
����������
�������

Citation: Scipioni, L.; Ciaramellano,

F.; Carnicelli, V.; Leuti, A.; Lizzi, A.R.;

De Dominicis, N.; Oddi, S.; Maccarrone,

M. Microglial Endocannabinoid

Signalling in AD. Cells 2022, 11, 1237.

https://doi.org/10.3390/cells11071237

Academic Editor: Zhao-Hui Song

Received: 6 March 2022

Accepted: 4 April 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Microglial Endocannabinoid Signalling in AD
Lucia Scipioni 1,2,†, Francesca Ciaramellano 2,3,† , Veronica Carnicelli 1, Alessandro Leuti 2,4, Anna Rita Lizzi 1,
Noemi De Dominicis 1,4 , Sergio Oddi 2,3,*,‡ and Mauro Maccarrone 1,2,*,‡

1 Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc,
67100 L’Aquila, Italy; lucia.scipioni@graduate.univaq.it (L.S.); veronica.carnicelli@univaq.it (V.C.);
annarita.lizzi@univaq.it (A.R.L.); noe.dedominicis@gmail.com (N.D.D.)

2 European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
fciaramellano@unite.it (F.C.); a.leuti@unicampus.it (A.L.)

3 Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
4 Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
* Correspondence: soddi@unite.it (S.O.); mauro.maccarrone@univaq.it (M.M.);

Tel.: +39-06-5017-03213 (S.O.); +39-086243-3547 (M.M.)
† These authors contributed equally to this work.
‡ These authors contributed equally to this work.

Abstract: Chronic inflammation in Alzheimer’s disease (AD) has been recently identified as a major
contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune
cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-
inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the
stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are
pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial
activity both under normal and AD-driven pathological conditions. Here, we review the current
literature regarding the involvement of this signalling system in modulating microglial phenotypes
and activity in the context of homeostasis and AD-related neurodegeneration.
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1. Introduction

Compelling genetic and pathological evidence strongly supports the “amyloid cascade
hypothesis” of AD, which states that beta-amyloid (Aβ), and in particular the least soluble
42-amino-acid-long Aβ isoform, is the causative agent in the pathogenesis of all forms of
AD [1,2]. However, Aβ appears to be a necessary, yet insufficient, factor for AD develop-
ment [3]. Indeed, not all elderly patients who have significant amyloid plaque pathology
develop the disease or show cognitive impairment, indicating that other ageing-promoting
processes, by compromising the brain’s capacity to respond to Aβ peptides adequately,
can determine the pathogenic evolution of amyloidosis [3]. Recent evidence supports the
idea that microglial dysregulation is indeed a crucial driver in the pathogenesis of AD [4].
Altered/dystrophic microglial cells could contribute to aggravating and propagating an
Aβ-pathologic cascade throughout the brain [5,6] by acquiring a “pro-AD” phenotype that
consists of: (i) the chronic release of pro-inflammatory cytokines and other inflammatory
mediators, such as reactive oxygen and nitrogen species; (ii) reduced phagocytosis and Aβ
clearance; (iii) reduced release of neurotrophic factors; (iv) reduced release of pro-resolving
factors; and (v) reduced motility (chemotaxis).

The immune system can be modulated and regulated by humoral factors and metabolic
products. Among these, eCBs are bioactive lipids that increase or decrease distinct im-
mune functions when mobilized at the very beginning or shortly after first-line immune
modulators [7]. Notably, microglia express the array of receptors and metabolic enzymes
(collectively termed “ECS”) that control the immune-related functions of eCBs [8]. This

Cells 2022, 11, 1237. https://doi.org/10.3390/cells11071237 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11071237
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-1899-8628
https://orcid.org/0000-0002-7386-442X
https://orcid.org/0000-0002-6217-698X
https://orcid.org/0000-0002-3990-2963
https://doi.org/10.3390/cells11071237
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11071237?type=check_update&version=1


Cells 2022, 11, 1237 2 of 22

system displays a wide distribution throughout the body and is involved in many adaptive
responses to stressful internal and/or environmental insults. During the last few years, the
brain ECS—by virtue of its capability of orchestrating neuromodulatory, anti-excitotoxic,
anti-inflammatory/pro-resolutive, and anti-oxidative actions—has emerged as a key player
in several neurodegenerative disorders, including AD [9].

In this review, we highlight the relevance of eCBs signalling in microglial physiology
and its therapeutic potential to maintain/restore microglial homeostatic functions in the
context of AD. A brief overview of the ECS is presented to summarize its key components
and the different signalling pathways that it can elicit. Then, the possible roles of eCBs in
microglial biology are discussed, describing how these bioactive lipids may regulate the
cellular processes involved in the homeostasis of the normal and diseased brain, such as
phagocytosis, chemotaxis, cytokine/neurotrophic factor release, microglial differentiation,
and activation. Finally, current evidence that supports the idea that targeting microglial
ECS may represent a valuable disease-modifying strategy for AD is briefly described and
commented on.

2. Microglia

Microglia, the resident immune defence in the brain, modulates the development, activ-
ity and plasticity of the central nervous system (CNS). To perform these complex functions,
microglia adopt different activation states/phenotypes, depending on the microenviron-
ment, which engage them in neuroinflammation, tissue repair, and even pro-resolutive
inflammatory processes [10,11].

2.1. Microglial Functions and Phenotypes

Microglia represent highly versatile cells that play a pivotal role in the neurobiological,
neuroinflammatory and neurophysiological homeostasis of the CNS in both health and
disease. Often referred to as brain-resident macrophages—a definition that has been often
criticized due to the ontogenetic and functional differences between these two cell types—
microglia maintain neuroinflammatory homeostasis by interacting with other immune cells
(e.g., T cells) and by releasing a vast array of pro- and anti-inflammatory cytokines and
endogenous lipids, such as eCBs, arachidonic acid-derived autacoids and pro-resolving
mediators [12–14]; on the other hand, they also participate in pivotal brain functions, such
as the elimination of dead neurons and cell debris [14], synapse pruning and, to a minor
extent, the regulation of the synaptic neurotransmitter tone.

In general, “resting” microglial cells exhibit a highly ramified appearance that gives
them the ability to constantly survey the surrounding brain parenchyma, as they look for
the presence of danger-, pathogen- or resolution-associated molecular patterns (DAMP,
PAMP and RAMP, respectively) through their vast array of recognition systems represented
by Toll-like receptors (TLRs), Nod-like receptors (NLRs), C-type lectin receptors (CLRs)
and RIG-like receptors (RLRs), altogether referred to as pattern recognition receptors
(PRRs) [15,16]. In particular, PRRs expressed on microglia surfaces recognize any molecular
signal that indicates damage or cell stress, including ATP, nucleic acids, necrotic cells and
cell debris and, relevant to this review, misfolded proteins such as Aβ species [14,15].
The recognition of any of these ligands leads to their internalization and the activation of
microglia. Although in different neuroinflammatory and neurodegenerative paradigms,
microglial cells have been reported to sport quite a vast array of morphologies, their
pathological activation generally results in the transition towards an amoeboid phenotype
that triggers potent neuroinflammatory reactions through the secretion of cytokines and
chemokines [17,18]. Furthermore, depending on the nature of the recognized stimulus
and/or the surrounding milieu to which they are exposed, microglia can assume different
profiles, or phenotypes, the equilibrium of which contributes to the onset and outcome of
neuroinflammatory and neurodegenerative mechanisms.
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2.1.1. Microglial Phenotypical Heterogeneity

The past three decades have seen a quite lively debate about the different states that
microglial cells can display under physiological and pathological conditions. A common
classification that has been widely applied to describe microglia phenotypes—one that
mimics the approach used to describe pro- and anti-inflammatory macrophages—involves
the use of the M1–M2 dichotomy to describe detrimental or neuroprotective states of
microglial cells, respectively [19]. On the other hand, although a number of microglial
markers have been associated with neuroinflammatory or pro-homeostatic properties
of these cells, pieces of evidence suggest that microglia exist in vivo as a rather blurred
distribution of states, two of which are described by the M1–M2 paradigm [20,21].

Relevant to this, although a few surface markers are commonly utilized in several
panels to characterize microglia—first and foremost, CD11b, CD68 and HLA-DR—these
lack the specificity to differentiate between the discrete states that the M1–M2 dichotomy
is supposed to describe (mostly because they can be expressed both on M1- and M2-like
cells, though at different levels) [22]. On the other hand, other markers are currently used
to assess the immunophenotypical distribution of microglial cells, including CD14, CD11c,
CD16/32, CD33, CD36, CD64, CD163, CD206, CD200 or the triggering receptor expressed
on myeloid cells 2 (TREM2) [17,22,23]. However, their use to univocally distinguish
between different microglial profiles, especially in light of the large immunophenotypical
and morphological heterogeneity that these cells exhibit, even in different brain locations,
is still debated. Unfortunately, the presence of significant differences between human- and
mouse-derived cells—a common example being represented by the exclusive presence
of F4/80 in mouse microglia and the still-debated expression of arginase-1 in human
tissues [23]—adds a further layer of complexity to the picture. Finally, a number of genome-
wide expression profiling studies have failed to individuate sufficient diversity in the
microglia population to reduce their diversity to two phenotypes [21,24]; nonetheless, M1-
and M2-like markers are still widely used as a tool to describe the neuroimmune properties
of these cells in several neuroinflammatory contexts, including AD. Although in vitro these
phenotypes are largely represented in this pure form, classifying these cells in vivo has
proven to be more challenging, reflecting the plastic nature of microglia [25].

Pro-Inflammatory-M1-like Microglia

Pro-inflammatory, often referred to as M1-like, microglia are induced by tissue in-
jury and phlogistic soluble factors. In particular, the presence of bacterial components
(e.g., LPS) and cellular debris, as well as of IL-1β, IL-8, IFNγ and TNF in the surround-
ing milieu, induces the activation inflammasome complexes, such as NOD-like receptor
family pyrin 1 and 3 (NRLP1 and 3) and, consequently, the release of neuroinflamma-
tory factors, such as the pro-inflammatory cytokines (e.g., IL-1α/β, IL-6, IL-23 and TNF),
chemokines (e.g., CCL2, CXCL9, CXCL10 and CCL20), co-stimulatory proteins (e.g., CD40
and MHC-II) and the activation of enzymes involved in the induction of oxidative stress
(e.g., NADPH oxidase and the inducible nitric oxide synthase (iNOS)), which result in
excitotoxicity, neurotoxicity, demyelination and, ultimately, neuronal dysfunction and
death [14,26,27]. Alongside the induction of the aforementioned factors, M1-like polariza-
tion is often accompanied by an upregulation of CD11b, CD16/32, CD68 and CD86, with
the concomitant activation of typical transcription factors, also previously described for
peripheral macrophages, such as NF-kB, STAT1 and STAT3 [28].

Interestingly, similar to monocyte-derived macrophages, polarization in microglia also
induces dramatic changes in the metabolic profile [26,29]; indeed, whereas microglial cells
seem to mostly rely on oxidative phosphorylation under a surveillance state [25,30], M1
polarization drives these cells towards glycolytic/anaerobic metabolism and the consequent
production of lactate and reactive species (as reviewed in [26]).
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Anti-Inflammatory-M2-like Microglia

M2-like microglia possess pro-homeostatic properties and are thought to play a role in
the resolution processes. In particular, these cells play a crucial activity in the elimination
of cell and myelin debris, dead cells and misfolded proteins that, if not cleared from the
brain parenchyma, are primary inducers of neuropathology and degeneration [31], as also
suggested by the fact that highly phagocytic microglial cells can be found in damaged brain
tissue [32]. On the other hand, defective or dysfunctional microglial phagocytosis has been
observed in mouse models of neuropathological or neurodegenerative conditions, such as
ischemic stroke, multiple sclerosis and AD [33–36]. M2-like polarization in microglia is simi-
larly driven by peripheral M2 macrophages and anti-inflammatory/TH2-derived cytokines,
such as IL-4 and IL-13 [26], withω-3- andω-6-derived specialized pro-resolving lipids (SPM)
(i.e., resolvins, protectins, maresins, and lipoxins) that enhance their pro-homeostatic proper-
ties while blunting the production of pro-inflammatory mediators [30,37]. In particular, at a
molecular level, M2-like polarizing stimuli act by inducing NF-kB-antagonizing transcrip-
tion factors, such as STAT6, which, in turn, trigger the production of anti-inflammatory
cytokines, such as IL-4, IL-10 and TGFβ, as well as chemokines such as CCD22 [14,28]
and the expression of anti-oxidant factors, such as nuclear factor erythroid 2-related factor
(Nrf2) [38]. Murine cells also display an upregulation of arginase 1 (Arg1), an enzyme that
counteracts inflammatory and oxidative damage both through the arginine-dependent
biosynthesis of tissue-regenerating polyamines, as well as through the reduction in NO
levels, which is achieved by outcompeting iNOS for the availability of their common
substrate, arginine [25]. On the other hand, M2-like microglia are characterized by high
expressions of CD206 and CD36, two scavenger receptors involved in the phagocytosis of
cell and myelin debris [28,39], and by the production of neurotrophic factors, such as the
nerve-derived neurotrophic factor (NGF), glial cell-derived neurotrophic factor (GDNF)
and brain-derived neurotrophic factor (BDNF) [40]; in mice, they are characterized by
the expression of FIZZ1 and Ym1, two secretory proteins involved in tissue regeneration.
Notably, a recent paper also reported a role of the STAT6/Arg1 axis in the induction of
anti-inflammatory/pro-resolving functions such as efferocytosis (i.e., the process which,
during the resolution of inflammation, leads to the removal of apoptotic cells and tissue
debris) [41]. M1-like cells shift their metabolic state towards glycolysis while shutting
down mitochondrial function, whereas M2 mostly rely on oxidative phosphorylation and
respiration. This strongly suggests an integration of these several signals in determining
the outcome of neuroinflammation in the CNS.

Several works in the past two decades have also described the existence of a number
of M2 subtypes that can be obtained in vitro, in macrophages and microglia, through
the stimulation with different immunomodulatory ligands: in this taxonomy, “canonical”
IL-4/13-stimulated macrophages are defined M2a; on the other hand, M2b are induced by
immune complex and TLR or IL1R ligands, while M2c is induced through IL-10/TGFβ [20,42].
In general, M2a cells express higher levels of CD206, TGFβ, Fizz1 and Arg1; M2b cells
produce IL-10 as well as M-CSF and G-MCSF; M2c cells produce higher levels of scavenger
receptors such as CD206, CD163, SR-A1 and B1. It should be noted that this classification
describes “cell types” that are obtained in vitro under very controlled conditions, while
it is quite likely that in vivo environments are characterized by less-defined phenomena,
with microglial cells that display intermediate immunophenotypes.

2.2. Microglia and Alzheimer’s Disease
2.2.1. General Traits of Alzheimer’s Disease

AD accounts for almost 2/3 of the worldwide cases of dementia and cognitive decline,
with 1 out of 10 people over 65 years and almost 1 out of 3 over 85 years suffering from this
condition worldwide [43]. It is characterized by massive neuronal death, cortical atrophy
and progressive cognitive decline. Although a number of different environmental and
genetic causes have been described in this pathology, the cause of the neurodegeneration has
been historically linked to the aberrant accumulation of two hallmark protein aggregates,
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which represent pathognomonic signs of AD: (i) amyloid-β (Aβ) oligomers and polymers
build up in the brain of affected people and constitute the typical plaques that are considered
the main cause of neuronal loss and toxicity [44]; (ii) tau, a protein involved in stabilizing
the microtubules and controlling axonal trafficking, undergoes pathological modifications
that lead to its detachment from the microtubules and its aggregation to form tangles [45].
Even though amyloid plaques and tau tangles represent historical targets of investigation
in this field, neuroinflammation has emerged in recent times as a central cause of neuronal
loss in AD, with microglial cells considered to be a primary source in this process.

2.2.2. The Involvement of Microglia in Alzheimer’s Disease

Microglia are profoundly involved in the correct functioning of the neuronal tissue,
and overactivated or dysfunctional microglia are commonly featured in brain pathophysi-
ology, cognitive decline, and AD, sometimes even preceding the neurological symptoms
of the disease. In particular, microglia-induced neuroinflammation seems to represent a
pivotal and necessary event in the development of the AD clinical phenotype. Indeed,
microglial activation has been reported in patients with MCI- [45,46], even in the absence Aβ
aggregates, and in animal models even before the formation of amyloid plaques [46–48]. Further
rationale supporting the role of early neuroinflammation in AD is provided by several re-
cent studies. For example, the inheritance of pathological alleles for genes that are strongly
involved in innate and microglial responses (e.g., TREM2, CD33 and complement proteins)
represent a genetic risk for the development of AD (as reviewed in [14]). Furthermore,
microglia-mediated neuroinflammation has proven necessary, alongside aggregates, to
induce the neuropathological features of the disease in animal models, and Aβ alone seems
to be insufficient to induce symptoms [49]; however, autoptic samples of asymptomatic
patients with high Aβ brain loads also did not display activated microglial cells [50]. The
activation of microglia by Aβ contributed through the pyrin domain-containing 3 (NLRP3)
inflammasome to enhance Aβ aggregation and to the tau progression [51,52].

Apparently, not only chronically-inflamed microglia is at the base of the clinical symp-
toms of AD, but the presence of Aβ seems to act as an enhancer, due to the fact microglial
cells can recognize amyloid and tau aggregates as molecular profiles (i.e., PAMPs/DAMPs)
through PRR-dependent signalling. This leads to the morphological changes of these cells
and to the production of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-8, TNF, as well
as reactive oxygen species [14]. This transition towards disease-associated microglia (DAM),
which occurs with the progression of the disease, is characterized by a distinct transcrip-
tomic fingerprint, which features the downregulation of homeostatic genes (e.g., purinergic
receptors, Cx3cr1 and Tmem119) and the concomitant upregulation of AD-related genes
such as ApoE, cathepsin D (Ctps), lipoprotein lipase (LPL), tyro protein tyrosine kinase
binding protein (TyroBP) and Trem 2 [40]. Of note, other receptors, such as formyl peptide
receptor 2 (FPR2, also known as ALX), a G protein-coupled receptor that engages pro-
resolving lipids, has been reported to bind Aβ [53]. FPR2 displays strong ligand-biased
signalling, and is expressed in microglia [53], suggesting that AD pathology might also
be related to interference between inflammation and resolution networks. Interestingly,
the microglial pathology in AD also manifests in the form of aberrant phenotypes and
morphologies, in addition to those that were previously described. Indeed, senescent brains
display, in general, microglial cells with a lower level of branching [14], while other works
have reported that the morphology of these cells can significantly change depending on
their relationship with amyloid aggregates, with near-plaque microglia displaying altered
morphology and electrophysiological properties as compared to other cells that have no
contact with Aβ structures [54]. Of note, the study of microglia in cognitive decline has also
led to the recent description and characterization of “dark microglia”, an AD-restricted phe-
notype described in mice prone to develop AD, which displays evident signs of oxidative
stress and expresses high levels of CD11b, TREM2 and 4D4 [55]. These cells are strongly
associated with the neurons of the hippocampus, cortex, amygdala and hypothalamus of
affected mice, and completely encircle synapses at the level of both axonal terminals and
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dendritic spines, suggesting high levels of synaptic stripping that might be involved in the
neuropathology of AD [55].

3. The Endocannabinoid System

The eCBs N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are
lipid messengers acting as endogenous ligands for the cannabinoid receptors CB1 and CB2.
Over the past two decades, these signalling lipids have emerged as critical mediators of
many aspects of human health and disease, revealing a surprising organizational complex-
ity in the mechanisms of synthesis, transport, and degradation. Although initially described
as neuromodulators/neurotransmitters, these bioactive lipids also display multiple and
relevant immunomodulatory properties [56,57].

3.1. eCBs Synthesis and Degradation

All cells in the body, including those of the immune system, produce AEA and 2-AG,
the most studied eCBs. Rather than being pre-synthesized and stored in secretory vesicles,
these bioactive lipids are made “on-demand” (i.e., when and where they are needed) by
the receptor-stimulated cleavage of precursor membrane phosphoglycerides by several
hydrolases.

AEA and 2-AG synthesis occurs through many alternative routes, which can also
co-exist in the same cell and contribute to the production of eCBs in a time-, space-
and activity-dependent manner [57,58]. AEA originates from a phospholipid precur-
sor, N-arachidonoylphosphatidyl ethanolamine (NArPE), which is, in turn, formed from
the N-arachidonoylation of phosphatidylethanolamine via both Ca2+-sensitive and Ca2+-
insensitive N-acyltransferases (NATs and iNATs) [59]. NArPE is then converted into
AEA by several possible alternative pathways, the most direct of which is catalyzed by
an N-acylphosphatidylethanolamine-selective phosphodiesterase (NAPE-PLD) [60]. In
macrophages and other immune cells, another alternative biosynthetic pathway for AEA
involves the PLC-catalyzed cleavage of NArPE to yield phospho-AEA, which is subse-
quently dephosphorylated by protein tyrosine phosphatase non-receptor type 22 (PTPN22),
a member of PEST family of protein tyrosine phosphatases [61,62].

Through the hydrolysis of different arachidonoyl-containing membrane lipids, 2-AG
synthesis can potentially occur. The best-studied synthetic route for 2-AG is its synthe-
sis from sn-2-arachidonic-containing diacylglycerols (DAGs) [63] by one of two DAG
lipases (DAGL) isoforms, DAGLα and DAGLβ [64]; the latter isoform is expressed more in
macrophages, and although its relative brain expression is sparse, it is highly expressed in
microglia [65]. Alternatively, 2-AG can also be synthesized by the dephosphorylation of sn-2
arachidonoyl-lysophosphatidic acid (LPA) [66] via 2-LPA phosphatase; or by the sequential
action of PLA1 and a lysophospholipase C (lyso-PLC) [67] in sn-2 arachidonate-containing
phosphatidylinositol (PI) and its derivative 2-arachidonoyl-lysoPI, respectively [68,69].

The biological effects of eCBs are terminated by cellular uptake followed by intracel-
lular degradation. As very lipophilic compounds, AEA and 2-AG can passively diffuse
through the membrane bilayer, even if this process seems to be accelerated by a rapid and
selective carrier system (i.e., eCBs membrane transporter, EMT) that is postulated to be
expressed in both neurons and glial cells [70]. Although there is strong indirect evidence
for the existence of this transmembrane transport, the molecular identity of the protein(s)
involved remains to be assessed. In this context, several lipid-carrier proteins, which assist
the movement of eCBs within and outside cells, have been identified, confirming that,
despite the current controversy, the eCBs transport system should be further characterized
in the future [71,72].

Once internalized, eCBs can be hydrolyzed by distinct serine hydrolases. The ma-
jor AEA catabolizing enzyme is the fatty acid amide hydrolase (FAAH), which releases
arachidonic acid and ethanolamine [57,70]. 2-AG is mainly hydrolyzed by monoacyl-
glycerol lipase (MAGL) [73] and, to some extent, by other enzymes, such as FAAH and
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the α/β-hydrolases (ABDH6) and 12 (ABDH12) [74]. Finally, AEA and 2-AG can be also
metabolized via oxidation by lipoxygenase and cyclooxygenase (COX) enzymes [75].

3.2. eCBs Receptors and Molecular Pathways

CB1 and CB2 receptors are members of the superfamily A of the heptahelical transmembrane-
spanning G protein-coupled receptors (GPCRs) coupled to heterotrimeric Gi/o proteins [76,77].
These receptors are expressed to various extents in immune cells, with CB2 being pre-
dominant under physiological conditions and upon acute and chronic inflammation [78].
Although CB1 is primarily expressed in specific neuronal populations, with neuromodula-
tory activity, it also seems to play a role in regulating immune responses and inflammatory
pathways [79,80]. In this context, Ativie and colleagues demonstrated that neuronal CB1
may indirectly regulate microglial activity, possibly by influencing the crosstalk between
neurons and microglia [81].

The binding of eCBs to CB receptors affects several cellular pathways, such as the
inhibition of adenylate cyclase and then of protein kinase A (PKA); the regulation of ionic
currents (inhibition of voltage-gated L, N and P/Q-type Ca2+ channels, activation of K+

channels); the activation of focal adhesion kinases, such as MAPKs (p38, ERK1/2, JNK),
PI3K/Akt and cytosolic phospholipase A2; and the activation (CB1) or inhibition (CB2) of
iNOS. All of these pathways are involved in fundamental microglia functions [57,82–84].

There is mounting evidence that eCBs also exert their biological activity via additional
non-cannabinoid receptors, such as the transient receptor potential vanilloid type-1 (TRPV1)
ion channel, which is functionally expressed in microglia [85–88]. Other non-canonical eCBs
receptors expressed by microglia are the nuclear peroxisome proliferator-activated receptors
(PPAR) α and γ, and the orphan G protein-coupled receptors GPR55 and GPR119 [56,89].

4. Microglial Endocannabinoid System in Alzheimer’s Disease
4.1. Role of the ECS in Microglial Functionality

The ECS has a pivotal role in brain inflammation by regulating microglial biology
in terms of proliferation, migration, phagocytosis, and the production of pro- and anti-
inflammatory mediators [8] (Figure 1).Cells 2022, 11, x FOR PEER REVIEW 8 of 24 
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4.1.1. eCBs Receptors

Although CB1 was initially considered as a neuron-specific cannabinoid receptor,
emerging evidence is revealing that this receptor is also constitutively expressed, even if
at low levels, in microglia [90,91]. Indeed, a recent work with conditional knockout mice
documented that hippocampal CB1

−/− microglia show a decreased expression of TNF-α
compared to wild-type mice upon stimulation with LPS [92]. However, to date, except for
some rare works, the specific role of CB1 in microglial cellular physiology has not been
deeply explored [92–94].

CB2 immunoreactivity was primarily associated with astrocytes and microglial cells in
the healthy brain. The expression of CB2 is significantly upregulated in these cells follow-
ing brain trauma or under other pathological conditions, including AD [95], Parkinson’s
disease [96], and multiple sclerosis [97]. Similar findings were observed in several mice
models of neurodegenerative conditions [98,99]. The genetic ablation of CB2 showed mi-
croglia with a reduced phagocytic capacity and relevant morphology alterations during the
switching in M2 phenotype compared to wild-type cells. In particular, M2a microglia from
CB2

−/− mice lost well-defined and multiple lamellipodia and took a more elongated shape.
In addition, Arg-1 expression was diminished in CB2

−/− both under basal conditions
and following M2a stimulation, suggesting a role for CB2 in anti-inflammatory switch-
ing [90]. In rat microglia, CB2 activation by 2-AG leads to the stimulation of proliferation
and endocytosis of the receptor. The effect was reversed by the antagonist of CB2 receptor,
SR144528, and mimicked by the CB2 receptor-specific agonist JWH133 [100]; in this context,
CB2 appeared to be the most relevant eCBs receptor acting on the release of pro- and anti-
inflammatory mediators [101]. Indeed, the CB2 agonist AM1241 was shown to suppress
the expression of pro-inflammatory cytokines, IL-1β, IL-6, iNOS, in LPS/INFγ-activated
microglial cells [101]. At the same time, there was an increase in the expression of Arg1,
IL-10, and the neurotrophic factors BDNF and GDNF, which were significantly reduced
by the co-administration of the CB2 antagonist AM630 [101]. These findings are consistent
with many other studies carried out on primary cells and several immortalized cell lines.
When microglia are experimentally activated in a reactive state, CB2 activation could inhibit
the release of pro-inflammatory and cytotoxic factors interfering with their switching to a
neurotoxic phenotype [102–106].

In mouse brains, TRPV1 is primarily expressed in microglia [88], and its relevance
in microglial physiology has only been highlighted in recent years. TRPV1−/− mice
challenged with LPS to induce systemic inflammation showed a better survival rate, accom-
panied by decreased microglial activation [87]. TRPV1 deletion in microglial cells inhibited
NLRP3 inflammasome activation and capsaicin-induced migration [87]. Moreover, the
induction of experimental autoimmune encephalomyelitis in TRPV1−/− mice led to less
inflammatory-cell infiltration, reduced Iba-1 expression and restored myelin damages [107].
Consistently, the stimulation of TRPV1 by capsaicin, in wild-type microglia, induced a
pro-inflammatory phenotype with higher levels of TNF-α and lower levels of IL-10. The
same stimulation in TRPV1−/− microglia led to equal amounts of TNF-α, but significantly
higher amounts of IL-10, as in the anti-inflammatory activation state of microglia [88]. Some
discrepancy was found in vitro studies in which TRPV1 activation, rather than inactivation,
reduced some cytotoxic factors, such as microglial-originated ROS [86,108].

4.1.2. eCBs Metabolic Enzymes

Microglia express a full assortment of synthetic and catabolic enzymes for eCBs and
can therefore metabolize both 2-AG and AEA [8,109]. Effectively, microglia produce in vitro
20 times more eCBs than neurons and other glial cells and are likely to be the primary
cellular source of these bioactive lipids under neuroinflammatory conditions [110]. Moreover,
eCBs metabolic enzymes seem to be regulated by microglial activation states [110,111]. In partic-
ular, stimulating the switch of microglia to either M2a or M2c states led to an upregulation
of the biosynthetic enzymes (i.e., DAGLα in M2a; NAPE-PLD in M2c), accompanied by
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a downregulation of the respective degrading enzymes, thus resulting in the elevated
production of eCBs [90].

The pharmacological inhibition of MAGL was shown to raise 2-AG level in the
brain [112] and exerted beneficial immunomodulatory functions in neuroinflammatory con-
ditions, attributable, at least in part, to the regulation of microglial functions. For example,
in a PD mouse model, JZL184 (a selective MAGL inhibitor) prevented motor impairment
and induced an increase in microglial cell number and ramification in the striatum, suggest-
ing that MAGL activity impacted both microglial proliferation and phenotypes [113]. In a
viral-induced neuroinflammation model, UCM03025 (a reversible MAGL inhibitor) and/or
2-AG administration act through CB2 to mediate long-term beneficial effects. In particular,
in this neuroinflammatory model, MAGL inhibition hampered microglial cells in reaching
an activated pro-inflammatory phenotype, as seen in a morphological analysis where
microglia showed a reduction in complexity and reactivity comparable with their resting
state [114]. MAGL inhibition (by JZL184) was established as preserving the neuronal func-
tion in experimental autoimmune encephalomyelitis and the non-immune demyelination
model by reducing inflammation markers and suppressing microglial activation (assessed
through CD11b immunoreactivity) [115]. Additionally, in a study of neuroinflammation in-
duced by acute systemically administered LPS, MAGL pharmacological inhibition, as well
as its genetic ablation, reduced cerebral pro-inflammatory cytokine release and microglial
reactivity assessed through Iba-1 expression [116]. The latter study reported that the effect
was not directly mediated through CB1 or CB2-dependent mechanisms. These findings sug-
gested that the immunomodulatory effects on microglia observed under MAGL inhibition
may have involved other non-cannabinoid receptors, such as PPARs [117].

The selective inhibition of FAAH exerted beneficial effects by modulating microglia
responses under different types of pro-inflammatory stimuli. For example, chronic treat-
ment with PF3845, a selective inhibitor of FAAH, in mice subject to traumatic brain injury
suppressed the expressions of iNOS and COX-2, while it enhanced the expression of Arg-1
through phosphorylation of ERK1/2 and AKT. These findings suggest that AEA signalling
may promote a shift of microglia from the M1 to M2 phenotype [118]. In a model of
ethanol-induced neuroinflammation, URB597, another selective FAAH inhibitor, improved
memory, reduced iNOS, TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) and
increased TLR4, concomitantly producing relevant morphologic changes in microglia [119].
Interestingly, the chronic administration of URB597 (and AEA) increased the number of
Iba-1-positive cells in the hippocampus, both in ethanol and control groups [119]. These
findings were in agreement with those of another study characterizing the immunopheno-
type of FAAH−/− mice, where enhanced density and cell size of microglia were also found
in the hippocampus of untreated age-matched mice [120]. Notably, the immunomodulatory
effects of FAAH inhibition on the brain were described to be age-dependent. Indeed, in
aged rats, the chronic pharmacological inhibition of hippocampal FAAH decreased mi-
croglial activation marker expression, pro-inflammatory cytokines and synaptic plasticity
deficits compared to age-matched controls [121]. On the contrary, in the young animals,
the same treatment had no effects [121]. All of these in vivo findings suggest that the
impact on microglia exerted by FAAH inhibition may be strongly influenced by the type of
stimulus from which the inflammation originates and/or the particular microenvironment
surrounding microglial cells.

In vitro studies further support the idea that FAAH inhibition is effective in modulat-
ing microglia responses under different types of pro-inflammatory stimuli, even if they do
not fully clarify the biochemical mechanisms underlying the observed effects. For instance,
in rat primary microglia under LPS stimulation, URB597 reduced the expression of COX-2
and iNOS with a concomitant attenuation of the release of prostaglandin E2 (PGE2) and
NO. The effect of URB597 on LPS-stimulated PGE2 release was not reversed by selective
CB1 or CB2 receptor antagonists [122]. Likewise, in BV-2 cells, a murine microglial cell line,
the inhibition of the activity of FAAH, along with its siRNA knockdown, suppressed the
LPS-induced expression of ROS, PGE2, COX-2 and microsomal PGE synthase. Interestingly,
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the effects mentioned above were mediated neither by CB1/2 receptors nor PPARs [123]. In
the same cellular line, after Aβ peptide pro-inflammatory stimulation, FAAH inhibition
was shown to decrease the release of pro-inflammatory cytokines, switching to the resting
phenotype and reducing cell migration by modulating the Rho signalling pathway [124].
Moreover, URB597 also promoted the phagocytic activity of BV-2, by inducing a robust
reorganization of the cytoskeleton [124]. Unfortunately, the study did not investigate the
receptors that were involved in this process, nor the underlying signalling cascades.

The different components of the microglial eCB signalling are summarized in Table 1,
along with their main effects on microglia physiology.

Table 1. ECS effects on microglia function in vitro.

ECS Model Pro-Anti-Inflammatory
Challenge Treatment Effect on Microglia Function Ref.

CB1

BV2 IFN-γ (100 U/mL) SR141716A 1 µM ↑IFN-γ, IL-1β, IL-6, TNF-α, NO
↓MCP-1, CX3CL1 [93]

Rat primary
microglia

IL-4 IL-13 10 ng/mL each
(M2a) AM251 1 µM ↓Arg-1 immunostaining [90]

CB2

Murine primary
microglia

IFN-γ (100 U/mL)
Aβ42 (1 µM) JWH-015 5 µM ↑phagocytosis of Aβ42

↓TNFα, NO [103]

LPS (100 ng/mL)
IFNγ (20 ng/mL) Constitutive KO ↓IL-6, TNFα

=phagocytosis of Aβ42
[125]

IL-4 (10 ng/mL)
IL-13 (10 ng/mL) Constitutive KO ↓phagocytosis [90]

Basal 2-AG (25 µM) ↑migration [110]

Rat primary
microglia

Aβ40 soluble or fibrillar
(500 nM)

HU-210,
WIN55,212-2,

JWH-133
(100 nM)

↓microglia activation
(morphology)
↓TNFα

[102]

LPS (100 ng/mL) AEA (1 µM)
AM-630 (0.1–0.5 µM)

↓NO
↓M1 phenotypic marker

(mRNA TNFα, IL-β, IL-6,
COX-2, iNOS)

[104]

IL-4 IL-13
(10 ng/mL each) AM630 1 µM ↓Arg-1 immunostaining [90]

LPS (10 ng/mL)
IFNγ (10 U/mL) AM1241 (10 µM) ↓IL-6, IL-β, iNOS

↑Arg-1, IL-10, BDNF, GDNF [101]

APP/PS1 glioma
cells Aβ40 (5 µg/mL)

WIN55,212-2,
JWH-133
(200 nM)

↑Aβ transport through choroid
plexus monolayers [126]

BV-2 LPS (50 ng/mL)
IFNγ (100 U/mL)

AEA
5–15 µM

(SR2 1 µM)
↑IL-10 [105]

TRPV1
Murine primary

microglia

LPS (10 ng/mL)
Aβ oligomer (5 µM) Capsaicin (10 µM) ↑mTOR/AKT/HIF-1α pathway

↑phagocity of Aβ42
[127]

LPS (100 ng/mL)
ATP (5 mM)

Constitutive KO
CPZ (10 µM)

↓NLRP3 inflammasome
↓IL-1β

=TNF-α
[107]

Basal

Capsaicin ↑TNF-α
↓IL-10 [88]

Constitutive KO ↑IL-10

Capsaicin (10 µM) ↑migration [87]

Basal Capsaicin (10 µM) ↑phagocytosis Aβ
[128]Basal Constitutive KO ↑phagocytosis Aβ

BV2 basal Capsaicin (10 µM) ↑phagocytosis Aβ
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Table 1. Cont.

ECS Model Pro-Anti-Inflammatory
Challenge Treatment Effect on Microglia Function Ref.

BV2 Phorbol myristate acetate (1
µM) Capsazepine (50 µM) ↓ROS [86]

MAGL Microglia from adult
brain

Aβ42 (10 µM)
LPS (1 µg/mL) and IFN-γ

(100 ng/mL)
JZL184 (1 µM)

↓NO, IL-1β (stimulation with
LPS/IFN-γ)

↓Iba1 (stimulation with Aβ42)
[129]

FAAH

Rat primary
microglia LPS (0.03 µg/mL) URB597 (10 µM) ↓COX-2, iNOS, PGE2 [122]

BV2

Aβ 25–35 (30 µM) URB597 (5 µM)

↑cell viability
↓basal migration
↑phagocytosis

↑mRNA TGF-β, IL-10, ARG1
↓mRNA TNF-α, IL-1 β, iNOS

[124]

LPS (100 ng/mL)

URB597(10 µM)
PF3845
(10 µM)
siRNA

PF3845 ↓mRNA COX-2, IL-1 β,
MCP1 PGE2, TNF-α

URB597 ↓mRNA PGE2, IL-1 β,
MCP1,

siRNA ↓mRNA TNF-α, il-6,
IL-1 β, MCP1
↓COX-2, iNOS

[123]

Symbols used: ↑, increased; ↓, decreased; =, unchanged.

4.2. Alteration of ECS in Alzheimer’s Disease
Human Studies

Specific alterations in eCB signalling were observed in AD patients. In particular,
based on the postmortem Braak staging method [130], CB1 was upregulated in the earliest
stages [131,132], and downregulated in the advanced stages of AD [102,132,133]. However,
other studies found conflicting results regarding the CB1 receptor expression, which re-
mained unaffected in AD patients [95,134,135]. In human brains, CB2 receptor expression
was found to be positively correlated with Aβ42 concentration, amyloid plaque burden,
levels of hyperphosphorylated tau and neuritic tangles, consistent with the hypothesis that
activated microglia could contribute to the inflammatory process of AD [95,102,133,136].
Other reports showed that the increase in the level of CB2 receptor was more pronounced in
severe AD when compared with age-matched controls or moderate AD subjects [136]. CB2
mRNA expression in peripheral blood mononuclear cells (PBMCs) showed no differences
between AD cases and controls [98]. Interestingly, in the brains of AD subjects, high levels
of CB2 were found to be nitrosylated, an effect of the increase in peroxynitrite radicals
attributable to microglia activation [102].

A reduction in the levels of AEA and its precursor, NArPE, but not of 2-AG, was
observed in the temporal cortex of AD patients [137,138]. Yet, no differences in AEA or
2-AG concentrations in the plasma of AD and healthy controls were detected in preliminary
studies [98,99].

An early report also found an enhanced enzymatic activity in the hippocampus of
AD human patients of the two metabolic enzymes for 2-AG, DAGL and MAGL [139].
In particular, increased DAGL expression (specifically the DAGLβ isoform) within hip-
pocampal neurons and local microglia was positively correlated with pathological AD
progression in postmortem studies [135]. Contrasting results were reported for FAAH.
One group documented a reduction in FAAH activity within neuronal membrane fractions
obtained from the frontal cortex of AD [137], while another study found no difference in
FAAH protein expression within AD hippocampal samples compared to controls [135].
Notably, in PBMCs of AD subjects, an increase in FAAH mRNA expression was observed in
patients with lower mini-mental state examination (MMSE) scores [140,141]. More recently,
we documented that FAAH was overexpressed, also at the protein level, in circulating
monocytes of AD patients, and their levels correlated with the severity of pathology [142].
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The above-described AD-induced modulation of the ECS in the brain and periphery
may occur at multiple levels: it could involve transcriptional and epigenetic mechanisms.
In this context, our group has highlighted the importance of epigenetic mechanisms in the
regulation of FAAH in PBMCs from subjects with late-onset AD. In particular, we found a
reduction in DNA methylation at the FAAH promoter in AD subjects versus controls, which
correlated with an increase in expression of FAAH both at mRNA and protein levels in
those patients [141].

4.3. Preclinical Studies

AD animal models are transgenic mice overexpressing mutant variants of human APP
that provoke the accumulation of Aβ peptides and AD-like symptomatology [143].To accel-
erate/worsen the onset and the course of the amyloidosis, other models were developed by
co-overexpressing other AD-related proteins, such as presenilin 1, apolipoprotein E (ApoE)
and TREM2. All of these different types of AD-like models developed microgliosis and
cognitive impairment, but with different time points of onset [144]. In some of these models,
the expression and distribution of ECS elements were found with profound modifications
compared to healthy mice.

In our work, we showed that in pre-symptomatic Tg2576, characterized by high levels
of human mutant amyloid precursor protein APPSwe (Swedish mutation K670N/M671L),
the localization and the signalling of CB1 was altered, despite the unchanged expression
levels [145]. In APPSwe/PS1∆E9, as a consequence of co-expressed human forms of
APPSwe mutation and human PSEN1 lacking exon 9, numerous amyloid depositions
were developed much earlier than aged-matched Tg2576 mice. In this model during the
symptomatic phase, CB1 was found to have a significant reduction compared to wild-type
mice [146].

The “non-psychotropic” cannabinoid receptor CB2 was found to be consistently upreg-
ulated in AD murine models, corroborating the results found in AD patients. In the brain
of 5xFAD (co-expressing five common AD mutations: three associated with APP, Swedish,
Florida, and London and two linked to PSEN1, the M146L and L286V) the increase in the
expression of CB2 receptor occurred in specific brain areas characterized by intense inflam-
mation and amyloid deposits [147]. Marked increases in CB2 levels have also been found
in the microglia of the APP/PS1 model [148]. Additionally, there is evidence concerning
the alteration of TRPV1: in the brain of 3xTg (APP Swedish, tau P301L, and PSEN1 M146V)
the expression of the receptor was found downregulated [128].

Some reports documented alterations in the concentration of eCBs in different brain
areas of AD-like models. For example, Kolfalvi et al. showed a marked reduction in AEA
levels in the hippocampus, as well as in the prefrontal cortex, of Tg2576 mice [149]. Even
when not significant, a reduction in AEA level in the hippocampus of aged mice of the
same model was also found by our group [150]. Piro and colleagues found in the brain of
APPSwe/PS1∆E9 that levels of 2-AG were considerably increased [151]. Unfortunately,
there is a lack of information about eCBs enzyme dysregulation since the evaluation of
metabolic enzymes, in terms of expression and activity, has not been directly assessed.

4.4. Impact of Microglial Endocannabinoid Signalling in Alzheimer’s Disease

Important information on the impact of the microglial ECS in AD has been obtained
from preclinical studies performed on AD-like mice (Table 2). CB1 chronic activation by
ACEA in APPSwe/PS1∆E9 was effective in restoring cognitive dysfunction [152]. Unfortu-
nately, this study neglected to address the impact of CB1 stimulation on microglia-driven
neuroinflammation. Similarly, in a rat model where microglial activation and memory
impairments were induced by Aβ injection, the activation of CB1 by WIN55,212-2 (a non-
selective CB1/2 agonist) improved the cognitive deficit. Moreover, WIN55,212-2 prevented
microglial activation in the cortex of Aβ-treated rats [102]. In the same model, another
group showed that WIN55,212-2, acting through CB1 and CB2 receptors, significantly im-
proved memory functions, decreasing the expression of some neuroinflammatory markers,
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such as TNF-α, activated caspase-3, and nuclear NFκB [153]. Additionally, the latter study
did not address whether these effects could be ascribed to the cannabinoid-dependent
modulation of microglial properties.

Table 2. ECS immunomodulatory effect in AD mice models.

Model ECS Treatment Molecular Effect Behavioural
Effect

Pre-
Symptomatic

Early
Symptomatic

Late
Symptomatic Ref.

APPSwe/PS1∆E9

CB2

constitutive
KO

=IL-6
↓TNF-α and CCL2
↓microgliosis,
Iba1 in hipp

↓brain-infiltrating
macrophage

↑ramified microglia
around plaque
↓Aβ plaque in cx
↓Aβ plaque in hip

↑MWM H [125,154]

JWH-133
(0.2 mg/kg

i.p.)
5 weeks

=Aβ burden in the cx
=Aβ40 Aβ42 protein

level

↑V-maze
↑Active

avoidance test

N
H

[148]

↓TNF-α, IL-10, IL-6
IL-1β

↓microgliosis, Iba1 in cx
(cells plaque associated)
↓tau phosphorylated
↓p38, GSK3β,
SAPK/JNK
↓HNE

=Aβ burden in the cx
=Aβ40 Aβ42 protein

level
=Aβ plaque load

↑V-maze
=Active

avoidance test

N
H

JWH-015
(0.5 mg/kg

i.p.)
8 weeks

↓microgliosis, Iba1 in cx
↓mRNA TNF-α iNOS

IL-6
= microgliosis,

Iba1 in hipp
=level of Plaque

deposition

↑NOR
=MWM N H [155]

TRPV1

capsaicin
(standard
chow plus

0.01%
capsaicin)
4 weeks

=Aβ40, Aβ42 soluble
fraction

↓Aβ40, Aβ42 insoluble
fraction
↑autophagy

↑clearance of Aβ via
autophagy

(colocalization of
iba1/LC3)
↓IL-6, TNF-α

↑MWM N
H [127]

MAGL

Constitutive
KO

↓microglia, Iba1
↓mRNA IL-1β, IL-6,

TNF-α
↓Aβ plaques as well as

the Aβ40, and Aβ42
amyloidogenic peptides

H

[151]

JZL184
(40 mg/kg i.p.)

2 weeks

↓mRNA IL-1β, IL-6,
TNF-α

N
H

JZL184
(40 mg/kg i.p.)

4 weeks

↓microgliosis, Iba1 in cx,
hipp

N
H [129]

CB1

ACEA
(1.5 mg/kg

i.p.)
4 weeks

=microglia activation,
Iba1 ↑V-maze N

H [152]
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Table 2. Cont.

Model ECS Treatment Molecular Effect Behavioural
Effect

Pre-
Symptomatic

Early
Symptomatic

Late
Symptomatic Ref.

5xFAD

FAAH

Constitutive
KO

↑M1/M2 ratio in
(FAAH−/−)

↓microgliosis Iba1
↑mRNA IL-1β, TNF-α
↓mRNA IL-10, IL-4
↓soluble Aβ42

=MWM H [156]

↑phagocytic Aβ
by DAM H [157]

Constitutive
KO

↑mRNA IL-1β, IL-6
=IL-6

↑IL-1β in cx
↓microgliosis, Iba1 in

hipp (cells plaque
associated)
↓APP

↓Aβ42 and Aβ40

↑MWM H

[158]

URB597
(3 mg/kg i.p.)

2 weeks

↑mRNA IL-6 in hipp
=mRNA IL-1β and

TNF-α in hipp
=MWM N

H

MAGL
JZL184

(12 mg/kg, i.p)
8 weeks

↓Aβ40 and Aβ42 as
well as APP c-terminal

fragments (CTFa/b)
↓reactive microglia,

CD11b in hip

↑MWM N
H [159]

J20

CB2

Constitutive
KO

↑microgliosis, Iba1 in
hipp (cells plaque

associated)
=microgliosis, Iba1 in

hipp
↑soluble Aβ
↑Aβ plaque load
=soluble Aβ40

H [160]

Tg2576

JWH-133
(drinking

water at a dose
of 0.2 mg/kg)

16 weeks

↓microgliosis, Iba1 in cx
↓COX-2

↓CB2 protein
↓27% levels of Aβ40
↓30% levels of Aβ42

↑NOR N H

[126]

CB1/2

WIN 55,212-2
(drinking

water at a dose
of 0.2 mg/kg)

16 weeks

=microgliosis, Iba1 in cx
=COX-2

↓CB2 protein
↓30% levels of Aβ42

=NOR N H

3xTg TRPV1
Capsaicin

(1 mg/kg i.p.)
4 weeks

↑microgliosis, Iba1
↑autophagy

↑activated microglia in
hipp and cx

↑Y Maze
↑MWM

N
H [128]

Rat
(Aβ25-35 inj)

CB1/2

WIN 55,212-2
(10 µg

intracerebro-
ventricular
injection)
1 week

↓microglia activation
in cx ↑MWM [102]

Rat
(Aβ42 inj)

↓TNF-α
↓NF-kB ↑MWM [153]

Symbols used: H, end of treatment/evaluation point; N, start of treatment. ↑, increased; ↓, decreased;
=, unchanged; Abbreviations: MWM, Morris water maze; NOR, novel object recognition; hipp, hippocampus;
cx, cortex.

The direct involvement of microglia in the anti-AD effects of cannabinoid-based drugs
was highlighted by several studies mainly focused on the CB2 receptor [125,148,154,155].
In the pre- and early symptomatic APPSwe/PS1∆E9 mice, Aso and colleagues adminis-
tered the selective CB2 agonist JWH-133 during both stages of the disease. The chronic
stimulation of CB2 significantly improved learning and memory performances compared
to vehicle-treated mice [148]. The long-term stimulation of CB2 also produced remarkable
anti-inflammatory effects by decreasing microgliosis around the plaque and downregu-
lating the expression of several pro-inflammatory cytokines, such as IL-1, IL-6, TNF-α
and IFN-γ. Notably, these anti-inflammatory effects were associated with reduced oxida-
tive stress damage and tau hyperphosphorylation in neuritic plaques [148]. Consistently,
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the chronic stimulation of CB2 in the early phase of AD-like symptomatology of Tg2576
markedly lowered COX-2 and TNF-α, and ameliorated memory deficit [126]. Interestingly,
in the same model, the chronic treatment by WIN55,212-2 did not show the same effect
listed above. Moreover, Tg2676 mice showed an increase in microglial cells compared with
wild-type in the cortex. This increased density was not altered by chronic treatment with
WIN55,212-2, while the selective agonist of CB2 JWH-133 decreased the number of reactive
microglia [160].

Controversial evidence has emerged about the impact of the genetic ablation of the
CB2 receptor on the symptomatology of amyloidosis in AD-like mice. On the one hand,
in APPSwe/PS1∆E9 mice, the deletion of CB2 reduced microglial activation and infiltra-
tion of macrophages. Furthermore, these mice expressed low levels of soluble Aβ40/42,
pro-inflammatory chemokines, and cytokines, and displayed an improvement in cogni-
tive impairment. Interestingly, in this study, the microglia around the plaque assumed
a branched morphology, linked to a homeostatic or dystrophic state [125,154]. On the
contrary, in J20 mice, an AD-like model expressing mutated APP (K670N/M671L/V717F),
Koppel et al. found that CB2 lacking mice exhibited increased Aβ deposits in the cerebral
cortex, hippocampus and enhanced plaque-associated microglia [160].

There a few studies regarding the possible role of TRPV1 in regulating microglial func-
tions. In the hippocampus and cortex of the 3xTg mice, microglial cells showed distinctive
phenotypic changes, such as more protrusions and longer branch length, suggesting a
less-activated state. In this model, the activation of TRPV1 via capsaicin decreased amyloid
and phosphorylated tau pathology, reversed memory deficit and promoted microglia acti-
vation, metabolism and autophagy [128]. Notably, impaired autophagic flux was correlated
with ageing, characterized by immune senescence of macrophages [158]. In APP/PS1
mice, TRPV1 activation downregulated the release of pro-inflammatory IL-6, TNF-α, and
increased autophagy, which promoted the clearance of Aβ [127].

Growing evidence has revealed that the eCBs catabolic enzymes, MAGL and FAAH,
are promising targets for controlling microglia activities in the context of AD-related neu-
roinflammation. For example, in early-symptomatic mice of APPSwe/PS1∆E9 and 5xFAD
models, the pharmacological inhibition of MAGL with JZL184 led to the cognitive im-
provement and prevented neuroinflammation by reducing reactive microgliosis in the
hippocampus [129,159]. Aparicio et al. demonstrated that FAAH−/− mice exhibited an
increase in the M1/M2 ratio and a decrease in microgliosis [156]. In particular, the absence
of FAAH triggered an imbalance of the microglial phenotype towards an exacerbated
pro-inflammatory state, as revealed by the increased M1 over M2 markers, although no
significant differences were found in memory performance [156]. Finally, the genetic abla-
tion of FAAH was found to reduce Aβ levels, neuritic plaques and gliosis in the 5xFAD
model [158]. Furthermore, in the same model, FAAH−/− mice showed that cortical DAM
microglia specifically overexpressed phagocytic-related receptors, such as TREM2 and
cathepsin D [157]. These data suggest a specific gene expression profile related to DAM
molecular signature in microglia from 5xFAD/FAAH−/− mice that provoked enhanced
Aβ phagocytosis and clearance. The authors suggest that the enhancement of AEA sig-
nalling, by promoting an alternative DAM phenotype, could have a beneficial impact on
amyloidosis [157].

Overall, these findings suggest that the ECS may have a regulatory role in microglial
biology, both in normal and AD-related pathological conditions. Furthermore, substantial
evidence has also been accumulated indicating that targeted manipulation of eCB sig-
nalling by cannabinoid-based medicines may represent a novel and valuable strategy for
managing AD.

5. Conclusions

Microglia, the immunocompetent guardians of brain homeostasis, were recently
shown to display an extremely heterogeneous phenotype across different regions of the
brain as well as in distinct stages of AD, as they can exist in many different types and
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activation states, from neuroprotective to neurodestructive. A robust body of literature
has consistently documented the functional relevance of the microglial ECS that could
specifically drive the acquisition of an anti-AD phenotype by these cells, consisting of an
enhancement in phagocytosis, chemotaxis, and the release of anti-inflammatory and/or pro-
resolutory mediators. In particular, preclinical evidence demonstrates that the enhancement
of eCBs signalling, obtained through an inhibition of the main eCB-degrading enzymes, ex-
erts potent immunomodulatory effects on microglia-driven responses and might represent
a promising therapeutic strategy for attenuating AD-related neurodegenerative processes
and cognitive decline.

Unfortunately, until now, knowledge of the direct modulation of microglia through
ECS is mostly based on in vitro studies. Indeed, in the preclinical studies, several groups
demonstrated that the modulation of the ECS in AD-like mice led to improved symp-
tomatology. Since ECS-based drugs strongly act on the neuronal functional recovery, it
is very difficult to establish to what extent these effects are attributable to a direct impact
on microglial activity [81]. In this context, future and more MG-focused investigations
performed using cell-selective inducible knockout models could help to define the rela-
tive contribution of microglial eCB signalling in the recovery of brain homeostasis under
AD-related pathological conditions.
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