/CD19+ B cells is significantly higher than that of IL-10+/CD4+
T cells in CSF of NBD patients as compared to RRMS patients (p < 0.0001), reflecting a
stronger contribution of CSF B cells to IL-10 production in the NBD group.

Figure 1. Flow cytometry analysis of IL-10-producing cells in CSF and total PBMCs. (A) Comparative
histogram of IL-10 frequencies within the CSF and total PBMCs from RRMS (n = 22) and NBD
(n = 11) patients. (B) A Representative intracellular expression of IL-10 in the total CSF of RRMS
and NBD patients. (C) Histogram representation of comparative contribution of CD19 and CD4
cell subsets in CSF and PBMCs of NBD and RRMS patients. The results are mean ± SEM with.
Boxplots represent the percentage of IL-10-producing CD19 and CD4 cells in the CSF and PBMCs of
neuro-immunological disorders RRMS (n = 22) and NBD (n = 11). Statistical significance between two
groups was assessed using the Wilcoxon–Mann–Whitney test. (D) Bar charts plots of the percentages
and frequencies of IL-10 positive cells in the whole CSF and blood. Representation ofCD4 IL-10+
cells, CD4 IL-10- cells, CD19 IL-10+ cells, CD19 IL-10- cells and the otherundetermined cells secreting
or not IL-10 of NBD and RRMS patients. ns = non significant.
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The representation in Figure 1D of respective B, T and other cells contribution to
IL-10 production highlights the predominant presence of IL-10-producing B cells in the
CSF of NBD. Interestingly, we noted in the CSF and PBMCs of the NBD patients the
presence of an IL-10-producing population that was neither CD19 nor CD4. This fraction of
non B non T IL-10+ cells represents 2.7% in CSF and 1.78% in PBMCs of NBD and is higher
than that observed in RRMS (p = 0.003) (Figure 1D).

3.2. IL-10 Expression Is Not Associated with the Regulatory Markers TGF-β and IL-35

Generally, IL-10 secretion is the hallmark of a specific B cell population called Breg
cells. Along with IL-10, IL-35 and TGF-β are effective cytokines secreted by Breg which
contribute to fine-tuning immune responses and preventing tissue damage. We then
investigated the mRNA expression levels of the genes encoding for TGF-β and the two
subunits of IL-35: Ebi3 and IL-12p35. These analyses were performed on PBMCs and CSF
of the two groups of patients and the control group addressed as NIND (non-inflammatory
neuro-immunological disorders). We noticed, in PBMCs, no significant differences in the
TGFB mRNA expression between the three studied groups (Figure 2A). Conversely, in the
CSF, we observed a significant decrease of mRNA TGFB expression in the NBD patients
as compared to the NIND control group (p = 0.0229) (Figure 2A). When analyzing the
expression profile of the two subunits of the IL-35 cytokine in the samples of the three
studied groups, we noticed no significant differences in the EBI3 expression in the PBMCs
(Figure 2B), among the three groups. We noticed in the CSF that EBI3 mRNA was slightly
increased in NBD compared to RRMS. However, we observed a significant decrease in
IL-12A mRNA expression in the CSF of the NBD group as compared to the NIND group
(p = 0.0472). Interestingly, in PBMCs, IL-12A was significantly increased in RRMS and NBD
patients as compared to controls (p = 0.0004; p < 0.0001) (Figure 2C).

Figure 2. Boxplots representation of CSF and PBMCs regulatory cytokines expression in patients and
NIND. (A) Representative boxplots of TGF-β expression in the PBMCs and CSF cells of NBD (n = 25),
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RRMS (n = 22) and NIND (n = 23) (B) IL12-p35 expression in PBMCs and CSF cells per group.
(C) Representative boxplots of Ebi3 expression in PBMCs and CSF cells of NBD, RRMS and NIND.
Statistical significance between two groups was assessed using the Wilcoxon–Mann–Whitney test.
ns = non significant.

3.3. Kinetics of IL10 and IL6 Expression

In the CSF of NBD, we showed increased IL-10-producing B cells, without elevated
TGF-β nor IL-35 expressions. B cells may also secrete pro-inflammatory cytokines in
response to various stimuli. TLR9 signaling mediates the activation of B cells by increasing
secretion of pro-inflammatory (IL-6) and immune regulatory (IL-10) cytokines [26].

Upon stimulation by CpG we observed a peak expression occurring after 1 h for both
IL6 and IL10 from PBMCs of NBD patients. For the NIND group, the highest induction of
IL10 and IL6 expressions was reported after 3 h of stimulation. Interestingly, we observed a
lower induction of Il-6 expression at 1 h of PBMCs ‘CpG stimulation in RRMS as compared
to PBMCs from NBD patients (p = 0.013) (Figure 3A). However, for IL10 induction, no
significant difference was noted between the two groups of neuroinflammatory disorders
(Figure 3B). Taken together, these results showed a concomitant early expression of IL10
and IL6 in patients suffering from NBD in contrast to RRMS patients.

Figure 3. Dynamics of IL10 and IL6 expressions in RRMS and NBD patients. (A) IL6 induction in
PBMCs of RRMS, NBD and NIND at 1, 3, 6 and 24 h following TLR9 ligation by CpG ODN2006.
The results are mean ± SEM with * p ≤ 0.05 a minimum of three independent experiments. (B) IL10
induction by CpG in PBMCs of RRMS, NBD and NIND at 1, 3, 6 and 24 h following TLR9 ligation
by CpG ODN2006. Statistical significance was assessed using nonparametric multiple t-test and
Kruskal–Wallis tests.

3.4. Differential Expression of IL-10 and IL-6 Receptors

By further exploring the signaling pathways of IL-6 and IL-10, we performed in the
CSF, the mRNA relative quantification of the subunits of IL10 and IL6 receptors. Genes
encoding forIL10Rα, IL10Rβ, IL6Rα, and gp130 were assessed by quantitative real-time
PCR in the PBMCs and CSF of the studied groups (RRMS, NBD and NIND).

In PBMCs, we did not detect any significant difference in the expression levels of the
two subunits of the IL-10 receptor, between the three studied groups. Though studying the
two subunits of the IL6 receptor in the same compartment, we noted that the IL6RA was
equally expressed in the three groups while the IL6ST was decreased in the NBD group as
compared to the RRMS patients (p = 0.0374) and the NIND group (p = 0.0178) (Figure 4A).
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Figure 4. Boxplots representation of subunits of IL-10 and IL-6 receptors expression in CSF and
PBMCs cells of patients and controls. (A) Blood expression of IL10RA, IL10RB, IL6R, and IL6ST in
NBD (n = 21), RRMS (n = 23) and NIND (n = 19). (B) CSF expression of IL10RA, IL10RB, IL6R, and
IL6ST in NBD, RRMS and NIND. Statistical significance between the two groups was assessed using
the Wilcoxon–Mann–Whitney test; ns = non significant.
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We performed in the CSF, the mRNA relative quantification of the subunits of IL-10 and
IL-6 receptors. For the IL10, we found an increase in IL10RB in the two groups of patients
as compared to controls (NBD versus NIND p = 0.0045); (RRMS versus NIND p = 0.0403).
Concerning the IL6 receptor subunits, IL6ST was found to be more expressed in the group
of RRMS patients as compared to NBD (p = 0.0296) (Figure 4B).

4. Discussion

The cellular source of IL-10 in the cerebrospinal fluid of neuroimmunological disorders
is poorly studied. Here, we investigated the IL-10-producing cells in the blood and CSF of
RRMS and NBD patients, enrolled at the first episode of the disease before any treatment.
We first analyzed cellular secretion of IL10 and showed in NBD CSF patients, a higher
proportion of IL10 producing cells as compared to RRMS patients. Moreover, our data
argue in favor of B cells as being the predominant secretors of IL10 in NBD CSF while both
T CD4 and B cells secrete IL-10 in RRMS CSF. Elevated levels of IL-10 have been reported
in chronic inflammatory diseases such as systemic lupus erythematosus (SLE), rheumatoid
arthritis (RA), systemic sclerosis (SSc), and adult-onset Still’s a disease (AOSD) [27]. In the
model of BD, elevated IL-10 levels have been reported in patients’ lesions [28].

The central nervous system has been proposed as a fostering environment for B cells
in a variety of neurological disorders, including multiple sclerosis [29,30]. The trafficking
of B cells into the CNS is guided by several chemokines, which control migration across
endothelial barriers. Previous studies on MS and NB patients showed increased levels
of CXCL9/CXCL10 chemokines associated with B cells migration [31–33]. Furthermore,
CXCL13, responsible for follicle formation and differentiation of B cells [33–36], and BAFF(B-
cell activating factor), promoter of long-term survival of B cells, were shown to be up-
regulated in both RRMS and NBD [37–40]. Other studies indicated that the majority of
RRMS patients have elevated CSF B cell levels as compared to progressive MS and other
neurological diseases. The follow-up of these patents showed that the frequency of B
cells in the CSF of MS patients is inversely correlated with the disease severity [41–43].
The most frequent B cell subpopulation in MS CSF was CD19+CD138− mature B cells
followed by CD19+CD138+ plasmablasts [41]. On the other hand, in Behçet’s disease,
B cells play an active role in the inflammatory process asCD20+ B cells were detected
in a ruptured pulmonary artery aneurysm [44]. The up-regulated mRNA expression of
BAFF was described in three cases of Neuro-Behçet skin biopsies. Moreover, previous
results showed an intrathecal increased production of BAFF in NBD CSF patients [37]. The
increased proportion of IL-10-producing B cells in the CSF of NBD described in our study
is in accordance with the data reported by Yang et al. who showed that BAFF may lead to
an expansion of IL-10-producing B cell subpopulation by several potential mechanisms,
including differentiation of regulatory B cells or BAFF-induced proliferation or protracted
survival of this subpopulation [45].

B regulatory cells with anti-inflammatory capacity have been shown to inhibit the
expansion of inflammatory T cells through the production of IL10 and IL-35 and TGF-β. We
demonstrated lower levels of TGF-β in CSF of NBD patients as compared to controls and
no difference in the blood compartment of the three studied groups. The lower expression
of TGF-β observed in NBD CSF is consistent with a previous report that showed decreased
levels of the secreted TGF-β cytokine [46]. TGF-β producing B regs were shown to induce
apoptosis of CD4+T cells and cell anergy in CD8 T effector cells [47]. This growth factor
plays an essential role in tolerance by inducing T cells into Foxp3 Tregs. The expression of
TGF-β observed in the CSF and blood compartments of RRMS patients is consistent with a
previous report showing a correlation between enhanced levels of this growth factor and
disease progression [48]. In our study, the patients were enrolled at the first episode of the
disease and no CSF sample, other than the first one, was accessible to allow follow-up of
this parameter.

The blood IL-10-producing B cells of RRMS patients herein observed as not signifi-
cantly different from NBD (1.47% vs. 1.04%) were already described in MS patients not
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receiving rituximab [49]. Indeed, several studies have documented that naïve B cells are
the predominant producers of IL-10 [50], and others showed that CD27+ memory B cells
represent the main producers of this cytokine [51].To our best knowledge, secreting IL10 B
cells during NBD has not been previously investigated.

The rationale behind the study of the expression of the two subunits of IL-35 (IL-12p35
and Ebi3) in the cerebrospinal fluid of RRMS and NBD patients, was the assessment of
their effective co-expression since these subunits are shared by other cytokines. Our data
indicate a significant decrease of IL-12p35 in the CSF of NBD compared to controls with no
difference in the expression of the Ebi3 subunit. No correlation between the two subunits
was observed. In contrast, we noted a significant increase of IL-12p35 in the blood of both
NBD and RRMS as compared to the control group. The increased mRNA expression of IL-
12p35 is in agreement with data already reported in the RRMS [52] and Behçet patients [53],
suggesting a potential concomitant increase of IL12 cytokine.

Taken together, our data obtained in the CSF of NBD patients showed the existence
of a population of B cells producing IL-10 with decreased expression of TGF-β. We could
speculate that those IL-10-producing B cells may secrete other proinflammatory cytokines
(i.e., IL-6, GM-CSF, TNF-α). Indeed, Lighaam et al. discussed that IL-10-producing B
cells often co-express pro-inflammatory cytokines like IL-6 and TNF-α [26]. In this study,
we focused on IL6 induction in B cells. IL-6 in the CNS was previously described as a
biomarker that correlates with the NB disease activity [54]. In vitro stimulated CpG from
NBD showed a concomitant higher early expression of IL-10 and IL-6, however, CpG from
RRMS patients showed IL-10 secretion only by B cells with lower levels as compared to
NBD. When cultured in vitro, B cells from MS patients exhibited a striking defect in their
ability to secrete IL-10 cytokine after prolonged stimulation [55]. Furthermore, the lower
induction of IL-6 in RRMS may be partially explained by the reduced expression level of
the CpG target, the TLR9, in memory B cells known to be increased in MS patients. Indeed,
inducing IL-6 production by these memory B cells in RRMS patients requires a combination
of a high-dose CD40L and additional stimulatory molecules [56].

When assessing the expression of the receptors of IL-10, we noted an increase of
IL10RB in CSF of NBD and RRMS as compared to NIND. We could speculate that this
increase is associated with the presence of cytokines sharing the same receptor subunit e.g.,
IL-26, which was described to be increased in the CSF of NBD and untreated MS [57,58].
Interestingly, we also report an over-expression of IL6ST (gp130) in RRMS patients com-
pared to NBD in the blood and the CSF. It was previously described that gp130 expression
mediates CNS-infiltration and causatively induces EAE by particularly promoting the early
development of pathogenic TH17 cells [59]. The differential expression of gp130 between
the two disorders could explain the increased intrathecal expression of Ig found in RRMS
and the presence of OCB while gp130 signaling via STAT3 in B cells promotes long-lived
plasma cells and Ig production [60–62].

Our data demonstrate that intrathecally produced IL-10 is mostly attributed to B
cells than to TCD4. Given the ability of cytokine-expressing B cells to modulate immune
responses in an antibody-independent manner, elucidating cytokine phenotype of those
cells and the underlying pathways are of considerable interest not only in understanding
the pathogenesis of neuroinflammatory disorders but also for the identification of novel
therapeutic strategies.

Furthermore, after the striking success of rituximab (anti-CD20) in various inflamma-
tory neurological disorders, the B cell role in the pathophysiology of these two disorders
(MS and NBD) gained much more attention. This treatment has already been proven to
have beneficial effects in patients with inflammatory demyelinating disorders including
MS [52]. Anti-CD20 significantly reduced the number of gadolinium-enhancing lesions, the
number of relapses in RRMS patients [16] and led to the expansion of a rare regulatory B
cell population [63]. Interestingly, rituximab was also reported as efficient in severe ocular
manifestations of Behçet’s disease [64] and two cases of neuro-Behçetpatients presenting
pseudotumoral lesions and one with relapsing NBD [65,66]. No studies exploring the
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underlying causes of rituximab efficiency in these rare cases of NBD were performed.
Mechanisms of action on B cells might be different in these two diseases. Our Results
plead in favor of B Cells being a promising therapeutic target in Neuro-Behçet even in the
early stages. Nevertheless, we admit that this study is subject to limitations. Indeed, due
to sampling constraints and the limited amount of cells in CSF several phenotypical and
functional characteristics of the B cell were not extensively studied. We also acknowledge
that a higher number of patients would increase the statistical power of this study.

5. Conclusions

In conclusion, the most striking finding in this study is the presence of IL-10 producing
cells in the CSF of NBD and RRMS patients. We found a major contribution from B cells to
this secretion of IL-10 in the CSF of NBD patients but not RRMS. This predominance of IL-
10-producing B cells in NBD CSF did not correlate with either TGF-β nor IL-35 suppressive
cytokines expression. Following CpG activation of peripheral B cells, we observed a
concomitant expression of both IL10 and IL6 in NBD but not in RRMS B cells, while the
latter express mainly IL10. Finally, the discrepancies we report in the expression of the IL6ST
receptor subunit between both diseases may be relevant to the underlying inflammatory
process. Taken together, these novel findings may pave the way to further studies aimed to
better understand the role of these in situ IL-10-producing B cells in the balance between
immunosuppressive and inflammatory processes governing the immunopathology of these
two diseases.
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